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In this tutorial, we study about finding the derivative of structural similarity
(SSIM) for it to be used as data fidelity term in optimization problems. Higher
values of SSIM denote better perceptual quality of the image. Therefore, unlike
mean square error (`2-norm) or mean absolute deviation (`1-norm) which are to
be minimized for any gradient based technique, SSIM needs to be maximized. In
general, for any additive noise η corrupting data along with linear degradation
operator H, image formation model can be represented as:

y = Hx+ η (1)

For denoising problems (as in the present tutorial), we consider H = I. Under
variational approach, we can consider the following optimization problem:

x̂ = arg min
x

(1− SSIM(x, y)) + αR(x) (2)

Here, x is the reference groundtruth and y is the corrupted image whose SSIM
needs to be calculated. Since SSIM is a symmetric measure, SSIM(x, y) =
SSIM(y, x). For benchmarking the restoration results of different techniques,
y can also be considered as the restored image. SSIM is composed of three
different components; namely luminosity, contrast and structural information.

SSIM (x, y) = l(x, y)α · c(x, y)β · s(x, y)γ (3)

Here, the values of α, β and γ as chosen to be 1. Individual terms are calculated
as:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(4a)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(4b)

s(x, y) =
2σxy + C3

σxσy + C3
(4c)

Here, C3 = C2/2 and µx and µy are means of x and y respectively. σx and σy
are standard deviations and σxy is the covariance between x and y such that:

µx =
1

N

∑
i

xi; σx =
1

N − 1

∑
i

[
(xi − µx)2

]1/2
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σxy =

[
1

N − 1

∑
i

(xi − µx)(yi − µy)

]
µy and σy can defined similarly. Combining all the terms together, we obtain:

SSIM (x, y) =

(
2µxµy + C1

µ2
x + µ2

y + C1

)
︸ ︷︷ ︸

l(p)

·

(
2σxy + C2

σ2
x + σ2

y + C2

)
︸ ︷︷ ︸

cs(p)

(5)

However, it is found that the values of the component parameters (µx, µy,
σx, σy, σxy) are spatially variant in different sections of the image and hence
should not be calculated collectively over entire image. Therefore, local window
SSIM can be calculated as:

SSIM(x(p), y(p)) = l(p) · cs(p) (6)

where x(p) is the local window centred at pixel p. For that, we calculate local
features using Gaussian filter Gσ with a fixed window size and average those
values to obtain the final SSIM value. This SSIM is called mean SSIM (MSSIM).

MSSIM (x, y) =
1

M

∑
j

SSIM (xi, yj) (7)

where M is the total number of patches. Using these values in Eq. (2), we get:

arg min
x

(1−MSSIM(x, y)) + αR(x) (8)

Further, when we consider Gaussian filter for calculating parameters, we obtain:

µx(p) = Gσ ? Px σx = Gσ ? P
2
x − µ2

x(p) σxy = Gσ ? (Px · Py)− µx(p)µy(p)

Px is the local image window centred at pixel p and ? denoted convolution
operator. Convolution between two different functions are defined as:

g(x) = (f ? w)(x) =
∑
i

f(n)w(x− n) (9)

Now, using Eq. (6) to find out the derivative with respect to pixel q, we obtain:

∂ SSIM(x(p), y(p)

∂x(q)
= cs(p)

∂

∂x(q)
l(p) + l(p)

∂

∂x(q)
cs(p) (10)
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Using chain rule, we can write Eq. (10) as:

∂l(p)

∂x(q)
=
∂l(p)

∂µx(p)
· ∂µx(p)

∂x(q)
(11a)

∂l(p)

∂µx(p)
=

2[µy(µ2
x + µ2

y + C1)− µx(2µxµy + C1)]

(µ2
x + µ2

y + C1)
2 (11b)

= 2

[
µy

(µ2
x + µ2

y + C1)
− µx

2µxµy + C1

(µ2
x + µ2

y + C1)︸ ︷︷ ︸
l(p)

· 1

(µ2
x + µ2

y + C1)

]
(11c)

= 2

[
µy − µxl(p)
µ2
x + µ2

y + C1

]
(11d)

∂ux
∂x(q)

= Gσ(p− q) (11e)

Similarly, using chain rule, we can find the derivative of the second expression
in Eq. (10).

∂cs(p)

∂x(q)
=
∂cs(p)

µx(p)
· ∂µx(p)

∂x(q)
(12a)

∂cs(p)

∂µx(p)
=

∂

∂µx(p)

[
2(x− µx)(y − µy) + C2

(σ2
x + σ2

y + C2)

]
(12b)

=
−2(y − µy)

(σ2
x + σ2

y + C2)
+ 2

[
(2σxy + C2)

(σ2
x + σ2

y + C2)︸ ︷︷ ︸
cs(p)

× (x− µx)

σ2
x + σ2

y + C2

]
(12c)

=
2

(σ2
x + σ2

y + C2)

[
cs(p)(x− µx)− (y − µy)

]
(12d)

∂µx
∂x(q)

= Gσ(p− q) (12e)

Total MSSIM measure is given by:

1

N

∑
p

cs(p) · ∂l(p)
∂x(q)

+ l(p) · ∂cs(p)
∂x(q)

(13)

1

N

∑
p

cs(p)
∂l(p)

∂x(q)
= (2Gσ(p− q))

[
µy − µxl(p)
µ2
x + µ2

y + C1

]
· cs(p) (14a)

Re-arranging the above expression, we can write:

2

N

∑
p

cs(p)

[
µy − µxl(p)
µ2
x + µ2

y + C1

]
Gσ(p− q) (14b)

From the definition of convolution in Eq. (9), we obtain:

2

N

∑
p

h(p) ·Gσ(p− q)⇒ 2

N
(h ? Gσ)(q) (14c)
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where h = cs(p) · µy − µxl(p)
µ2
x + µ2

y + C1
Similarly, bringing the second expression

1

N

∑
p l(p) ·

∂cs(p)

∂x(q)
into picture, we obtain:

2

N

∑
p

l(p)

[
Gσ(p− q)

σ2
x + σ2

y + C2

]
[y(q)− µy − cs(p) · x(q) + cs(p) · µx] (15)

Eq. (15) can be split into four terms as:

2

N
(Q+R+ S + T ) (16)

Q = y(q)
∑
p

l(p)

σ2
x + σ2

y + C2︸ ︷︷ ︸
f1(p)

·Gσ(p− q)⇒ y(q) · (f1 ? Gσ)(q) (17a)

R = −
∑
p

l(p) · µy(p)

σ2
x + σ2

y + C2︸ ︷︷ ︸
f2(p)

·Gσ(p− q)⇒ −(f2 ? Gσ)(q) (17b)

S = −x(q)
∑
p

l(p) · cs(p)
σ2
x + σ2

y + C2︸ ︷︷ ︸
f3(p)

·Gσ(p− q)⇒ −x(q) · (f3 ? Gσ)(q) (17c)

T =
∑
p

l(p) · cs(p) · µx(p)

σ2
x + σ2

y + C2︸ ︷︷ ︸
f4(p)

·Gσ(p− q)⇒ ·(f4 ? Gσ)(q) (17d)

Hence, the final expression for obtaining MSSIM is:

∂ MSSIM (x, y)

∂x(q)
=

2

N

[
(h ? Gσ) + y(q) · (f1 ? Gσ)(q)− (f2 ? Gσ)(q) (18)

−x(q) · (f3 ? Gσ)(q) + (f4 ? Gσ)(q)

]
(19)

It can be concluded that finding MSSIM derivative using convolutions (Eq. (18))
offer better alternative than using primitive operations (Eq. (11) and Eq. (12)
calculated with respect to each pixel q centred at p in the filtering window).
Since an efficient technique for finding convolution is Fast Fourier Transform
(FFT), we can obtain runtime of O(N logN). However, derivative using equa-
tions (11) and (12) performs the same operations in O(mN logN) time; where
m is the patch size. Difference in the derivative computation performance using
these two techniques is exacerbated especially in deep learning based restora-
tion methods where training is already overwhelmed with the huge amount of
data. Therefore, we can expect performance benefits by order of m by using the
modified strategy.
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