SUPPLEMENTARY INFORMATION

D-O-A based organic phosphors for both aggregation-induced

electrophosphorescence and host-free sensitization
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Supplementary methods

Synthesis: All reagents were purchased from commercial channels, and used directly
unless specifically mentioned. N,N-dimethylformamide (DMF), toluene and N-methyl
pyrrolidone (NMP) were purified according to the standard procedures.
2-(4-fluorophenyl)-4,6-diphenyl-1,3,5-triazine  was purchased from Shanghai
Haoyuan Chem express Co. Ltd. with a purity of 98%.
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Supplementary Figure 1. Synthesis routes of RTP-D1 and RTP-D2.
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2-Bromo-9,10-dihydro-9,9-dimethylacridine (1): N-bromosuccinimide (18.60 g,
105.12 mmol) was slowly added into a solution of 9,9-dimethyl-9,10-dihydroacridine
(20.90 g, 99.94 mmol) in 120 mL dry DMF at 0 °C. Then the system was stirred for 2
h at room temperature. After addition of 300 mL water, the mixture was extracted
with dichloromethane, and washed with aqueous brine. The separated organic layer
was dried over sodium sulfate, filtered and purified by column chromatography on
silica gel using petroleum ether/dichloromethane (v/v 5:1) as the eluent to give a
white solid 1 (19.00 g, 93%). '"H NMR (400 MHz, CDCls, 8 ppm): 7.47 (d, J = 2.1 Hz,
1H), 7.40 (dd, J=7.8, 0.9 Hz, 1H ), 7.20 (dd, J = 8.4, 2.1 Hz, 1H ), 7.13 (td, J = 7.8,
1.3 Hz, 1H),, 6.95 (t, J = 7.4 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 6.58 (d, J = 8.4 Hz,
1H), 6.16 (brs, 1H), 1.57 (s, 6H). >*C NMR (100 MHz, CDCls): 138.0, 137.6, 137.1,
131.3, 130.7, 129.7, 129.5, 128.5, 127.0, 125.5, 121.1, 115.0, 113.6, 36.4, 30.5.

HR-ESI-MS (m/z): [M+H]" calced. for C15H15BrN, 288.0382; Found, 288.0385.

N

N
9,10-Dihydro-2-methoxy-9,9-dimethylacridine (2): Sodium lumps (7.97 g, 346.81
mmol) were cut up and slowly added in a 250 mL round-bottom flask containing 100
mL dry methanol under argon atmosphere. After dissolved completely, the mixture

was transferred into a flame-dried two-necked round-bottom flask with a solution of
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2-bromo-9,10-dihydro-9,9-dimethylacridine (1) (9.01 g, 31.39 mmol) and Cul (17.80
g, 93.46 mmol) in 150 mL dry DMF. The reaction mixture was heated at 85 °C for 10
h. When cooled to room temperature, the system was filtered, poured into water and
extracted by dichloromethane. After removing the solvent, the crude produce was
purified by silica gel column chromatography to give a white crystal 2 (3.71 g, 56%).
'H NMR (400 MHz, DMSO-ds, 6 ppm): 8.62 (s, 1H), 7.30 (d, J=7.5 Hz, 1H), 7.01 (t,
J=28.0 Hz, 1H), 6.91 (d, J = 2.4 Hz, 1H), 6.70 - 6.77 (m, 4H), 3.70 (s, 3H), 1.47 (s,
6H). °C NMR (100 MHz, DMSO-dg): 153.3, 139.4, 132.9, 129.3, 127.2, 126.6, 125.5,
119.1, 114.0, 113.2, 112.3, 111.3, 55.4, 36.0, 30.8. HR-ESI-MS (m/z): [M+H]" calcd.

for C16H18NO, 240.1383; Found, 240.1383.

|
9,10-Dihydro-2-methoxy-9,9-dimethyl-10-methylacridine  (3): A  mixture of
9,10-dihydro-2-methoxy-9,9-dimethylacridine (2) (2.21 g, 9.24 mmol) and sodium
hydride (0.35 g, 14.72 mmol) and dry THF (60 mL) was stirred at room temperature
for 1h. Then iodomethane (1.57 g, 11.04 mmol) was injected into the mixture, and
reacted for 6 h. The mixture was slowly poured into 150 mL water, and extracted
three times with dichloromethane. And a colorless transparent oily liquid 3 (2.28 g,
98%) was obtained after removing the solvent. 'H NMR (400 MHz, CDCls, & ppm):
7.31(dd,J=7.7, 1.6 Hz, 1H), 7.12-7.16 (m, 1H), 6.93 (d, J=2.8 Hz, 1H), 6.88 (td, J

=7.5,1.0 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H), 6.77 (d, J = 8.7 Hz, 1H), 6.69 (dd, J = 8.7,
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2.8 Hz, 1H) 3.72 (s, 3H), 3.32 (s, 3H), 1.44 (s, 6H). '"H NMR (100 MHz, CDCl5):
154.2, 136.6, 134.3, 132.0, 126.6, 123.6, 120.1, 112.4, 111.7, 110.8, 110.5, 55.7, 36.7,
33.3, 27.0. HR-ESI-MS (m/z): [M+H]" caled. for C17H20NO, 254.1539; Found,

254.1537.

OH
N

9,10-Dihydro-9,9-dimethyl-10-methyl-2-acridinol (4): Boron tribromide (0.67 mL,
18.04 mmol) was injected into a 100 mL two-necked round-bottom flask containing a
solution of 9,10-Dihydro-2-methoxy-9,9-dimethyl-10-methylacridine (3) (2.28 g, 9.02
mmol) in dry dichloromethane (45 mL) at 0 °C. After stirred at room temperature for
4 h, the mixture was slowly poured into 100 mL water and extracted three times with
dichloromethane. After removing the solvent, the crude produce was purified by silica
gel column chromatography using petroleum ether/dichloromethane/acetone (v/v/v
100/50/1) as the eluent to afford a white powder 4 (1.92 g, 89%). '"H NMR (400 MHz,
DMSO-dg, & ppm): 8.84 (s, 1H), 7.35 (d, J = 7.7 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H),
6.88 - 6.94 (m, 2H), 6.81 - 6.84 (m, 2H), 6.63 (dd, J = 8.7, 2.7 Hz, 1H), 3.32 (s, 3H),
1.41 (s, 6H). °C NMR (100 MHz, DMSO-dg): 152.2, 142.9, 135.2, 133.8, 131.9,
127.0, 123.9, 120.2, 113.4, 113.2, 112.2, 111.2, 36.6, 33.6, 27.4. HR-ESI-MS (m/z):

[M+H]" calcd. for C18H16NO, 240.1383; Found, 240.1382.
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9,10-Dihydro-2-methoxy-9,9-dimethyl-10-phenylacridine (5): Under  argon
atmosphere, 1-bromobenzene (0.69 mL, 6.56 mmol) was poured into a 100 mL
two-necked round-bottom flask containing tris (dibenzylideneacetone) dipalladium
(0.20 g, 0.22 mmol), tri-tert-butylphosphine tetrafluoroborate (0.32 g, 1.10 mmol),
sodium tert-butoxide (1.31 g, 13.67 mmol),
9,10-dihydro-2-methoxy-9,9-dimethylacridine (2) (1.31 g, 5.47 mmol) and toluene
(60 mL). The mixture was stirred and reflux at 115 °C for 10 h. When cooled to room
temperature, 180 mL water was added, and the mixture was extracted with
dichloromethane for three times. After removing the solvent, the crude produce was
purified by silica gel column chromatography using petroleum ether/dichloromethane
(v/v 10:1) as the eluent to give a white powder 5 (1.60 g, 96%). 'H NMR (400 MHz,
CDCls, & ppm): 7.61-7.64 (m, 2H), 7.44-7.44 (m, 2H), 7.34-7.36 (m, 2H), 7.06-7.10
(m, 1H), 6.89-7.00 (m, 2H), 6.55-6.59 (m, 1H), 6.20-6.29 (m, 2H), 3.79 (s, 3H), 1.70
(s, 6H). *C NMR (100 MHz, CDCly): 154.0, 141.5, 141.2, 135.4, 131.4, 131.3, 130.8,
129.1, 128.0, 126.3, 125.1, 120.0, 114.5, 113.7, 111.6, 110.9, 55.6, 36.2, 30.8.

HR-ESI-MS (m/z): [M+H]" caled. for C22H22NO, 316.1696; Found, 316.1694.
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9,10-Dihydro-9,9-dimethyl-10-phenyl-2-acridinol  (6): According to the same
procedure of 4, the hydroxyl intermediate 6 was synthesized by Boron tribromide
(0.43 mL, 11.54 mmol) and 9,10-Dihydro-9,9-dimethyl-10-methyl-2-acridinol (5)
(1.82 g, 5.77 mmol), and purified by silica gel column chromatography using
petroleum ether/ethyl acetate (v/v 30:1) as the eluent to give a white powder (1.62 g,
93%). "H NMR (400 MHz, DMSO-ds, & ppm): 8.89 (s, 1H), 7.67 (t, J = 7.7 Hz, 2H),
7.53 (t,J=7.4 Hz, 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.33 (d, J = 7.4 Hz, 2H), 6.91-6.95
(m, 2H), 6.84 (td, J=7.4, 1.0 Hz, 1H), 6.43 (dd, J =8.8, 2.7 Hz, 1H), 6.12 (d, J =
8.2 Hz, 1H), 5.98 (d, J = 8.8 Hz, 1H), 1.58 (s, 6H). °C NMR (100 MHz, DMSO-d):
152.1, 141.6, 141.4, 133.9, 131.5, 131.3, 129.3, 128.6, 126.8, 125.7, 120.2, 115.0,
113.6, 113.5, 112.3, 36.2, 31.2. HR-ESI-MS (m/z): [M+H]" calcd. for C21H20NO,

302.1539; Found, 547.1537.

Ty 0

| N___N

Synthesis of RTP-D1: 9,10-Dihydro-9,9-dimethyl-10-methyl-2-acridinol (4: 1.92 g,
8.03 mmol), K,CO3(1.66 g, 12.04 mmol), 15 mL dry NMP and 15 mL dry toluene

were added into a 100 mL three-necked round-bottom flask, and refluxed 140 °C for 2
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h  under argon atmosphere. @ When cooled to room temperature,
2-(4-fluorophenyl)-4,6-diphenyl-1,3,5-triazine (2.28 g, 6.98 mmol) dissolved in 15
mL dry NMP was added. The mixture was heated to 160 °C and reacted for another 8
h. After extracted with dichloromethane and removing the solvent, the crude product
was purified by silica gel column chromatography wusing petroleum
ether/dichloromethane (v/v 7:1) as the eluent to afford a white powder RTP-D1 (2.36
g, 62%). 'H NMR (500 MHz, CDCls, & ppm): 8.75 (m, 6H), 7.59 (m, 6H), 7.43 (dd, J
=7.6, 1.5 Hz, 1H), 7.29 (m, 1H), 7.24 (d, J = 2.6 Hz, 1H), 7.10 (m, 2H), 6.97-7.05 (m,
4H), 3.50 (s, 3H), 1.56 (s, 6H). °*C NMR (125 MHz, CDCls, § ppm): 171.48, 171.13,
162.97, 149.40, 142.25, 139.53, 136.36, 134.71, 132.08, 130.92, 129.95, 128.93,
128.62, 126.81, 123.74, 120.78, 118.43, 116.73, 116.53, 112.99, 112.14, 36.84, 33.58,
27.12. HR-ESI-MS (m/z): [M+H]  caled. for C37H31N40, 547.2492; Found,
547.2496. Elemental analysis calcd. (%) for C37H3oN4O: C, 81.29; H, 5.53; N, 10.25;

Found: C, 81.58; H, 5.23; N, 10.25.

5oy

Synthesis of RTP-D2: According to the same procedure of RTP-DI1, 15 mL dry NMP
and 15 mL dry toluene were added in a 100 mL three-necked round-bottom flask
including 9,10-Dihydro-9,9-dimethyl-10-phenyl-2-acridinol (6: 1.51 g, 5.02 mmol)

and K,CO; (1.04 g, 7.53 mmol) under argon atmosphere, refluxed 140 °C for 2 h.
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After cooling to room temperature, 2-(4-fluorophenyl)-4,6-diphenyl-1,3,5-triazine
(1.98 g, 4.36 mmol) and 15 mL dry NMP was added. The mixture was heated to 160
°C overnight. The silica gel column chromatography with petroleum
ether/dichloromethane (v/v 7:1) was used to obtain RTP-D2 (white powder, 1.92 g) in
a yield of 60%. "H NMR (500 MHz, DMSO-ds, 6 ppm): 8.71 (d, J = 8.3 Hz, 6H), 7.68
- 7.73 (m, 4H), 7.64 (t, J = 7.8 Hz, 4H), 7.59 (t, J = 7.5 Hz, 1H), 7.49 (dd, J = 7.6, 1.6
Hz, 1H), 7.42 (d, J = 7.4 Hz, 2H), 7.35 (d, J = 2.8 Hz, 1H), 7.13 (d, J = 8.9 Hz,
2H),6.99 (td, J=7.5, 1.5 Hz, 1H), 6.91 (td, J = 7.5, 1.2 Hz, 1H), 6.86 (dd, J = 8.9, 2.7
Hz, 1H), 6.23 (d, J = 8.9 Hz, 1H), 6.17 (dd, J = 8.3, 1.2 Hz, 1H), 1.64 (s, 6H). "°C
NMR (125 MHz, DMSO-ds, 6 ppm): 170.83, 170.44, 162.19, 148.51, 140.58, 140.17,
137.54, 135.39, 132.63, 131.49, 130.92, 130.72, 130.66, 129.19, 128.85, 128.66,
128.42, 128.29, 126.31, 125.09, 120.43, 118.21, 117.27, 116.62, 114.74, 113.45, 35.71,
30.80. HR-ESI-MS (m/z): [M+H]" caled. for C42H33N40, 609.2649; Found,
609.2647. Elemental analysis calcd. (%) for C4,H3,N4O: C, 82.87; H, 5.30; N, 9.20;

Found C, 82.58; H, 5.24; N, 8.96.
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Supplementary Figures
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Supplementary Figure 2. 'H (a) and *C NMR spectra (b) of RTP-DI.
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Supplementary Figure 3. HR-ESI-MS spectrum of RTP-DI1.
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Supplementary Figure 4. 'H (a) and *C NMR spectra (b) of RTP-D2.
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Supplementary Figure 5. ESI-MS spectrum of RTP-D2.
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(d)

Supplementary Figure 6. Single crystal structures and packing modes of RTP-D1 (a

and c) and RTP-D2 (b and d).
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Supplementary Figure 7. TGA (a) and DSC traces (b) for RTP-D1 and RTP-D2.
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Supplementary Figure 8. CV curves of RTP-D1 and RTP-D2.
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HOMO LUMO
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Supplementary Figure 9. Calculated HOMO and LUMO distributions for RTP-D1

and RTP-D2.
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Supplementary Figure 10. The O, dependence of the PL spectra in neat films for
RTP-D1 (a) and RTP-D2 (b). The PL spectra of RTP-D1 and RTP-D2 are found to be

sensitive to O,, indicative of the triplet exciton origin to some degree.
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Supplementary Figure 11. The O, dependence of the PL spectra in cyclohexane (10”
mol L) for RTP-D1 (a) and RTP-D2 (b). As one can see, both RTP-D1 and RTP-D2
show two distinct emission bands in the absence of O,. Assumed that the emission
corresponding to the triplet excitons could be completely quenched by O, in dilute

solution, the long-wavelength band is reasonably from the triplet exciton related RTP.
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Supplementary Figure 12. TRES for the RTP-D2 film: (a) at 100 K; (b) at 200 K; (c)
at room temperature; (d) Intensity comparison of the curves at a delay time of 3000.48

ns.
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Supplementary Figure 13. GaussMod fitting for the TRES collected at 3000.48 ns:

(a) at 100 K; (b) at 200 K; (c) at room temperature.
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Supplementary Figure 14. (a) PL spectra at different delay times for the RTP-D2
film; (b) Temperature-dependent PL spectra (without a delay) for the RTP-D2 film; (c)
Temperature-dependent phosphorescence spectra (with a 0.1 ms delay) for the
RTP-D2 film. As one can see, the PL profile is nearly independent on the delay time.

So a 0.1 ms delay is used for the measurement of phosphorescence spectra.
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Supplementary Figure 15. PL and RTP spectra (a), and temperature-dependent
transient PL spectra detected at a wavelength of 416 nm (b), 471 nm (c¢) and 505 nm

(d) for RTP-D2 in neat film.
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Supplementary Figure 16. Bigaussian fitting of the steady-state PL spectra for the
RTP-D2 film. Given that fluorescence is dominated in the TRES spectra at the
beginning, the peak of TRES spectrum at 0.103 ns (471 nm) is set as the maximum
fluorescent emission. Combined with the maximum phosphorescent emission (505 nm)
shown in the RTP spectrum, a Bigaussian fitting is performed to divide the
fluorescence and RTP. By comparing their corresponding integral area, the

populations of fluorescence and RTP are taken to be 29.4% and 70.6%., respectively.
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Supplementary Figure 17. AIE behavior of RTP-D1 in water/THF mixed solvents:
(a) Dependence of the PL spectra on the water fraction; (b) Relative emission
intensity as a function of water fraction. Insets: PL images under UV light with the

increasing water fraction from left to right.
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Supplementary Figure 18. RTP nature of RTP-D1 in neat film: (a) Time-resolved
emission spectra compared with the corresponding phosphorescent spectrum at
room temperature; (b) Temperature-dependent transient PL spectra detected at 504

nm.
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Supplementary Figure 19. (a) Temperature-dependent PL spectra (without a delay)
for the RTP-D1 film; (b) Temperature-dependent phosphorescence spectra (with a 0.1

ms delay) for the RTP-D1 film.
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Supplementary Figure 20. PL and RTP spectra (a), and temperature-dependent
transient PL spectra detected at a wavelength of 420 nm (b), 485 nm (c) and 511 nm
(d) for RTP-D1 in neat film. In the case of 420 nm (the RTP contribution is negligible),
no delayed component is observed. This clearly indicates that TADF is not involved in

RTP-D1.
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Supplementary Figure 21. Bigaussian fitting of the steady-state PL spectra for the

RTP-D1 film. Given that fluorescence is dominated in the TRES spectra at the

beginning, the peak of TRES spectrum at 0.103 ns (485 nm) is set as the maximum

fluorescent emission. Combined with the maximum phosphorescent emission (511 nm)

shown in the RTP spectrum, a Bigaussian fitting is performed to divide the

fluorescence and RTP. By comparing their corresponding integral area, the

populations of fluorescence and RTP are taken to be 33.1% and 66.9%, respectively.
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Supplementary Figure 22. Transient PL spectra in neat films for RTP-D1 (a) and

RTP-D2 (b).
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Supplementary Figure 23. Dihedral angle between the acridine donor and the

triazine acceptor for RTP-D1 (a) and RTP-D2 (b).
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Supplementary Figure 24. Schematic illustration of aggregation-induced RTP for

D-0O-A based organic phosphors.
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Supplementary Figure 25. PL spectra measured in different organic solvents in the
presence of O, for RTP-D1 (a) and RTP-D2 (b).

When the water fraction grows up, it should be noted that the PL spectra are also
show a hypsochromic shift besides the enhanced emission intensity (Figure 3 and
S16). As discussed above, the PL in solution with O; is corresponding to the
fluorescence, because the weak RTP is completely quenched by O,. Due to the charge
transfer (CT) nature, fluorescence is sensitive to the solvent polarity. So the emission
maxima of RTP-D1 and RTP-D2 appear at about 575 nm in THF. However, in
aggregates, the corresponding PL is dominantly from RTP peaked at about 500 nm.
Therefore, the PL spectra are found to be blue-shifted with the increasing water

fraction.
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Supplementary Figure 26. Energy level alignment together with the spin-orbit
coupling matrix elements (a), and hole and electron distributions of S; and T, below
S, for RTP-D1 (b).

Compared with S, it is found that the hole of T; is extended from acridine and O
to triazine, and the electron of T; is extended from triazine to O. During the hole and
electron migrations from S; to T;, both the n orbital contribution and the large
dihedral angle between D and A (64.50° for RTP-DI in Figure S22) plays an
important role on the orbital angular momentum change, which can compensate the
spin angular momentum. Therefore, the spin flipping becomes more allowed from S;

to T than from S; to T».
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Supplementary Figure 27. Device configuration (a) and molecular structures of used

materials (b).
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Supplementary Figure 28. Transient EL spectrum driven at a 7 V pulse (a) and
temperature dependence of the EL spectra (b) for RTP-D2 based non-doped device.
After switching off the electrical pulse, an obvious delay is observed in the transient

EL, well consistent with the transient PL.
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Supplementary Figure 29. Comparison between the PL (a) and EL (b) processes for
RTP-D1. First, the Bigaussian fitting decouples 33.1% fluorescence from singlet
excitons and 66.9% RTP from triplet excitons (Figure S16). Second, under photo
excitation, triplet excitons must be produced only through ISC. So the ISC probility
from S; to T, is reasonably set to be the same as that of the RTP population (66.9%).
Third, under electric excitation, 25% singlet and 75% triplet excitons are often
generated from the injected holes and electrons. Assuming a same ISC probability as
the PL process, 25% singlet excitons can spin-flip to form 16.7% triplet excitons (25%

% 66.9%). In all, a total of 91.7% (16.7% + 75%) triplet excitons contribute to the EL.
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Supplementary Figure 30. Comparison between the PL (a) and EL (b) processes for
RTP-D2. First, the Bigaussian fitting decouples 29.4% fluorescence from singlet
excitons and 70.6% RTP from triplet excitons (Figure S11). Second, under photo
excitation, triplet excitons must be produced only through ISC. So the ISC probility
from S; to T, is reasonably set to be the same as that of the RTP population (70.6%).
Third, under electric excitation, 25% singlet and 75% triplet excitons are often
generated from the injected holes and electrons. Assuming a same ISC probability as
the PL process, 25% singlet excitons can spin-flip to form 17.7% triplet excitons (25%

% 70.6%). In all, a total of 92.7% (17.7% + 75%) triplet excitons contribute to the EL.
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Supplementary Figure 31. Non-doped device performance of RTP-D1: (a) Current
density—voltage characteristic, (b) Luminance—voltage characteristic; (c¢) Current
efficiency as a function of luminance; (d) Power efficiency as a function of

luminance.
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Supplementary Figure 32. Non-doped device performance of RTP-D2: (a) Current
density—voltage characteristic, (b) Luminance—voltage characteristic; (c¢) Current

efficiency as a function of luminance; (d) Power efficiency as a function of

luminance.
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Supplementary Figure 33. Doped device performance of 10% RTP-D2 in mCP: (a)
Current density—voltage characteristic; (b) Luminance—voltage characteristic; (c)

Current efficiency as a function of luminance; (d) Power efficiency as a function of

luminance.
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Supplementary Figure 34. Doped device performance of 20% RTP-D2 in mCP: (a)
Current density—voltage characteristic; (b) Luminance—voltage characteristic; (c)
Current efficiency as a function of luminance; (d) Power efficiency as a function of

luminance.
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Supplementary Figure 35. Doped device performance of 30% RTP-D2 in mCP: (a)

Current density—voltage characteristic; (b) Luminance—voltage characteristic; (c)

Current efficiency as a function of luminance; (d) Power efficiency as a function of

luminance.
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Supplementary Figure 36. Doped device performance of 60% RTP-D2 in mCP: (a)
Current density—voltage characteristic; (b) Luminance—voltage characteristic; (c)
Current efficiency as a function of luminance; (d) Power efficiency as a function of

luminance.
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Supplementary Figure 37. Doped device performance of 90% RTP-D2 in mCP: (a)
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Supplementary Figure 38. Dipole moment for RTP-D2 (a) and mCP (b). According

to the theoretical calculation, the dipole moment is estimated to be 2.8401 D and

1.3460 D for RTP-D2 and mCP, respectively.
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Supplementary Figure 39. (a) Comparison between D-O-A based polymer and small

molecule; (b) Maximum EQE as a function of doping concentration for RTP-D2 in

mCP.
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Supplementary Figure 40. Overlap between the absorption of S-Cz-BN and the PL

of RTP-D2.
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Supplementary Figure 41. Determination of the energy levels of S; and T; for
RTP-D2. According to the TRES analysis, fluorescence and phosphorescence
dominate the PL at a delay time of 0.103 ns and 3000.48 ns, respectively. Therefore,

their onset values are reasonably taken as the S; and T, energies of RTP-D2.
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Supplementary Figure 42. Device performance of RTP-D2 : S-Cz-BN (2 wt.%)
based host-free sensitization: (a) Current density—voltage characteristic; (b)
Luminance—voltage characteristic; (c) Current efficiency as a function of luminance;

(d) Power efficiency as a function of luminance.

S50



Supplementary Tables

Supplementary Table 1. X-Crystal data and structure refinement for RTP-D1 and

RTP-D2.

RTP-D1 RTP-D2
Empirical formula C37H30N40 C42H32N40
Formula weight 546.65 608.71
Temperature/K 150 K 150 K
Crystal system Triclinic Orthorhombic
Space group P-1 Pbca
a/A 7.9086 (13) 24.563 (5)
b/A 13.696 (2) 7.4471 (16)
c/A 14.996 (2) 34.619 (7)
a/° 63.761 (6) 90
p/e 79.572 (6) 90
v/° 74.229 (7) 90
Volume/A® 1398.6 (4) 6333 (2)
Z 2 8
Pqc mg/cm’ 1.298 1.277
Absorption coefficient/mm 0.079 0.078
F(000) 576 2560

Crystal size/mm’
Radiation

Theta range for data collection/°
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F>

Final R indexes [[>=20 (I)]
Final R indexes [all data]
Largest diff. peak/hole / ¢ A

0.34x 0.28x0.19
MoK, (0.71073 A)

2.683 to 28.391

-10<=h<=10, -18<=k<=18,
-20<=1<=19

49202
7004 [R(int) = 0.0825]
7004 /0 / 382

1.032

R, =0.0491, wR, = 0.1268
R, = 0.0774, wR, = 0.1508
0.716 and -0.285

0.32x0.3x0.14
MoKa (0.71073 A)

2.033 to 24.998

-24<=h<=29, -8<=k<=8,
-41<=1<=31

31687
5571 [R(int) = 0.1079]
5571/0 /426

0.943

R, = 0.0576, wR, = 0.1289
R, =0.1154, wR, = 0.1562
0.248 and -0.254
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Supplementary Table 2. Photophysical properties and related parameters of RTP-D1

and RTP-D2.

Emitter RTP-D1 RTP-D2

7o [ns] 16.8 12.6

F population [%] * 33.1 29.4
7o [ns] 488.8 641.4

RTP population [%] * 66.9 70.6
O )" 182 228

O, (%) 36.7 54.7

®,, [ 54.9 7.5

kF (107877 1.1 1.8

k. (10887 0.27 0.18

kP [105 S—l] c 7.5 8.5

r
kP [10°s'¢ L3 0.7
2.2 43

K [107S77°

*Fluorescence (F) and room-temperature phosphorescence (RTP) populations were estimated from
a Bigaussian fitting of the PL spectra; ®The PLQYSs of fluorescence (@) and RTP (D) were
determined by the total PLQY (®p ) and their corresponding populations; “The fluorescence
radiative rate (krF ), fluorescence non-radiative rate (kr::r ), phosphorescence radiative rate (krP ),

phosphorescence non-radiative rate (knpr) and intersystem crossing rate (K. ) were obtained by

the following equations:
ki= @, /7, kK-=(1-Op-®,)/ 7, ki=d,/7,
K= (1-Dp) /75 Kise =Pp/7¢
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Supplementary Table 3. Device performance comparison of organic RTP emitters

used for OLEDs.
Year Emitter EML FQPrmus Eomx Pl Reference
[%] [cd/A]  [Im/W]

2016  DMFLTPD-ds doped 1 - - Adv. Mater. 2016, 28, 655.
2018 OPM doped 0.6 - - Angew. Chem. Int. Ed. 2018, 57, 16407.
2019 27PNDO doped 0.11 - - J. Mater. Chem. C 2019, 7, 11500.
2019 BCZ1 nondoped 5.8 13.4 10.5 Adv. Mater. 2019, 31, 1904273.
2019 DPTZN doped 11.5 33.8 32.6 J. Phys. Chem. Lett. 2019, 10, 5983.
2020 PSel doped 10.7 - - Chem. Mater. 2020, 32, 2583.
2020 BrPFL doped 2.5 - - ACS Appl. Mater. Interfaces 2020, 12, 6137.
2021 SiAz doped 4.06 - - ACS Appl. Mater. Interfaces 2021, 13, 2899.
2021 pBZ-DPA doped 43 6.8 6.3 Dyes and Pigments 2021, 195, 109729.
2021 BuPhSe doped 9.0 28.39 22.29 J. Mater. Chem. C 2021, 9, 8233.

RTP-D1 nondoped 8.6 24.7 24.4
2022 This work

RTP-D2 nondoped 15.8 45.8 50.4

CE: current efficiency; PE: power efficiency; EQE: external quantum efficiency.
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Supplementary Table 4. Device performance dependence on the

concentration of RTP-D2.

Doping ratio V™ CE?® PE " EQE?®

10 % 3.4 22.0/11.6 19.2 /5.1 9.3/4.9
20 % 3.4 28.8/17.9 25.1/8.8 11.6 /7.0
30% 3.4 32.2/21.3 29.8/11.2 12.8/8.4
60 % 3 38.2/30.1 36.0/18.8 13.7/9.4
90 % 3 42.0/32.2 42.0/19.4 14.4/11.0
100 % 2.8 45.8/35.5 50.4/21.4 15.8/11.7

“Turn-on voltage at 1 cd/m?; Data at maximum and 1000 cd/m’. CE:

efficiency; PE: power efficiency; EQE: external quantum efficiency.
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