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Supplementary Material for “Deep Learning
for Breast MRI Style Transfer with Limited
Training Data”

Appendix A Data

In this section, we will give a more detailed description of our dataset and the
process of its creation, beyond that of Section 1.1.

In this study, we experimented with the Breast Cancer DCE-MR (Dynamic
Contrast-Enhanced Magnetic Resonance) dataset of [20], which includes MRI
scans of 922 breast cancer patients over the course of a decade. From this, we
include GE Healthcare MRI scans from 628 subjects, and each scan volume
consists of more than 160 physically adjacent 2D axial image slices. To focus
on the salient parts of the volumes and to avoid redundancies in our dataset,
for each volume we selected a single slice from the middle 50% of each patient
volume used in our study to be used in our final dataset.

All images have a 512 × 512 pixel resolution, and were pre-processed by
assigning the top 1% of pixel values in the entire dataset to a value of 255,
followed by linearly scaling the remaining pixel intensities to the 0-255 range.
The data was randomly divided at the patient level, and 528 datapoints were
used to produce the training set. Out of the remaining images, 50 were kept as
a test set, and the other 50 were used for validation. 25 images from a Siemens
scanner were created the same way, to be used in Section 2.2.

This data is publicly available on the Cancer Imaging Archive (TCIA), at
https://doi.org/10.7937/TCIA.e3sv-re93.

Appendix B Image Transformation
Functions/Training Styles

Here we give the explicit formulae for the parametrically-randomized image
transformation functions used to simulate style in training. Note that after a
randomized transformation function is applied to a training image, the image
is normalized to fall within the pixel range of 0-255.

The Linear Transformation

The simplest intensity transfer function/transformation is linear with respect
to input pixel intensity Iin with some slopemlin (contrast change) and intercept
blin (brightness offset), with output pixel intensity Iout. We “randomize” this
function during training with

Iout = Tlin(Iin) = mlinIin + blin, (B1)

where given the continuous uniform distribution U(·, ·), mlin = tan θlin, θlin ∼
U(π/8, 3π/8) and blin ∼ U(−20, 20) are sampled at each new iteration of
training when the linear transformation is chosen.

https://doi.org/10.7937/TCIA.e3sv-re93
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The Negative Transformation

The negative of an image is produced by subtracting each pixel from the
maximum possible intensity value Imax, e.g. for an 8-bit image Imax = 28 −
1 = 255. As such, the transformation function Tneg used to produce an image
negative can be written pixel-wise as Iout = Tneg(Iin) = Imax− Iin, where Imax

is the maximum pixel intensity value for the image, and Iout and Iin ≥ 0 are
the output and input pixel intensity values, respectively. We “randomize” this
function during training with

Iout = Tneg(Iin) = mnegIin + bneg, (B2)

with mneg = tan θneg, θneg ∼ U(−3π/8,−π/8) and bneg ∼ U(235, 275).

The Log Transformation

The log (logarithm) transformation of an image can be expressed as a pixel-
wise transformation function Tlog as Iout = Tlog(Iin) = clog log(1 + Iin), where
clog is a scaling constant given by clog = Imax/[log(1+Imax,img)], with Imax,img

being the maximum pixel value in the given image. This factor is chosen to
ensure that the range of output pixel values does not exceed Imax. In practice
the log transformation is used to map a narrow band of low-intensity input
values to a wide range of output intensities. We randomize this transformation
via

Iout = Tlog(Iin) = c̃log log(1 + Iin), (B3)

where c̃log = aclog with a ∼ U(0.7, 1.3).

The Power-Law (Gamma) Transformation

The power-law (gamma) transformation can be mathematically expressed as
a pixel-wise transformation function with Iout = Tpow(Iin) = c (Iin/Imax)

γ
,

where similar to clog, cpow = Imax is a scaling constant chosen to give the
correct range of possible Iout values. The exponential parameter γ can be any
chosen as any γ > 0. This transformation is used for gamma correction, a
method important for the correct displaying of images on digital screens. This
transformation is randomized with the scheme

Iout = Tpow(Iin) = c

(
Iin
Imax

)γ̃
, (B4)

where γ̃ = 2α with α ∼ U(−5, 5).

The Piecewise-Linear Transformation

Piecewise-linear transformation functions are constructed by conjoining differ-
ent linear functions that have disjoint intensity ranges. A common application
of these transformation functions is for contrast stretching, a method for
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expanding an image’s intensity values to span the full possible range of inten-
sities. Here, we use a three segment piecewise-linear transformation function
defined “randomly” according to

Iout = Tpw(Iin)

=



s1
r1
Iin if Iin ∈ [0, r1]

s2 − s1
r2 − r1

(Iin − r1) + s1 if Iin ∈ [r1, r2]

Imax − s2
Imax − r2

(Iin − r2) + s2 if Iin ∈ [r2, Imax],

(B5)

where r1 < r2, s1 < s2 are parameters chosen by the scheme

r1 ∼ U(55, 95) r2 ∼ U(130, 170)

s1 ∼ U(35, 75) s2 ∼ U(205, 245).
(B6)

The Sobel X and Y Transformations

The Sobel X and Y transformations, or operators, are edge-detection image
transformations defined by applying 3 × 3 convolutional kernels to the input
image. The X and Y kernel matrices are defined to approximate the derivatives
that quantify horizontal and vertical changes of input pixel intensity values,
respectively. The X and Y operators are as such defined respectively with

Iout,x =

1 0 −1
2 0 −2
1 0 −1

 ∗ Iin and

Iout,y =

 1 2 1
0 0 0
−1 −2 −1

 ∗ Iin,

(B7)

where ∗ indicates the linear convolution operation, Iin is the input image
defined as a matrix of pixel intensity values, and Iout,x, Iout,y are the output
images of the X and Y transformations, respectively.



Springer Nature 2021 LATEX template

Deep Learning for Breast MRI Style Transfer with Limited Training Data 25

Appendix C Full Expansion of Cross-Domain
Reconstruction Triplet Loss
(Equation (4))

Lcross = E [‖G (Ec(X2), Es(X1))−X2‖1]

+ E [‖G (Ec(X1), Es(X2))−X1‖1]

+ E [‖G (Ec(X2), Es(T (X1)))− T (X2)‖1]

+ E [‖G (Ec(X1), Es(T (X2)))− T (X1)‖1]

+ E [‖G (Ec(X2), Es(T (X2)))− T (X2)‖1]

+ E [‖G (Ec(X1), Es(T (X1)))− T (X1)‖1]

+ E [‖G (Ec(T (X2)), Es(X1))−X2‖1]

+ E [‖G (Ec(T (X1)), Es(X2))−X1‖1]

+ E [‖G (Ec(T (X2)), Es(X2))−X2‖1]

+ E [‖G (Ec(T (X1)), Es(X1))−X1‖1]

+ E [‖G (Ec(T (X2)), Es(T (X1)))− T (X2)‖1]

+ E [‖G (Ec(T (X1)), Es(T (X2)))− T (X1)‖1] .

(C8)

Appendix D Exploring Style Encoding
Mechanics

In the previous two sections we explored two different applications of
StyleMapper. In this section, we will take a different approach, and explore
how style encoding can differ between styles seen and unseen in training, and
between images of different styles and of the same style. To begin, in this
section we will use “fixed” versions of the randomized training style trans-
formations Ti described in Section 1.2.1, for purposes of consistency and
comparability of results. In particular, the randomized parameters will be fixed
to the means of their respective sampling distributions: the linear function will
be fixed to identity, via mlin = 1, blin = 0. The negative transformation will
be fixed to mneg = −1, bneg = 255 = Imax; log: a = 1; power-law/gamma:
γ̃ = 0.5; piecewise-linear: r1 = 75, r2 = 150, s1 = 55, s2 = 225. The Sobel X
and Y transformations are unchanged.

We will begin by comparing the style codes that the trained style encoder
extracts from images of different styles. In particular, we take a test set
{Xtarget} of 25 raw DCE-MR images, which we can then apply one of the
aforementioned transformations Ti to, in order to obtain the corresponding set
of transformed images {Ti(Xtarget)}. Finally, from here we can input each of
these transformed images to the trained style encoder Es to obtain the set of
style codes for each these images, {sTi

target = Es(Ti(Xtarget))}.
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Now, we can estimate the similarity of two style code vectors s1, s2 ∈ R8

with a cosine-similarity/normalized inner product

sim(s1, s2) =
sT1 s2
s12s22

, (D9)

where sim(s1, s2) ∈ [−1, 1] ∀s1, s2. In order to examine how the style encoder
encodes various styles differently, we compare codes extracted from images
of different styles but, with the same content. We do this by computing

sim(sTi

target,k, s
Tj

target,k) for each image Xtarget,k in the first half of the test set

(k = 1, . . . , 25), where the pair of style codes sTi

target,k, s
Tj

target,k are obtained
from applying each pair of different transformations Ti, Tj to Xtarget,k. We
then average the similarities over all of the images in the test set for each pair
of transformations; the results of this are shown in Figure D1.

negative log gamma p.w. linear Sobel X Sobel Y identity
negative 1.000
log -0.043 1.000
gamma -0.480 0.884 1.000
p.w. linear -0.773 0.607 0.894 1.000
Sobel X -0.039 0.528 0.512 0.394 1.000
Sobel Y 0.017 0.740 0.676 0.473 0.932 1.000
identity -0.780 0.621 0.910 0.992 0.367 0.461 1.000

Fig. D1 Comparing style codes extracted for different styles. Entries are cosine-
similarities (Equation (D9)) of style codes extracted from pairs of images of the same content
but different styles, i.e. two different image transformations applied to the same test image,
averaged over the entire test set. The rows and columns specify which pair of transforma-
tions/styles that the encoded images originated from. This figure is recommended to be
viewed in color.

As we saw in Section 2.1, the ability of a trained style encoder to learn the
style code of a given target style is mostly independent of the number of images
Ntarget of this target style seen by the encoder; we can see this numerically
by observing the distribution of style codes obtained from applying a style
encoder on a distribution of images of a certain single style, as follows. In
particular, for the set of style codes extracted from images transformed with
one of the transformations Ti, {sTi

target}, we can estimate how similar style codes
corresponding to this transformation/style are to each other, by averaging over
the similarities between all possible pairs of different style codes from {sTi

target}.
These results are given for each of the examined styles in Table D1. On

average, style codes of different images of the same style barely differ, indicated
by the average similarities all being very close to unity, and the small standard
deviations thereof. In other words, the style encoder is very consistent with
what code it assigns to a particular style. This is true even for styles not
seen in training: for a style encoder trained on all transformations except for
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Table D1 Average and standard deviation of cosine similarity (Equation (D9)) of all
pairs of style codes extracted from images of the same style.

Style Avg. similarity std. deviation

Negative 0.995 0.006
Log 0.974 0.037
Gamma/power-law 0.984 0.023
Piecewise-linear 0.979 0.028
Sobel X 0.989 0.020
Sobel Y 0.990 0.016
Identity 0.990 0.013

the power-law transformation, the style codes extracted from power-law-style
test images have an average paired similarity of 0.985 with standard deviation
0.023, very close to the corresponding result for the model trained on power-law
styles in Table D1.

Appendix E StyleMapper Network
Architecture

Refer to Figure. 2 for a diagram of our model; the explicit layer-by-layer archi-
tecture is given in Tables E2, E3 and E4. Here, Conv2d(input channels,

output channels, kernel size, stride, padding) denotes a standard
two-dimensional convolutional layer with some number of input channels, out-
put channels, kernel size, stride, and padding. Reflection padding and ReLU
activations are used unless otherwise stated. After each convolution, the con-
tent encoder uses instance normalization (IN) layers, the decoder uses adaptive
instance normalization (AdaIN) layers, and the style encoder does not use
normalization layers.

Table E2 Style Encoder Es architecture.

input image (1x256x256) ⇒Conv2d(1, 64, 7, 1, 3)

⇒Conv2d(64, 128, 4, 2, 1)

⇒Conv2d(128, 256, 4, 2, 1)

⇒ 2×Conv2d(256, 256, 4, 2, 1)

⇒GlobalAvgPool()

⇒Conv2d(256, 8, 1, 1, 0)

Table E3 Content Encoder Ec architecture.

input image (1x256x256) ⇒Conv2d(1, 64, 7, 1, 3)

⇒Conv2d(64, 128, 4, 2, 1)

⇒Conv2d(128, 256, 4, 2, 1)

⇒ 4×ResidualLayer{Conv2d(256, 256, 3, 1, 1)

⇒Conv2d(256, 256, 3, 1, 1), no activation function}
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Table E4 Decoder G architecture. Note that the style code is used to learn the Adaptive
Instance Normalization (AdaIN) parameters that are used in the residual layers of the
decoder. These parameters are outputted by a multi-layer perception (MLP) which takes
the style code as input. The MLP has 8 input dimensions, one hidden layers of dimension
256, and ReLU nonlinear activations throughout (besides the output).

content code ⇒ 4×ResidualLayer{Conv2d(256, 256, 3, 1, 1)

⇒Conv2d(256, 256, 3, 1, 1), no activation function}
⇒Upsample2x⇒Conv2d(256, 128, 5, 1, 2)

⇒Upsample2x⇒Conv2d(128, 64, 5, 1, 2)

⇒Upsample2x⇒Conv2d(64, 32, 5, 1, 2)

⇒Upsample2x⇒Conv2d(32, 16, 5, 1, 2)

⇒Conv2d(16, 1, 7, 1, 3), tanh activation


