1	Supplementary Information
2	
3	
4	
5	Modulatory mechanisms of TARP γ 8-selective AMPA receptor therapeutics
6	
7	
8	Danyang Zhang, Remigijus Lape, Saher A. Shaikh, Bianka K. Kohegyi, Jake F. Watson,
9	Ondrej Cais, Terunaga Nakagawa, Ingo H. Greger
10	
11	
12	
13	
14	

- 15
- 16

Supplementary Fig. 1. Purification of recombinant AMPAR complex and representative cryo-EM data processing workflow of GluA1/A2_γ8 in complex with γ8 NAMs.

a, Representative 4-12% Bis-Tris SDS-PAGE gel stained with Coomassie blue, indicating elution of the GluA1/2_ γ 8 complex from FLAG beads. Purification was performed reproducibly (more than 3 times); uncropped gel provided at the end of Supplementary Information. **b**, Representative, motion-corrected micrograph of resting-state GluA1/2_ γ 8 in complex with LY-481 among collected data (scale bar, 50 nm). **c**, Representative 2D class averages of the resting state GluA1/2_ γ 8 in complex with LY-481. **d**, Cryo-EM data processing workflow of the resting state GluA1/2_ γ 8 in complex with LY-481. Raw movies were first

26	processed, then more than 2 million raw particles were picked from motion-corrected
27	micrographs. Then 2D and 3D classification was performed to remove bad particles, and finally
28	582k particles were selected and polished for refinement. Next, focused refinement on LBD-
29	TMD gating core was performed with C2 symmetry. To further improve the resolution at the
30	ligand-binding pocket, the TMD sector alone was refined with C2 symmetry applied. This
31	workflow was also implemented for the other structures (JNJ-118, JNJ-059).
32	

LBD-TMD unmasked TMD unmasked а LBD-TMD masked TMD masked LY-481 Resting state 1 2.2 3.6 OS 0.5 3.0 3.4 0.143 0 3.8 0.1 0.2 0.3 0.4 0.5 0 Resolution (1/Å) LBD-TMD TMD b JNJ-118 Resting state 1 2.6 3.0 FSC 0.5 3.4 0.143 3.8 0 4.2

TMD

3.20 2.76

3.08

2.59

3.64

3.32

3.49

3.17

0.1 0.2 0.3 0.4 0.5

Resolution (1/Å)

Resolution (1/Å)

0

С JNJ-059 Resting state

LBD-TMD

LBD-TMD

34

35

Supplementary Fig. 2. Cryo-EM analysis of GluA1/A2_ γ 8 in complex with γ 8 NAMs. 36

TMD

a, Left: Local resolution maps at LBD-TMD and TMD of resting state GluA1/A2_y8 in 37 38 complex with LY481. 3D maps are coloured based on local resolution estimate. Middle: Euler 39 angle distribution of particles used for the cryo-EM reconstruction. Right: Masked (red, LBD-

40	TMD and purple, TMD) or unmasked (blue, LBD-TMD and green, TMD) Fourier shell
41	correlation (FSC) of corresponding maps where FSC=0.143 (black line). b, Local resolution
42	maps, particle Euler angle distribution and FSC curves of resting state GluA1/A2_ $\gamma 8$ in
43	complex with JNJ-118. Figures are coloured as in A. c, Local resolution maps, particle Euler
44	angle distribution and FSC curves of resting state GluA1/A2_ γ 8 in complex with JNJ-059.
45	Figures are coloured as in A. d, Local resolution maps, particle Euler angle distribution and
46	FSC curves of open state GluA1/A2_ γ 8 in complex with JNJ-059. Figures are coloured as in
47	panel A.

LY-481 Resting state

a

52	Supplementary Fig. 3. Densities and their fit against models of GluA1/A2_ $\gamma 8$				
53	transmembrane helices.				
54	a, Densities of LY-481 and surrounding transmembrane helices M1(GluA1), M4(GluA2),				
55	M3(γ 8), M4(γ 8) and their fit against the model. b , Densities of JNJ-118 and surrounding				
56	transmembrane helices M1(GluA1), M4(GluA2), M3(γ 8), M4(γ 8) and their fit against the				
57	model. c, Densities of JNJ-059 and surrounding transmembrane helices M1(GluA1),				
58	M4(GluA2), M3(γ 8), M4(γ 8) and their fit against the model. d , Model-to-map FSCs of ligand-				
59	bound GluA1/2_ γ 8 LBD-TMD models in resting and active states.				

62

63 Supplementary Fig. 4. Features of the NAM binding sites from cryo-EM and MD simulation analysis. 64

65	a, Snapshots from MD simulations (left: JNJ-118, centre, JNJ-059, right: LY-481) showing
66	water molecules from the extracellular side penetrating into TARP in the direction of S128 to
67	N172 at the ligand binding site. b , Density of putative waters (indicated by the red arrow) and
68	surrounding residues in the LY-481 cryo-EM map around GluA2 S790. Model is coloured as
69	in Fig2. c, Left: Density of putative waters (indicated by the red arrows) and surrounding
70	residues in the LY-481 cryo-EM map around $\gamma 8$ S128. Model is coloured as in Fig2. Right:
71	Top view of MD simulation snapshot showing water penetration into TARP in the LY-481
72	complex, in the S128 to N172 region. d, Sequence alignment of Type 1 TARPs, γ 8-specific
73	V176 and G209 are highlighted. The model demonstrates how these residues accommodate the
74	ligands, in contrast with the bulkier residues of the other TARPs, shown in the top view in red.
75	e, Overlay of resting state LY-481, JNJ-118 and JNJ-059 models. Models are coloured as in
76	Fig2. f, Ligand stability in the binding site, measured as the centre of mass (COM) distance of
77	ligand heavy atoms from COM of C α of binding site residues, V176, G209, M523 and C524.
78	Representative variations from one binding site in one simulation set for each system are
79	shown. Low variation indicates the ligands remain bound in the site during simulations.

83 Supplementary Fig. 5. JNJ-059 open state and annular lipids.

a, Density of putative water that bridges Y519 and D515 in the LY-481 cryo-EM map. Model
is coloured as in Fig2. b, Superposition of open state GluA1/A2_γ8 in complex with JNJ-059
(orange) and the open state GluA1/A2_γ8 without ligand binding (PDB 7QHB; the model was

87	rescaled by a factor of 1.008 to eliminate systematic errors caused by pixel size calibration
88	yielding better comparability). c, Zoomed-in view of the superposed models shows subtle
89	changes at the receptor gate with JNJ-059 bound. d, Pore dimensions of resting state
90	GluA1/A2_y8 (green, PDB 70CD) open state GluA1/A2_y8 (grey, rescaled 7QHB as in panel
91	B), and open state GluA1/A2_ γ 8 in complex with JNJ-059 (orange) depicted by space-filling
92	representation. Side views of superposed M3 helices (top: GluA1, bottom: GluA2) from open
93	state models are shown. e, Density of LY-481 and the lipid molecules surround ligand-binding
94	pocket. Model is coloured as in Figure 2. f, Density of JNJ-118 and lipid molecules surround
95	the ligand binding pocket. Model is coloured as in Fig2. g, Cavities of the NAM (LY-481
96	serves as example) and annular lipids lining the conduction path helices (M2 and M3).

100 Supplementary Fig. 6. Electrophysiological characterisation of GluA1 wt and mutants in 101 response to the three NAMs.

102 **a**, Pooled scatter plot of GluA1i γ 8 current peak inhibition by three modulators. Each point is 103 current peak in the presence of modulator normalized to the control peak. Horizontal lines 104 indicate the mean values. Asterisks summarize two-tailed one-sample t-test (difference from 100%) results: ** *p* <= 0.01, *** *p* <= 0.001. Number of cells: n=13, 7, and 7 for JNJ-118, LY-105 106 481, and JNJ-059, respectively. **b**, Paired bar plots showing effect of 10 μM JNJ-118, LY-481 107 or JNJ-059 on equilibrium current and resensitization for wild-type or mutant GluA1i γ 8. Each 108 point is a measure of parameter in absence or presence of modulator. Bar height represents the

- 109 mean value. Asterisks indicate summary of two-tailed paired t-test values: * $p \le 0.05$, ** p
- 110 ≤ 0.01 , *** $p \leq 0.001$ and 'ns' for p>0.05. Number of cells: JNJ-118: n=10, 7, 8, 10, and 8;
- 111 LY-481: n=7, 6, 5, 8, and 5; JNJ-059: n=7, 5, 9, 7, and 5 for wt, Y519A, E520D, M523A, and
- 112 F527A, respectively. Source data are provided as a Source Data file.
- 113

117 Supplementary Fig. 7. Role of natural oxindoles and contact map analyses.

a, MD snapshots after initial equilibration runs (before production runs) showing the 118 119 positioning of JNJ-059 (left) and isatin (centre) in the TARP binding site, with the 120 oxindole/isatin sandwiched between V176 and G209. Oxindole/isatin stability in the binding 121 site, measured as the centre of mass (COM) distance of oxindole group heavy atoms, from 122 COM of Ca of V176 and G209. b, Left: Representative whole-cell responses to 10 mM 123 glutamate (2 seconds, -60 mV) from HEK293T cells transfected with GluA1i γ 8 tandem in 124 control condition (black) and in presence of isatin 10 μ M (red). **Right**: Paired bar plots showing 125 effect of 10 μ M isatin on desensitization τ , equilibrium current and resensitization for 126 GluA1i $\gamma 8$. Each point is a measure of parameter in absence or presence of isatin. Bar height 127 represents the mean value (n = 7). Two-tailed paired t-test p values for all parameters were 128 p>0.05. c, Paired bar plots showing effect of 100 nM JNJ-118 on GluA1i y8 desensitization τ 129 in absence or presence of 1 mM isatin. Bar height represents the mean value (n = 4 and 5, 130 respectively). d, TARP $\gamma 8$ contact points along its binding site, the M4_{GluA2} and M1_{GluA1} 131 helices. Contacted residues are coloured depending on the number of atoms contributing to the 132 interaction (red: high; blue: low). Contacts were computed using 'findNeighbors' in ProDy' with a 4.5 Å cutoff between heavy atoms (Bakan et al., 2011). e, Contact-difference maps (see 133 134 Methods) for GluA1-TARP (left panel) and GluA2-TARP (right panel) from simulations. 135 Positive values (blue) indicate contacts that are longer lived in apo vs. ligand-bound states, 136 negative values (red) show contacts that are more persistent in ligand-bound systems compared 137 to apo. Dotted ovals highlight the main changes in interfacial contacts from apo to ligand-138 bound states: ligand binding reduced TARP contact with GluA1 M1 in the top half (blue 139 contacts in oval), but increased contact near the helix base (red contacts in oval). For GluA2

- 140 M4, ligand binding induces an overall increase in contact with TARP (red contacts in oval).
- 141 Source data are provided as a Source Data file.
- 142

147 **a**, Box plots showing equilibrium current and resensitization, for wild type GluA1i_ γ 8 and 148 several GluA1i mutants as indicated. Boxes show the 25th/75th percentiles and whiskers 149 indicate the furthest points that fall within 1.5 times of interquartile range from the 25th/75th 150 percentiles. The horizontal line in each box shows the median value. Asterisks summarize one151 way ANOVA test with Dunnett correction was used for multiple comparisons to wild type receptor (* $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$ and 'ns' for p>0.05; n values same as in 152 153 Fig. 5d). b, Paired bar plots showing effect of 10 µM JNJ-118, LY-481 or JNJ-059 on 154 desensitization τ , equilibrium current and resensitization for wild type or mutated (R541A or 155 F542A) GluA1i y8. Each point is a measure of parameter in absence or presence of modulator. 156 Bar height represents the mean value. Asterisks indicate summary of two-tailed paired t-test values: * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$ and 'ns' for p>0.05; number of cells: JNJ-157 158 118: 8, 6, 5 (for WT, R541A, and F542A, respectively); LY-481: 7, 11, 9; JNJ-059: 7, 7, 7. Greyed out data sets have been presented elsewhere in this paper (Fig. 4b, Fig. S6b). Source 159 160 data are provided as a Source Data file.

163

Supplementary Fig. 9. Electrophysiological analysis of GluA2 mutants in response to the
three NAMs.

a, Scatter plot of average desensitization τ (left), equilibrium current (middle) and
resensitization (right) in time indicating the time-course of JNJ-059 (n=8; top) or JNJ-118 (n=9;
bottom) effect on wild-type GluA2iQ γ8 receptor currents. Black circles and whiskers indicate

169	mean values and standard error. b, Left: Pooled scatter plot of GluA2iQ_y8 current peak
170	inhibition by three modulators. Each point is current peak in the presence of modulator
171	normalized to the control peak. Horizontal lines indicate the mean values ($n = 9, 9$, and 11 for
172	JNJ-118, LY-481, and JNJ-059, respectively). Asterisks summarize two-tailed one-sample t-
173	test (difference from 100%) results: * $p \le 0.05$, ** $p \le 0.01$. Right: Paired plots showing
174	effect of 10 µM JNJ-118, LY-481 or JNJ-059 on equilibrium current and resensitization for
175	GluA2iQ_ γ 8. Bar height represents the mean value (n = 9, 9, and 8 for JNJ-118, LY-481, and
176	JNJ-059, respectively). c , Left: Pooled scatter plot of wild type or mutant GluA2iQ_ γ 8 current
177	peak inhibition by JNJ-059. Each point is current peak in the presence of JNJ-059 normalized
178	to the control peak. Horizontal lines indicate the mean values ($n = 11, 5$, and 5 for WT, Y523A,
179	and M527A, respectively). Asterisks summarize two-tailed one-sample t-test (difference from
180	100%) results: ** $p \le 0.01$ Right: Paired plots showing effect of JNJ-059 on equilibrium
181	current, resensitization, and desensitization τ for GluA2iQ_ γ 8. Bar height represents the mean
182	value ($n = 8, 5$, and 5 for WT, Y523A, and M527A, respectively). Asterisks indicate summary
183	of one-sample t-test (difference from 1; normalized peak) or two-tailed paired t-test values
184	(paired plots): * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$ and 'ns' for p>0.05. Greyed out data
185	sets are repeated from b and Fig. 6b. Source data are provided as a Source Data file.
186	

188 Supplementary Table 1.

189

190 Cryo-EM data collection, refinement and validation statistics.

	$A1/2_{\gamma}8 + LY-481$	$A1/2_{\gamma}8 + JNJ-118$	A1/2_γ8 + JNJ-059	A1/2_78 + JNJ-059
	Resting state	Resting state	Resting state	Open state
	LBD-TMD	LBD-TMD	LBD-TMD	LBD-TMD
	(EMDB-15717)	(EMDB-15716)	(EMDB-15714)	(EMDB-15718)
	(PDB 8AYN)	(PDB 8AYM)	(PDB 8AYL)	(PDB 8AYO)
Data collection and pr	ocessing			
Microscope	FEI Titan Krios	FEI Titan Krios	FEI Titan Krios	FEI Titan Krios
Detector	K3 + GIF	K3 + GIF	K3 + GIF	K3 + GIF
Magnification	81000X	81000X	81000X	81000X
Voltage (kV)	300	300	300	300
Electron exposure	50	50	50	50
(e-/Å2)				
Defocus range (µm)	-1.2 to -2.8	-1.2 to -2.8	-1.2 to -2.8	-1.2 to -2.8
Pixel size (Å/pixel)	1.07	1.07	1.07	1.07
Symmetry imposed	C2	C2	C2	C2
Micrographs	5822	4019	3781	13612
Map resolution (Å)	2.8	3.3	3.2	3.3
FSC threshold	0.143	0.143	0.143	0.143
Refinement				
Initial model used	70CD	70CD	70CD	70CD
(PDB)				
Model resolution (Å)	2.8	3.3	3.2	3.3

FSC threshold	0.5	0.5	0.5	0.5
Map sharpening B	-90	-104	-88	-106
factor (Å ²)				
Model composition				
Non-hydrogen	15748	15962	15702	14512
atoms				
Protein residues	1998	2008	1998	1962
Ligands	LY-481: 2, ZK: 4	JNJ-118: 2, ZK: 4	JNJ-059: 2, ZK: 4	JNJ-059: 2, CTZ: 4
Lipids	22	22	18	16
B factors (Å2)				
Protein	45.86	34.91	52.15	50.23
Ligand	23.32	17.75	33.71	36.84
R.m.s. deviations				
Bond lengths (Å)	0.008	0.006	0.007	0.007
Bond angles	0.646	0.796	0.608	0.583
Validation				
Molprobity score	1.56	1.01	1.61	1.40
Clashscore	5.41	1.59	5.82	6.56
Poor rotamers (%)	0	0.13	0	0
Ramachandran plot				
Favoured (%)	96.08	97.47	95.83	97.81
Allowed (%)	3.92	2.53	4.17	2.19
Disallowed (%)	0	0	0	0

194 Uncropped version of the gel presented in Supplementary Fig. 1:

