

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

INEQUITY AND VULNERABILITY IN LATIN AMERICAN INDIGENOUS AND NON-INDIGENOUS POPULATIONS WITH RHEUMATIC DISEASES :A SYNDEMIC APPROACH

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069246
Article Type:	Original research
Date Submitted by the Author:	20-Oct-2022
Complete List of Authors:	Granados, Ysabel; Hospital "Dr. Manuel Núñez Tovar," Gastelum Strozzi, Alfonso; Universidad Nacional Autonoma de Mexico, ICAT Alvarez-Nemegyei, Jose; Hospital Star Medica Merida Quintana, Rosana; Hospital Provincial de Rosario, Reumatology Julian-Santiago, Flor; Universidad Nacional Autonoma de Mexico Santos, Ana; Universidad de La Sabana, Rheumatology Guevara-Pacheco, Sergio; Universidad de Cuenca Loyola-Sanchez, Adalberto; University of Alberta Faculty of Medicine & Dentistry Goycochea-Robles, Maria Victoria; Universidad Nacional Autonoma de Mexico, Grupo Cochrane Juarez, Vicente; Hospital Señor del Milagro Garza-Elizondo, Mario Alberto; Hospital Universitario "Dr. José Eleuterio González" de la Universidad Autónoma de Nuevo León, Internal Medicine, Rheumatology Service Rueda, Juan; Universidad de La Sabana, Department of Rheumatology Burgos-Vargas, Ruben; Hospital General de Mexico Dr Eduardo Liceaga, Rheumatology Londoño, John; Universidad de La Sabana, Rheumatology; Hospital Militar Central, Rheumatology Pons-Estel, Bernardo; Centro Regional de Enfermedades Autoinmune y Reumáticas (CREAR) Pelaez-Ballestas, Ingris; Hospital General de México Dr Eduardo Liceaga, Rheumatology
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, RHEUMATOLOGY, STATISTICS & RESEARCH METHODS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

INEQUITY AND VULNERABILITY IN LATIN AMERICAN INDIGENOUS AND

NON-INDIGENOUS POPULATIONS WITH RHEUMATIC DISEASES

A SYNDEMIC APPROACH

1. Ysabel Granados, MD.
ORCID: 000-0002-7148-4060
e-mail: <u>ymgranados@gmail.com</u>
2. Alfonso Gastelum-Strozzi, PhD,
ORCID: 0000-0001-9668-5822
e-mail: alfonso.gastelum@icat.unam.mx
3. José Alvarez-Nemegyei, MD, PhD.
ORCID: 0000-0002-5499-5280
e-mail: <u>nemegyei@yahoo.com.mx</u>
4. Rosana Quintana, MD, PhD.
ORCID: 0000-0003-0643-2755
e-mail: <u>rosanaquintana@gmail.com</u>
5. Flor Julian-Santiago, MD, PhD
ORCID: 0000-0001-6137-045X
e-mail: maifjs@hotmail.com

Page 3 of 40	BMJ Open
1	
2	
3	
4 5	
6	
7	
8 0	
9 10	6. Ana Maria Santos, PhD
11	ORCID: ORCID 0000-0002-1973-8043
12	OKCID. OKCID 0000-0002-1775-00+5
13 14	e-mail: ana.santos@unisabana.edu.co
15	
16	7. Sergio Guevara, MD, PhD.
17	
10	ORCID: 0000-0001-5798-6200
20	
21	e-mail: <u>sergio_guevarap(@yahoo.com</u>
22	8 Adalberto Lovola-Sanchez A MD PhD
24	
25	ORCID: 0000-0002-0082-2907
26	
27 28	e-mail: adalbert@ualberta.ca
29	
30	9. María Victoria Goycochea-Robles, MD, MSc.
31 32	
33	ORCID: 0000-002-92488511
34	e-mail: mayis.govcochea@gmail.com
35	
30 37	10. Vicente Juárez, MD.
38	
39	ORCID: 0000-0003-3865-087X
40 41	
42	e-mail: <u>vtejuarez@gmail.com</u>
43	11 Maria Garza Elizando MD PhD
44	11. Mario Garza-Erizolido, MD, FilD
45 46	ORCID: 0000-0002-8992-4714
47	
48	e-mail: mariogarz@hotmail.com
49 50	
51	
52	2
53	
54 55	
56	
57	
58	

12. Juan Rueda, MD, PhD candidate. Latin American Study C ORCID: 0000-0002-6263-2914 e-mail: juan.rueda@unisabana.edu.co 13. Ruben Burgos-Vargas, MD. ORCID: 0000-0005-1058-8955 e-mail: burgosv@gmail.com 14. John Londoño, MD, PhD. ORCID: 0000-0003-1074-644X e-mail: john.londono@unisabana.edu.co 15. Bernardo A. Pons-Estel, MD. ORCID: 0000-0003-2518-0266 e-mail: bponsestel@gmail.com 16. Ingris Peláez-Ballestas, MD, PhD¹ ORCID: 0000-0001-5188-7375 e-mail: pelaezin@gmail.com. Pons-Estel B.A and Peláez-Ballestas I. on behalf of the Latin American Study Group of Rheumatic Diseases in Indigenous Peoples (GLADERPO). Affiliations: 1. Hospital "Dr. Manuel Núñez Tovar," Maturín, Monagas, Venezuela.

2. Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México,

Mexico City, Mexico.

- 3. Rheumatology Staff. Hospital Star Médica. Mérida, Yucatán, México
- 4. Centro Regional de Enfermedades Autoinmunes y Reumáticas (CREAR). Rosario, Santa

Fe, Argentina.

5. Independent researcher.

6. Grupo Espondiloartropatias .Universidad La Sabana, Bogotá, Colombia.

7. Universidad de Cuenca, Cuenca, Ecuador.

- 8. Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- 9. Grupo Cochrane-UNAM- Hospital ABC Santa Fe, Ciudad de Mexico

10. Hospital Señor del Milagro, Salta, Argentina.

11. Hospital Universitario "José Eleuterio Gonzalez," Monterrey, Nuevo León, Mexico.

12. Grupo Espondiloartropatias.Universidad La Sabana, Bogotá, Colombia.

 Rheumatology Unit, Hospital General de México "Dr. Eduardo Liceaga," Mexico City, Mexico.

14. Grupo Espondiloartropatias. Universidad La Sabana, Bogotá, Colombia.

15. Centro Regional de Enfermedades Autoinmunes y Reumáticas (CREAR). Rosario,

Santa Fe, Argentina.

 Rheumatology Unit, Hospital General de México "Dr. Eduardo Liceaga," Mexico City, Mexico.

Corresponding author

Pelaez-Ballestas I., Ph.D. Rheumatology Unit, Hospital General de México "Dr. Eduardo

Liceaga." Dr. Balmis 148, Colonia Doctores, 06726, Mexico City. E-mail:

pelaezin@gmail.com. Phone: +52 (55) 5004-3849.

Keywords: Rheumatic diseases, inequity, vulnerability, Syndemic, Latin America, network analysis.

Running head: Inequity in Latin American people with rheumatic disease

Grant

Dr. Bernado Pons-Estel was supported by Federico Wilhelm Agricola Foundation, Argentina.

The Asociación Colombiana de Reumatologia (ASOREUMA) contributed to the financial support of this research (Acta No156, 31 May 2014).

Dr. Ingris Peláez-Ballestas was supported by National Council for Science and Technology (CONACYT)-Mexico. No. Salud 2011-01-162154. And Colegio Mexicano de Reumatología.

Dr. Sergio Guevara-Pacheco was supported by Universidad de Cuenca, Ecuador.

Dr. Ysabel Granados receives financial support from PDVSA East and SUELOPETROL company for logistic and transportation in Venezuela.

Word count: 3850.

Abstract.

Syndemics is a framework that documents health inequities and vulnerabilities in populations with rheumatic diseases. Compared to other approaches, syndemics is able to conjunctly consider epidemiological, biological, sociodemographic and economic factors, and their interactions.

Objective. To estimate health inequity and vulnerability among indigenous and nonindigenous populations with rheumatic and musculoskeletal disease (RMD) in Latin America using the syndemic approach.

Methods. This is a secondary analysis of a previously published large-scale study on the prevalence of RMD carried out in five Latin American countries. Health inequity and vulnerability in RMD were identified through a syndemic approach using network and cluster analysis.

Results. A total of 44,560 individuals were studied: 29.78% self-identified as indigenous, 60.92% were female, the mean age was 43.25 years. Twenty clusters were identified in the indigenous population and seventeen in the non-indigenous population.

The variables associated with RMD among indigenous populations were rurality, public health system, high joint biomechanical stress, greater pain, disability and alcoholism; and among non-indigenous people they were being a woman, urban origin, older age, private health system, joint biomechanical stress, greater pain and disability. We identified different health inequities among RMD patients (i.e. lower educational attainment, more comorbidities), associated with factors such as indigenous self-identification and rural residence.

BMJ Open

<text> **Conclusion.** A syndemic approach enables us to identify health inequities in RMD, as shown by higher prevalence of comorbidities, disability and socioeconomic factors like lower educational attainment. These inequities exist for the overall population of patients with RMD, though it is more evident in indigenous groups with added layers of vulnerability.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

• What is already known on this topic

Syndemics are a framework that has demonstrated deleterious effects on health when different diseases occur, in contexts of social deprivation and limited health systems. This has been demonstrated mostly in conditions such as HIV-AIDS, Diabetes and in RMDs in indigenous populations.

What this study adds

This study adds evidence of the variability of health determinants associated with having a rheumatic disease in countries with high health inequity and ethnic diversity. Using the syndemic approach and strategies from artificial intelligence (i.e., network and cluster analysis) is necessary to perform complex analyses that document health inequities comprehensively.

How this study might affect research, practice or policy

Through the identification of specific clusters with these methods, we are able to define target populations according to common characteristics, including shared comorbidities and social determinants of health. In this way, we can design interventions and policy that move us towards true health equity, addressing the specific needs of each group instead of population-level interventions that will serve some but not all, or inefficient personalized approaches.

Introduction

Rheumatic and musculoskeletal diseases (RMD) are a significant cause of morbidity and mortality worldwide [1]; they produce substantial socioeconomic impact and deterioration of quality of life in patients, who represent approximately 10% of the general population [2].

BMJ Open

Since 2000, the World Health Organization (WHO) has recognized RMD as a relevant health problem, due to the increase in secondary disability and a greater demand for health resources [3].

There is now a greater need to define global strategies for the timely access of patients with RMD to health systems [4], including the evaluation of social determinants, such as gender, education, work, income level, ethnic group and place of residence [5].

Latin America is an extensive geographic area made up of 26 countries, characterized by multiculturalism and great contrasts in political, social and economic aspects [6]. Significant social inequity has been documented, with marked inequality in health coverage for individuals and social groups; these inequities are observed within and among countries in the region [7]. Epidemiological studies have documented a prevalence of RMD between 23% and 46.5% in Latin America, with more aggressive presentations, higher morbidity and mortality among indigenous populations. Genetic predisposition to systemic lupus erythematosus (SLE) has also been identified among indigenous groups [8], as well as a high prevalence of rheumatoid arthritis (RA) among indigenous Mayan groups of Yucatan, Mexico [9] and the Qom of Argentina [10].

Despite the high prevalence of RMDs in the Latin American region, these diseases continue to have a low priority in the planning of health policies [11]. Overall, the healthcare system in Latin America is highly fragmented and disconnected. For rheumatology care specifically, 33.5% of rheumatologists work in public/government hospitals, 28.8% in private practice, 20.8% in private hospitals, and 15.5% in university hospitals, most of them distributed in large urban areas, with a significant lack in small cities and none in rural areas [8].

These differences in disease prevalence and distribution of health resources which limit access to rheumatology care in Latin America can be understood as health inequities. Health inequity is not synonymous with inequality. Inequity implies the idea of injustice and of lack of actions to avoid *preventable* differences. On the other hand, inequality describes differences in health outcomes that are not fundamentally unfair [11]. Health inequity is deeply connected to vulnerability. From a biomedical perspective, vulnerability means being susceptible to certain diseases or to environmental risk. However, vulnerability can also be understood as a product of the interaction between available resources (personal, family, community, cultural, economic, institutional), the sociocultural context of the patient, structural elements, and exposure to risks [12]. Therefore, vulnerability is a result of health inequity.

To document inequity in health, the syndemic model has proven useful to analyze the interaction of disease with social determinants that condition inequality in health, and how these lead to increased physical and environmental vulnerability [8,13,14]. Syndemics aggregate interaction of two or more concurrent diseases, as well as the sociocultural and healthcare contexts which can exacerbate the negative effects of this interaction on the health of individuals, communities, and societies [14,15]. The syndemic framework evaluates the interaction of any type of disease in conditions of health inequality caused by poverty, stigmatization, stress or structural violence [14,16]. Thus, syndemics encompasses social determinants, vulnerabilities, and inequalities and inequalities in health as well.

Previous studies have shown that syndemics is a good comprehensive model to document inequity and inequality in health. In a study of RMD in indigenous populations in Latin America, as well as a study of patients with low back pain, disease is associated with being a woman, belonging to an indigenous population, and having low educational attainment. It

is also exacerbated by the presence of comorbidities, especially those within the mental health domain [17,18].

Given the intricacy of a syndemic approach, conventional statistical methodologies are insufficient. Instead, using strategies from artificial intelligence (i.e., network and cluster analysis) is necessary to perform complex analyses that document health inequities comprehensively. The syndemic approach is useful to identify health inequities and vulnerabilities in different population groups.

We hypothesize that the is a syndemic in Latin American populations suffering from rheumatic diseases, associated with comorbidities such as diabetes and hypertension, and living in a fragmented health care context. We also hypothesize that this phenomenon is is more significant in vulnerable populations such as indigenous peoples. Therefore, we proposed the following study to measure syndemics comparatively between indigenous and non-indigenous populations with RMD in Latin America.

MATERIALS AND METHODS

Design

This is a secondary analysis, based on multilevel network analysis using a syndemic framework, of a previously published large-scale cross-sectional study on the prevalence of RMD in five Latin American countries.

Data sources

We used a database compiled by GEEMA (Grupo de Estudios Epidemiológicos de Enfermedades Músculo Articulares), COPCORD-LATAM (Community Oriented Program

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

for Control of Rheumatic Diseases-Latin America) and GLADERPO (Grupo Latino Americano de Estudios de Enfermedades Reumáticas en Pueblos Originarios).

GLADERPO recorded information on the Qom and Wichí indigenous populations of Argentina [10,19], Saraguro of Ecuador [20], Yucatec-Maya and Mixtec of Mexico [21] and the Chaimas, Kariñas and Warao of Venezuela [22].

COPCORD-LATAM was developed with the results of epidemiological studies conducted on the non-indigenous populations of Colombia [23], Ecuador [24], Mexico [25] and Venezuela [26], using COPCORD (Community Oriented Program for Control of Rheumatic Diseases) methodology, culturally and linguistically adapted to the different communities studied, and subsequently validated in each country.

The COPCORD methodology consists of trained health personnel administering a questionnaire house to house, which identifies patients with pain of non-traumatic origin, historical and in the last seven days. The participation of certified rheumatologists allowed for the diagnosis of RMDs [24–27].

The same measurements were collected in all the studies: sociodemographic variables, joint biomechanical stress, comorbidities, physical disability and accessibility to local health care. **Sociodemographic variables** such as age, gender, self-defined ethnicity according to the laws of each country (indigenous and non-indigenous), formal schooling (numbers of years studied in the official education system) and place of residence (urban/rural).

Level of Joint biomechanical stress was classified according to self-reported occupation. Individuals were asked for a visual recreation of their activity, according to the degree of effort and the body regions involved. Following a survey on the level of physical load repetitiveness, each occupation was classified into three levels of joint biomechanical stress

in the workplace: high (e.g. farmers, homemakers, machine operators), medium (e.g. artisans, drivers, technicians) and low (e.g. merchants, professionals, students, teachers, retirees). **Comorbidities** were self-reported [28,29], while physical disability was measured with the **Health Assessment Questionnaire-Disability Index** (HAQ-DI), validated for each country and with an established cut-off point of greater than 0.8 [30].

Accessibility to the local healthcare system was classified by conducting an exercise of comparisons and equivalences among the researchers from the five participating countries. Considering all characteristics of the healthcare systems, the three subgroups used to classify accessibility were: partial coverage, involving a public system that covers physician appointments, laboratory tests and basic but not high specialty medications; full coverage, involving a social security system that covers all health expenses; and private coverage, where patients pay fully for their care.

Analysis

A multi-phase analysis was performed.

First, we applied descriptive statistics of sociodemographic characteristics (age, gender, formal schooling, urban/rural residence), rheumatic diagnoses, comorbidities, disability (HAQ-DI) and levels of accessibility (partial, full and private coverage). Reported with totals and percentage of the population by indigenous/non-indigenous classification and by country of origin.

Subsequently, we performed a simple logistic regression using RMD diagnosis as a dependent variable and those described above as independent variables, reported in odds ratio (OR), confidence interval 95% (CI95%) and significance (p).

Two separate logistic regression were implemented, one for the indigenous population and another for the non-indigenous one. For both regressions the dependent variable was having a rheumatic disease. The logistic regression was perform using the logit function from statsmodels 0.14.0 [31]. The selection of the independent variables was done in a recursive way, variables were eliminated from the model when: A singular matrix was obtained, and a test for collinearity was performed to find columns with single values or low variance that could explain the singularity. Logit does not achieve convergence. Then the resulting model was evaluated to find variables with large confidence interval and P values that show non significance. Finally, the Pseudo R-Squared value of the model was accepted when the value was equal or greater than .3 as a good fit according to McFadden [32,33]

Finally, we used the network analysis technique [34] to evaluate the relations between individuals according to the impact of their work, the place of living and the access to care, using the following variables: accessibility level, level of joint biomechanical stress and urban/rural residence. The relation between individuals was obtained using a similarity measurement calculated using the cosine similarity method [35] and a categorical vector defined by the mentioned variables. The vector and the cosine similarity method were used to calculate the similarity index of each individual with respect to the rest of the population. The index was weighted by the difference of age between everyone to account for the possible relation between age and the level of joint biomechanical stress, the more similar the ages the greater the final weighted index. Finally, to introduce a measurement related to economical level another weight was calculated using the difference of year of education between individuals, For the network representation each individual is a node and a

connection edges is generated when the index of similarity between two individuals is greater than the average of the similarity indices plus standard deviation [36]. The nodes and edges tables are simulated in Gephi [37] in order to obtain a network where each node(individual) location depends on the relationships with the other nodes through the connecting edges, the final nodes position are used to defined cluster of similar nodes using the DBSCAN method [38] to define each cluster.

Due to the complexity of representation of the clusters, a procedure was conducted to select the most relevant ones, according to group consensus on the three most important variables per the study objectives. The variables included in the model, in hierarchical order of importance, are: prevalence of RMD, prevalence of rheumatoid arthritis (RA) specifically, and number of individuals comprising the cluster. Every cluster was assigned a weighted score for each of the three selected variables by all the researchers. Finally, the six clusters included per group (indigenous and non-indigenous) were those with the highest total sum by consensus.

In order to confirm there were no biases, a sub-analysis was performed based on a weighted sample, randomly selected from indigenous/non-indigenous populations from the three countries that studied both at the same time and in the same region (Ecuador, Mexico and Venezuela); two countries only had samples of indigenous (Argentina) or non-indigenous (Colombia) populations.

The clusters obtained through this analysis are defined by factors such as living in a rural setting, lower health coverage and greater disability, which go beyond our initial indigenous/non-indigenous classification, and which impact the management of rheumatic

diseases. These emerging differences can be used to document inequity insofar as they highlight the variables which negatively impact the health of people with RMD.

Patient and Public Involvement

Patients and members of the public were involved at original stages of each study including as cultural liaisons. We disseminated the main results to all participants and health authorities to improve health conditions.

RESULTS

A total of 44,560 individuals from five Latin American countries (Argentina, Colombia, Ecuador, Mexico and Venezuela) were studied. Of these, 29.78% (13,269) self-identified as indigenous and 27,145 (60.92%) were female, with the average age of 43.25 (SD = 18.02) years and a mean of 8.06 (SD = 5.02) years of schooling. RMD was diagnosed in 13,528 (30.36%) individuals. Rheumatic regional pain syndromes (RRPS) was the rheumatic diagnosis with the highest prevalence (6100, 13.69%) followed by osteoarthritis (3690, 8.28%), while RA was reported in (877,1.97%) individuals (Table 1).

Table 1. Comparison of sociodemographic characteristics, country, health coverage, rheumatic diagnosis, pain, disability and comorbidities between indigenous and non-indigenous groups.

	Indigenous n = 13269 (29.78)	Non- indigenous n = 31291 (70.22)	Total n = 44560 (100.00)	р
Gender (female)	8010 (60.37)	19135 (61.15)	27145 (60.92)	0.123
Age (years), mean (SD)				
	42.23 (18.17)	43.69 (17.94)	43.25 (18.02)	< 0.001
Urban setting	3877 (29.22)	24331 (77.76)	28208 (63.30)	< 0.001
Educational level, mean number of years				
(SD)	7.13 (5.07)	8.46 (4.95)	8.06 (5.02)	< 0.001
	Countries			
Argentina	2295 (17.30)	0 (0.00)	2295 (5.15)	< 0.001
Colombia	234 (1.76)	6454 (20.63)	6688 (15.01)	< 0.001
Ecuador	2682 (20.21)	4858 (15.53)	7540 (16.92)	< 0.001

	1	1	1				
Mexico	6525 (49.17)	16085 (51.40)	22610 (50.74)	< 0.001			
Venezuela	1533 (11.55)	3894 (12.44)	5427 (12.18)	< 0.01			
	Health coverage	*					
Full	3481 (26.23)	4493 (14.36)	7974 (17.89)	< 0.001			
Partial	7441 (56.08)	18314 (58.53)	25755 (57.80)	< 0.001			
Private	795 (5.99)	1741 (5.56)	2536 (5.69)	0.079			
Other**	330 (2.49)	221 (0.71)	551 (1.24)	< 0.001			
Joint biomechanical stress ***							
High	5000 (37.68)	10199 (32.59)	15199 (34.11)	< 0.001			
Medium	1538 (11.59)	4720 (15.08)	6258 (14.04)	< 0.001			
Low	4014 (30.25)	9213 (29.44)	13227 (29.68)	0.090			
Unspecified	1815 (13.68)	2784 (8.90)	4599 (10.32)	< 0.001			
	Rheumatic disea	ise					
Totals	4012 (30.24)	9516 (30.41)	13528 (30.36)	0.721			
Osteoarthritis	1433 (10.80)	2257 (7.21)	3690 (8.28)	< 0.001			
Rheumatoid arthritis	278 (2.10)	599 (1.91)	877 (1.97)	0.223			
Back pain	1548 (11.67)	1281 (4.09)	2829 (6.35)	< 0.001			
RRPS	505 (3.81)	5595 (17.88)	6100 (13.69)	< 0.001			
Musculoskeletal disorders	521 (3.93)	664 (2.12)	1185 (2.66)	< 0.001			
Fibromyalgia	181 (1.36)	212 (0.68)	393 (0.88)	< 0.001			
Other ****	45 (0.34)	118 (0.38)	163 (0.37)	0.602			
	Pain						
Historical pain	5408 (40.76)	11780 (37.65)	17188 (38.57)	< 0.001			
Non-traumatic pain (7 days)	2258 (17.02)	8024 (25.64)	10282 (23.07)	< 0.001			
Physical disability (He	ealth Assessment Question	nnaire-Disability Ind	ex (HAQ-DI)				
$HAQ-DI \ge 0.8$	761 (5.74)	2558 (8.17)	3319 (7.45)	< 0.001			
	Comorbidities	3					
Diabetes mellitus	814 (6.13)	2279 (7.28)	3093 (6.94)	< 0.001			
High blood pressure	1649 (12.43)	5613 (17.94)	7262 (16.30)	< 0.001			
Cardiovascular disease	415 (3.13)	1106 (3.53)	1521 (3.41)	0.033			
Smoking	1138 (8.58)	4996 (15.97)	6134 (13.77)	< 0.001			
Alcoholism	1751 (13.20)	1068 (3.41)	2819 (6.33)	< 0.001			
Anxiety/depression	2304 (17.36)	3727 (11.91)	6031 (13.53)	< 0.001			
No comorbidities	6391 (48.16)	14450 (46.18)	20841 (46.77)	< 0.001			
5				-			

* Missing data: 1222 (9.21%) indigenous and 6522 (20.84%) not indigenous, total 7744 (17.38%)

** Other: Traditional healthcare

*** Missing data: 902 (7.01%) indigenous and 4375 (13.80%) not indigenous.

**** Others: *Indigenous*: 29 ankylosing spondylitis, 9 gout, 4 scleroderma and 3 psoriasis. *Non-indigenous*: 39 ankylosing spondylitis, 74 gout, 1 scleroderma and 4 psoriasis.

A lower urban origin (18.71%) and less years of formal schooling (6.74, SD = 5.71) were observed in the indigenous population, while the non-indigenous population had a predominance of private coverage (10.89%). High joint biomechanical stress (47.01%) and historical pain (39.99%) were more frequent in indigenous populations. The prevalence of RMD was similar between populations studied; RA was more prevalent in indigenous people (2.26% vs 1.74%), but not significantly. Non-indigenous people had greater disability (8.15% with HAQ \geq 0.8) and higher prevalence of diabetes mellitus, high blood pressure and smoking

(7.09%, 18.59% and 15.16%). Among indigenous people, alcohol consumption and anxiety/depression were more prevalent (13.98% and 19.55%) (see supplementary table).

In terms of the sub-analysis by country, Argentina had the youngest individuals (35.98, SD:=14.25); Ecuador and Colombia recorded a higher level of schooling (9.31, SD= 5.49) and a higher prevalence of RMD (47.69% and 40.76%); Argentina and Mexico had the highest prevalence of RA (3.01% and 2.22%); Colombia had a higher prevalence of historical and non-traumatic pain (73.95% and 43.94%); and Ecuador had the highest number of disabled people (8.70% with HAQ \ge 0.8) (Table 2).

	Argentina	Colombia n (%)	Ecuador n (%)	Mexico n (%)	Venezuela n (%)	Totals* n (%)	р
	n = 2295 (5.15) $n = 2295$ (5.15)	n = 6688 (15.01)	n = 7540 (16.92)	n = 22610 (50.74)	n = 5427 (12.18)	n = 44560 (100.00)	
Ethnicity (indigenous)	2295 (100.00)	234 (3.50)	2682 (35.57)	6525 (28.86)	1533 (28.25)	13269 (29.78)	< 0.001
Gender (female)	1393 (60.70)	4280 (64.00)	4590 (60.88)	13634 (60.30)	3248 (59.85)	27145 (60.92)	< 0.001
Age (years), mean (SD)	35.98 (14.25)	46.41 (18.35)	43.39 (18.60)	43.08 (17.93)	42.98 (17.63)	43.25 (18.02)	< 0.001
Urban setting	0 (0.00)	6688 (100.00)	3384 (44.88)	14242 (62.99)	3894 (71.75)	28208 (63.30)	< 0.001
Educational level, mean number of years (SD)	5.43 (3.60)	9.19 (4.00)	9.31 (5.49)	7.41 (4.98)	8.77 (5.27)	8.06 (5.02)	< 0.001
			Health coverag	e *			
Total	2295 (100.00)	6527 (97.60)	5453 (72.32)	17114 (75.70)	5427 (100.00)	36816 (82.62)	
Full	29 (1.26)	1920 (28.71)	3148 (41.75)	2877 (12.72)	0 (0.00)	7974 (17.89)	< 0.001
Partial	2053 (89.46)	4465 (66.76)	405 (5.37)	13674 (60.48)	5158 (95.04)	25755 (57.80)	< 0.001
Private	183 (7.97)	39 (0.58)	1482 (19.66)	563 (2.49)	269 (4.96)	2536 (5.69)	< 0.001
Other**	30 (1.31)	103 (1.54)	418 (5.54)	0 (0.00)	0 (0.00)	551 (1.24)	< 0.001
		J	loint biomechanical s	stress ***			
Totals	1698 (74.00)	6686 (99.97)	7440 (98.67)	20253 (89.58)	3206 (59.08)	39283 (88.16)	
High	420 (18.30)	3511 (52.50)	3382 (44.85)	6667 (29.49)	1219 (22.46)	15199 (34.11)	< 0.001
Medium	159 (6.93)	1569 (23.46)	516 (6.84)	3438 (15.21)	576 (10.61)	6258 (14.04)	< 0.001
Low	120 (5.23)	1604 (23.98)	3510 (46.55)	6684 (29.56)	1309 (24.12)	13227 (29.68)	< 0.001
Unspecified	999 (43.53)	2 (0.03)	32 (0.42)	3464 (15.32)	102 (1.88)	4599 (10.32)	< 0.001
			Rheumatic dise	ase			
Totals	705 (30.72)	2726 (40,76)	3596 (47.69)	5092 (22.52)	1409 (25.96)	13528 (30.36)	< 0.001

Table 2. Comparison of sociodemographic characteristics, health coverage, rheumatic diagnosis, pain, disability, and comorbidities between populations of five Latin American countries.

Osteoarthritis	88 (3.83)	521 (7.79)	470 (6.23)	1797 (7.95)	814 (15.00)	3690 (8.28)	< 0.001
Rheumatoid arthritis	69 (3.01)	84 (1.26)	120 (1.59)	501 (2.22)	103 (1.90)	877 (1.97)	< 0.001
Back pain	460 (20.04)	237 (3.54)	474 (6.29)	1357 (6.00)	301 (5.55)	2829 (6.35)	< 0.001
RRPS	41 (1.79)	2726 (40.76)	2671 (35.42)	461 (2.04)	201 (3.70)	6100 (13.69)	< 0.001
Musculoskeletal							
disorders	50 (2.18)	0 (0.00)	62 (0.82)	1013 (4.48)	60 (1.11)	1185 (2.66)	< 0.001
Fibromyalgia	3 (0.13)	27 (0.40)	214 (2.84)	126 (0.56)	23 (0.42)	393 (0.88)	< 0.001
Other ****	2 (0.09)	26 (0.39)	32 (0.42)	80 (0.35)	23 (0.42)	163 (0.37)	0.179
	• • •	• • •	Pain				
Historical pain	938 (40.87)	4946 (73.95)	3420 (45.36)	6141 (27.16)	1743 (32.12)	17188 (38.57)	< 0.001
Non-traumatic pain (7							
days)	402 (17.52)	2939 (43.94)	1525 (20.23)	4204 (18.59)	1212 (22.33)	10282 (23.07)	< 0.001
	Physic	cal disability (Health	Assessment Question	onnaire-Disability Inde	ex (HAQ-DI)		
$HAQ \ge 0.8$	95 (4.14)	400 (5.98)	656 (8.70)	1741 (7.70)	427 (7.87)	3319 (7.45)	< 0.001
	•		Comorbiditie	s		· · ·	
Diabetes mellitus	125 (5.45)	428 (6.40)	382 (5.07)	1898 (8.39)	260 (4.79)	3093 (6.94)	< 0.001
High blood pressure	379 (16.51)	1591 (23.79)	1046 (13.87)	3078 (13.61)	1168 (21.52)	7262 (16.30)	< 0.001
Cardiovascular disease	144 (6.27)	435 (6.50)	250 (3.32)	471 (2.08)	221 (4.07)	1521 (3.41)	< 0.001
Smoking	497 (21.66)	2409 (36.02)	1587 (21.05)	1080 (4.78)	561 (10.34)	6134 (13.77)	< 0.001
Alcoholism	379 (16.51)	0 (0.00)	470 (6.23)	1523 (6.74)	447 (8.24)	2819 (6.33)	< 0.001
Anxiety/depression	123 (5.36)	1463 (21.88)	1843 (24.44)	2185 (9.66)	417 (7.68)	6031 (13.53)	< 0.001
No comorbidities	882 (38.43)	2483 (37.13)	2460 (32.63)	12471 (55.16)	2545 (46.90)	20841 (46.77)	< 0.001
 Missing data: 774 	14 (17.38)						

**Other: Traditional healthcare

*** Missing data: 5277 (11.84)

**** Others: Ankylosing spondylitis, gout, scleroderma, psoriasis.

A logistic regression analysis was performed by ethnicity. In the indigenous population, the variables significantly associated with RMD diagnosis were living in a rural setting, younger age, relying on the public health system for treatment, high levels of joint biomechanical stress, greater pain and greater disability. In turn, the variables associated with RMD diagnosis in the non-indigenous population were being a woman, living in an urban setting, older age, relying on the private sector for treatment, more frequent joint biomechanical stress regardless of the level, greater pain, greater disability and less association with having diabetes mellitus (Table 3).

Table 3. Logistic regression. Dependent variable: a rheumatic disease. I	ndependent variables:
gender, place of residence, age, schooling, health coverage, biomechanic	cal stress, pain, functional
capacity, and comorbidities.	

c regression. Dep	endent variable: a r	heumatic	disease. Indepen	dent vari	ables:
c regression. Dep residence, age, s	endent variable: a rl chooling, health cov	heumatic erage, bi	disease. Independon omechanical stres	dent vari s, pain, f	ables: unctiona
c regression. Dep residence, age, s morbidities.	endent variable: a rl chooling, health cov	heumatic erage, bi	e disease. Independ omechanical stres	dent vari s, pain, f	ables: unctiona
c regression. Dep residence, age, s morbidities.	endent variable: a rl chooling, health cov Indigenous	heumatic erage, bi	disease. Independomechanical stres	dent varia s, pain, f	ables: unctiona
c regression. Dep residence, age, s morbidities.	Indigenous OR (95% CI two- sided)	heumatic erage, bi	c disease. Independ omechanical stres Non-indigeno OR (95% CI two- sided)	dent varis s, pain, f	ables: unctiona
c regression. Dep residence, age, s morbidities.	Indigenous OR (95% CI two- sided) 0.02 (0.01 - 0.03)	p erage, bi	c disease. Independ omechanical stres Non-indigeno OR (95% CI two- sided) 0.10 (0.08 - 0.12)	dent vari s, pain, f us P < 0.01	ables: unctiona
c regression. Dep residence, age, s morbidities.	Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25)	p <0.01 0.164	c disease. Independ omechanical stres Non-indigeno OR (95% CI two- sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27)	dent vari s, pain, f us < 0.01 < 0.01	ables: unctiona
c regression. Dep residence, age, s morbidities. Intercept Gender (female) Age (years)	Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59)	p < 0.01 0.164 < 0.01	c disease. Independ omechanical stress Non-indigeno OR (95% CI two- sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62)	dent varis s, pain, f vs < 0.01 < 0.01 < 0.01	ables: unctiona
c regression. Dep residence, age, s morbidities. Intercept Gender (female) Age (years) Urban setting	Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02)	p < 0.01	Non-indigeno OR (95% CI two-sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01)	dent varia s, pain, f vs < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	ables: functiona
c regression. Dep residence, age, s morbidities. Intercept Gender (female) Age (years) Urban setting Educational level	Indigenous 0R (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00)	p < 0.01	Non-indigeno OR (95% CI two-sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01)	dent vari. s, pain, f vu <0.01 <0.01 <0.01 <0.01 0.081	ables: unctiona
c regression. Dep residence, age, s morbidities. Intercept Gender (female) Age (years) Urban setting Educational level	Indigenous 0R (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00) Health cover	p < 0.01	Non-indigeno OR (95% CI two-sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01)	dent varis s, pain, f v v v v v v v v v v v v v v v v v v v	ables: unctiona
regression. Dep residence, age, se morbidities.	Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00) Health cover 1.46 (1.11 - 1.91)	p < 0.01	c disease. Independomechanical stress Non-indigeno OR (95% CI two-sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01) 0.82 (0.74 - 0.91)	dent vari; s, pain, f v v v v v v v v v v v v v v v v v v v	ables: unctiona
c regression. Dep residence, age, se morbidities.	Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00) Health cover 1.46 (1.11 - 1.91) 1.15 (0.88 - 1.50)	p < 0.01	c disease. Independ omechanical stress Non-indigeno OR (95% CI two- sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01) 0.82 (0.74 - 0.91) 0.59 (0.55 - 0.64)	dent vari: s, pain, f v v v v v v v v v v v v v v v v v v v	ables: unctiona
c regression. Dep residence, age, se morbidities.	Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00) Health cover 1.46 (1.11 - 1.91) 1.55 (1.10 - 2.19)	p < 0.01	c disease. Independ omechanical stress Non-indigeno OR (95% CI two- sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01) 0.82 (0.74 - 0.91) 0.59 (0.55 - 0.64) 1.43 (1.25 - 1.64)	dent vari: s, pain, f vs <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ables: unctiona
c regression. Dep residence, age, s morbidities. Intercept Gender (female) Age (years) Urban setting Educational level Full Partial Private Other	Indigenous Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00) Health cover 1.46 (1.11 - 1.91) 1.15 (0.88 - 1.50) 1.55 (1.10 - 2.19) 1.36 (0.87 - 2.13)	p < 0.01	c disease. Independomechanical stress Non-indigeno OR (95% CI two-sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01) 0.59 (0.55 - 0.64) 1.43 (1.25 - 1.64) 0.98 (0.70 - 1.36)	dent vari: s, pain, f v v v v v v v v v v v v v v v v v v v	ables: unctiona
c regression. Dep residence, age, s morbidities. Intercept Gender (female) Age (years) Urban setting Educational level Full Partial Private Other	Indigenous 0R (95% CI two- sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00) Health cover 1.46 (1.11 - 1.91) 1.55 (1.10 - 2.19) 1.36 (0.87 - 2.13) Level of joint biomedia	p < 0.01	c disease. Independ omechanical stress Non-indigeno OR (95% CI two- sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01) 0.82 (0.74 - 0.91) 0.59 (0.55 - 0.64) 1.43 (1.25 - 1.64) 0.98 (0.70 - 1.36) is	dent vari: s, pain, f v v v v v v v v v v v v v v v v v v v	ables: unctiona
e regression. Dep residence, age, s morbidities. Intercept Gender (female) Age (years) Urban setting Educational level Full Partial Private Other High	Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00) Health cover 1.46 (1.11 - 1.91) 1.55 (1.10 - 2.19) 1.36 (0.87 - 2.13) Level of joint biomed 1.18 (1.00 - 1.40)	p < 0.01	c disease. Independ omechanical stress Non-indigeno OR (95% CI two- sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01) 0.59 (0.55 - 0.64) 1.43 (1.25 - 1.64) 0.98 (0.70 - 1.36) iss 1.55 (1.41 - 1.69)	dent vari: s, pain, f	ables: unctiona
c regression. Dep residence, age, s morbidities. Intercept Gender (female) Age (years) Urban setting Educational level Full Partial Private Other High Medium	Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00) Health cover 1.46 (1.11 - 1.91) 1.55 (1.10 - 2.19) 1.36 (0.87 - 2.13) Level of joint biomeded 1.18 (1.00 - 1.40) 1.22 (0.96 - 1.56)	p < 0.01	c disease. Independ omechanical stress Non-indigeno OR (95% CI two- sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01) 0.59 (0.55 - 0.64) 1.43 (1.25 - 1.64) 0.98 (0.70 - 1.36) ss 1.55 (1.41 - 1.69) 1.31 (1.17 - 1.46)	dent vari: s, pain, f usv< 0.01	ables: unctiona
c regression. Dep residence, age, s morbidities.	Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00) Health cover 1.46 (1.11 - 1.91) 1.55 (1.10 - 2.19) 1.36 (0.87 - 2.13) Level of joint biomecl 1.18 (1.00 - 1.40) 1.22 (0.96 - 1.56) 1.17 (0.97 - 1.42)	p < 0.01	c disease. Independ omechanical stress Non-indigeno OR (95% CI two- sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01) 0.59 (0.55 - 0.64) 1.43 (1.25 - 1.64) 0.98 (0.70 - 1.36) is 1.55 (1.41 - 1.69) 1.31 (1.17 - 1.46) 1.52 (1.38 - 1.66)	dent vari: s, pain, f P < 0.01	ables: unctiona
c regression. Dep residence, age, s morbidities.	Indigenous OR (95% CI two-sided) 0.02 (0.01 - 0.03) 1.10 (0.96 - 1.25) 0.49 (0.41 - 0.59) 1.02 (1.02 - 1.02) 0.99 (0.97 - 1.00) Health cover 1.46 (1.11 - 1.91) 1.55 (1.10 - 2.19) 1.36 (0.87 - 2.13) Level of joint biomech 1.18 (1.00 - 1.40) 1.22 (0.96 - 1.56) 1.17 (0.97 - 1.42)	p < 0.01	c disease. Independ omechanical stress Non-indigeno OR (95% CI two- sided) 0.10 (0.08 - 0.12) 1.19 (1.11 - 1.27) 1.49 (1.37 - 1.62) 1.00 (1.00 - 1.01) 1.01 (1.00 - 1.01) 0.82 (0.74 - 0.91) 0.59 (0.55 - 0.64) 1.43 (1.25 - 1.64) 0.98 (0.70 - 1.36) is 1.55 (1.41 - 1.69) 1.31 (1.17 - 1.46) 1.52 (1.38 - 1.66)	dent vari: s, pain, f us P < 0.01	ables: unctiona

2
3
Δ
5
2
6
7
8
9
10
11
12
12
15
14
15
16
17
18
19
20
20 21
∠ I วว
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
20
3/
38
39
40
41
42
43
44
15
45 46
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59
60
~~

	-			
Non-traumatic pain (7 days)	2.51 (2.18 - 2.89)	< 0.01	2.26 (2.11 - 2.43)	< 0.01
Physical disability	(Health Assessment Ques	tionnaire-Di	sability Index (HAQ-DI)	
$\mathrm{HAQ} \geq 0.8$	1.25 (1.00 - 1.56)	0.045	1.37 (1.23 - 1.52)	< 0.01
	Comorbidit	ties		
Diabetes mellitus	0.95 (0.75 - 1.20)	0.653	0.82 (0.73 - 0.93)	< 0.01
High blood pressure	0.98 (0.82 - 1.18)	0.842	0.95 (0.87 - 1.03)	0.226
Cardiovascular disease	0.83 (0.62 - 1.12)	0.219	1.06 (0.91 - 1.24)	0.433
Smoking	0.93 (0.74 - 1.16)	0.504	1.06 (0.97 - 1.16)	0.217
Alcoholism	0.78 (0.64 - 0.94)	< 0.01	1.15 (0.97 - 1.37)	0.107
Anxiety/depression	0.99 (0.84 - 1.17)	0.926	1.05 (0.96 - 1.16)	0.266
No comorbidities	0.87 (0.74 - 1.03)	0.111	0.73 (0.67 - 0.80)	< 0.01

Twenty clusters were identified in the indigenous population and seventeen in the nonindigenous population. In order to best represent the results, six clusters were selected for each group, using consensus and weighing as described in the methodology.

The six clusters selected from the indigenous population were: Cluster 1 was represented by individuals with partial coverage, younger, with lower educational attainment, higher prevalence of RA and low back pain, and higher pain and smoking. Cluster 11 included individuals with full coverage, greater functional limitation, and higher prevalence of RA and anxiety/depression. Cluster 13 was represented by individuals with less schooling and a high percentage of smoking and alcoholism. Cluster 14 was represented by individuals with full coverage, high prevalence of RMD, and higher percentage of anxiety/depression and pain. Cluster 15 was the largest, with partial coverage, high level of joint biomechanical stress, and higher prevalence of RMD and associated pain. Lastly, Cluster 16 was the smallest and included individuals with private coverage, high level of joint biomechanical stress, older

age, anxiety/depression and alcoholism, and the highest prevalence of RMD and associated pain out of all the clusters (Figure 1).

In the non-indigenous population, the six selected clusters were: Cluster 4 was the largest, represented by individuals with partial coverage, high level of joint biomechanical stress, higher percentage of pain, and higher prevalence of RMD, high blood pressure and anxiety/depression. Cluster 7 was the smallest, with a low percentage of pain and RMD, but greater physical disability. Cluster 8 included individuals with less years of formal schooling, partial health coverage, higher prevalence of RMD and anxiety/depression, medium level of joint biomechanical stress, and high physical disability.

Cluster 9 included individuals with higher educational attainment, full coverage, higher prevalence of RRPS, greater pain, greater level of smoking and less disability. Cluster 10 was represented by individuals with partial coverage, and lower prevalence of RMD and associated pain, but with greater limitation. Cluster 17 included only Mexican individuals with partial coverage, high level of joint biomechanical stress, lower educational attainment, and higher prevalence of RA, diabetes mellitus and high blood pressure (Figure 2).

DISCUSSION

The syndemic approach analyzes the synergistic interrelationship between different biological and non-biological factors that lead to disease. The application of this approach to the area of health is relatively recent. Multiple studies describe how epidemiological and socioeconomic factors are related to disability and inequity in patients with RMD [39]. However, there are few publications that evaluate inflammatory joint diseases and other chronic musculoskeletal conditions from a broader social and biocultural context, taking into

consideration how the socioeconomic characteristics of the environment interact with the disease.

In the present study, a syndemic approach was used to identify factors associated with health inequity [18,40]. The results obtained through a complex analysis of networks showed a greater clustering of patients with rheumatic diseases who shared common social determinants, such as rural setting and lower schooling. This coincides with the results published by Norton et al, who have described that the greater the comorbidities, the greater the risk of a negative impact on the evolution of RMD [41] and, consequently, the greater the difficulty to adequately control the disease [42].

This study identified factors associated with inequity in individuals with RMD in five Latin American countries with a syndemic approach. The clusters obtained through our analysis show differential negative impacts in the groups that were formed. The relevant emerging factors are living in rural communities, having lower educational attainment, and depending on the public healthcare system, described as fragmented in all participating countries. Comorbidities such as smoking, alcoholism and those related to mental health (anxiety/depression) are most prevalent overall, and greater in the indigenous population. The differences detected through the clusters can be considered health inequities, since they constitute avoidable differences such as low schooling and a health care system without full coverage. Furthermore, the clusters that have greater impact are those which include indigenous people. All of the above attests to the inequity in RMD in low- and middle-income countries in general, and even more so in historically vulnerable populations, such as indigenous groups. Commented [AMdLyR1]: Asociación de qué?

Multiple reports describe disparity and inequity among patients with RMD. Though they contemplate the interaction of disease with epidemiological, biological and socioeconomic factors, most of the research of this phenomenon does not include a conjunct and comprehensive analysis of all factors as is achieved by syndemics [43,44].

Another important finding of the study is the clusters with higher prevalence of comorbidities, particularly high blood pressure, tobacco, and alcohol consumption, and those related to mental health (anxiety/depression). As previously reported, the greater the comorbidity, the greater the risk of negative impact on the evolution of RMD [45]. The coexistence of two or more conditions prevents the proper control of disease activity, hindering the achievement of therapeutic goals like those proposed by the treat to target recommendations [46].

The coexistence of several chronic conditions involving systemic inflammatory processes and deterioration in functional capacities, leads to a greater impact on the quality of life and greater demand of health services, to which many populations in Latin America have no universal access. Indeed, the results of this analysis identified several clusters with partial or no access to medical care coinciding with greater comorbidity (cluster 1, 10,11). The association between RMD severity and comorbidities as biological interactions is clear, but it is important to correlate these at a social level, since not having access to timely diagnoses or specialized care increases the possibility of greater comorbidity and complications. Additionally, it is important to address the interaction of certain prevalent comorbidities smoking, alcoholism, and mental health struggles—which contribute to the syndemic as both social and biological factors. While there is sufficient evidence to suggest the possibility of common pathophysiological mechanisms with inflammatory joint diseases, it has also been

shown that states of anxiety and depression can be triggered by non-biological factors such as social isolation, poverty, mental health worldview or cultural stigmatization, and/or lack of access to healthcare [39].

When comparing inequity between population groups, the poverty rate in indigenous and rural communities is higher, as reported in this study: 29.78% of the population self-identified as indigenous, with a higher level of individuals from rural areas and fewer years of schooling. The prevalence of RA specifically was more pronounced in the indigenous population, with the highest rates in Argentina and Mexico (3.01% and 2.22%) (17, 20). Previous research has similarly found that RMD are more frequent in the indigenous populations than in the non-indigenous populations of Canada, Australia, New Zealand and the United States [10].

The indigenous population had a lower prevalence of disability despite presenting greater high level of joint biomechanical stress, historical pain and RA, which may be related to a worldview favoring normalization or underestimation of symptoms. In addition, the interpretation of these symptoms may be one of the causes of delay in seeking specialized care [41]. The relationship between ethnicity and health outcomes seems to be influenced by acculturation; that is, when one ethnic group is forced to adopt the beliefs and practices of another, the members develop negative health behaviors as coping mechanisms [47].

Health systems in Latin America are diverse and complex. Individuals in this study are distributed among the spectrum of public (partial or full) and private systems. Most indigenous communities have public health coverage, though this does not guarantee access or continuity of care and treatment. Limited access is not merely due to economic barriers, but also related to ethnic, cultural and geographical factors, among others [17,18,42,43].

Indigenous communities are among the most vulnerable groups and, due to the conditions described above, their inclusion into the healthcare system is complex [41,42,48].

The inaccessibility of the healthcare system, socioeconomic conditions, presence of comorbidities involving mental health, and RMD disease activity, are all factors that exist in interacting layers to create specific conditions of vulnerability for different patient populations. A model of vulnerability in layers, called a palimpsest design [12], analyzes how the determinants of health at different levels—genetic, biological, psychological, social and political—interact over time, creating barriers that lead to health inequity. The syndemic approach, in taking into consideration all factors and their interactions conjunctly, corresponds with a palimpsest model, providing evidence for the vulnerability of RMD patients associated with social factors such as rurality, low educational attainment, and greater reliance on the public health system (Figure 3).

Limitations

The cross-sectional nature of this study is a limitation to establish causality. However, the analysis of clusters and networks groups individuals by variables to document inequity—the principal objective of this study.

Another limitation is the documentation of comorbidities by self-reporting, which can condition a measurement error. However, in most studies an attempt was made to verify the comorbidities through the medications/prescriptions individuals showed researchers.

In conclusion, the complex analysis from a syndemic approach allowed us to identify the greatest inequity in the clusters that group younger individuals, residents of rural areas, those who self-identify as indigenous, have lower educational attainment, higher prevalence of

> RMD and RA specifically, greater comorbidities especially related to mental health and high blood pressure, and partial coverage in the public healthcare system. Given the above we can assume that these social vulnerabilities and comorbidities lead to health inequities for populations living in countries in which RMD are not considered a priority, resulting in lack of coverage for prevention, diagnosis and management.

Acknowledgments

We thank all the participating communities and their authorities for allowing this study

to be conducted. We also thank all primary care physicians who collaborated in the study.

Amaranta Manrique de Lara for her critical reading, comments and editing.

We also thank all the researcher:

Argentina: Mario Goñi, Nora Mathern, Marisa Jorfen, Silvana Conti, Romina Nieto, Alvaro Sanabria, Cristina Prigione, Adriana M. R. Silvestre, Vanina García, Julio Miljevic, Daniel Dhair, Matias Laithe, Fadua Midauar, Maria Celeste Martin, Maria Cecilia Barrios, Vicente, María Elena Crespo, Mariana Aciar, Emilio Buschiazzo, Natalia L Cucchiaro, Eugenia Picco, Mario Ruiz, José Adolfo Sánchez, Rodolfo Franco, Natalia Estrella, Silvia Jorge, Cinthya Retamozo, Sofía Fernandez, Martina Fay, Cecilia Camacho, Graciela Gomez, Jazmin Petrelli, Andrés Honeri, Viviana Arenas Solórzano, Ana Bensi, Maria Elena Calvo, Marcela Valdata.

Colombia: Rodrigo Giraldo,Ignacio Angarita, Jesus G. Ballesteros,Sofia Arias,Andres Vásquez,Lina Valero, Ani Cortes,Estafania Castañeda,Elias Forero.

Ecuador: Astrid Feicán, Fernando Vintimilla,Jaime Vintimilla,Veronica Ochoa,Jorge Delgado, Angelita Lliguisaca, Holger Dután.

México: Mario H. Cardiel, Jacqueline Rodríguez-Amado, Julio Casasola-Vargas, Conrado Garcia, Imelda García-Olivera, Natalia Santana, César Pacheco, Susana Aidee Gonzalez-Chávez, Hazel Garcia Morales, Arturo Velasco Gutierrez, JF Moctezuma-Rios, Everardo Álvarez-Hernández, Eduardo Navarro-Zarza, Angelia Angulo, Rosana Flores, Janeth Galván Padrón, Lorena Pérez B, Janett Riega Brenda Vaquez Fuentes, Miguel A Villarreal, Cassandra Skinner Taylor, Sara Marín, Dionicio GalarzaDelgado, Diana Flores Alvarado, Jorge A.Esquivel Varerio, Luz Helena Sanín, Marco Maradiaga Ceceño, Jorge Zamudio Lerm.

Venezuela: Ysabel Granados, Rosa Chacón, Ivan Stekman, Yanira Martínez, Gloris Sánchez, Celenia Rosillo, Ligia Cedeño.

Contributors: All authors were involved in the study design, data analysis, and revision of the manuscript. All authors read and approved the final manuscript. IPB is the guarantor.

Competing interests: Authors had no conflicts to disclose. Non-financial associations that

may be relevant to the submitted manuscript.

Founding: Federico Wilhelm Agricola Foundation, N/A. Argentina.

Asociacion Colombiana de Reumatologia (ASOREUMA), No156. Colombia.

Colegio Mexicano de Reumatología, N/A. México.

National Council for Science and Technology (CONACYT)-Mexico. Salud 2011-01-162154, Mexico

PDVSA East and SUELOPETROL, N/A. Venezuela.

Universidad de Cuenca, N/A. Ecuador.

Patient and Public Involment: Patients or the public WERE NOT involved in the design, or conduct, or reporting, or dissemination plans of our research

Data sharing. The data are available but must be requested from the researcher IPB through a specific application request for the use of data, which will be evaluated by all Group.

Transparency declaration. The lead author (the manuscript's guarantor) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Ethics approval

As the present investigation involves data collected as a part of prior studies, no specific study protocol approval was needed, as all Institutional and Ethics Committees of each participating institution (Argentina:1619/2010 and 0127/2011; Ecuador: 2016-129IN, and Mexico: DI/11/4044B/3/123) had already approved pertinent studies and authorities from participating indigenous communities [18].

References

- Bilsborrow JB, Peláez-Ballestas I, Pons-Estel B, *et al.* Global Rheumatology Research: Frontiers, Challenges, and Opportunities. *Arthritis Rheumatol Hoboken NJ* 2022;**74**:1– 4. doi:10.1002/art.41980
- 2 Cardiel MH. Present and future of rheumatic diseases in Latin America. Are we prepared to face them? *Reumatol Clin* 2011;**7**:279–80. doi:10.1016/j.reuma.2010.12.009
- 3 Brooks PM. The burden of musculoskeletal disease--a global perspective. *Clin Rheumatol* 2006;**25**:778–81. doi:10.1007/s10067-006-0240-3
- 4 Briggs A, Slater H, Jordan J, *et al.* Towards a global strategy to improve musculoskeletal health. Sydney, Australia: : Global Alliance for Musculoskeletal Health 2021.
- 5 Commission on Social Determinants of Health. Subsanar las desigualdades en una generación : alcanzar la equidad sanitaria actuando sobre los determinantes sociales de la salud : informe final de la Comisión Sobre Determinantes Sociales de la Salud. Organización Mundial de la Salud 2009. https://apps.who.int/iris/handle/10665/44084 (accessed 3 Apr 2022).
- 6 OECD. *Health at a Glance 2021: OECD Indicators*. Paris: : Organisation for Economic Co-operation and Development 2021. https://doi.org/10.1787/ae3016b9-en (accessed 3 Apr 2022).
- 7 Linares-Pérez N, Arellano OL. La equidad en salud: propuestas conceptuales, aspectos críticos y perspectivas desde el campo de la Salud Colectiva. *Med Soc* 2008;**3**:247–59.
- 8 Intriago M, Maldonado G, Guerrero R, et al. LARS study: Latin American rheumatologist survey. Clin Rheumatol 2021;40:377–87. doi:10.1007/s10067-020-05240-y
- 9 Peláez-Ballestas I, Alvarez-Nemegyei J, Loyola-Sánchez A, et al. Prevalence and factors associated with musculoskeletal disorders and rheumatic diseases in indigenous Maya-Yucateco people: a cross-sectional community-based study. Clin Rheumatol 2016;**35 Suppl 1**:15–23. doi:10.1007/s10067-015-3085-9
- 10 Quintana R, Goñi M, Mathern N, *et al.* Rheumatoid arthritis in the indigenous qom population of Rosario, Argentina: aggressive and disabling disease with inadequate adherence to treatment in a community-based cohort study. *Clin Rheumatol* 2018;**37**:2323–30. doi:10.1007/s10067-018-4103-5

2		
4 5 6		
7 8		
9 10	11	Ugarte-Gil MF, Silves situation. <i>Clin Rheun</i>
11 12 13 14	12	Colmenares-Roa T, F palimpsest: Practice Engl 1997 2021;:136
15 16 17 18	13	Peláez-Ballestas I, Po diseases in indigeno 1:1–3. doi:10.1007/s
19 20	14	Singer M, Bulled N, G health. <i>Lancet Lond</i>
21 22 23 24	15	Mendenhall E, Kohrt poverty, depression, 2017; 389 :951–63. de
25 26 27	16	Willen SS, Knipper N to health. <i>Lancet Lor</i>
28 29 30 31	17	Peláez-Ballestas I, Gi impact of the rheum health problem. Ann 213625
32 33 34 35	18	Strozzi AG, Peláez-Ba low back pain in Lati <i>Rheumatol</i> 2020; 39 :
36 37 38	19	Juárez V, Quintana R rheumatic diseases i 2021; 40 :75–83. doi:
39 40 41 42 43	20	Guevara SV, Feicán E of Life in the Saragu Based Study. <i>J Clin R</i> doi:10.1097/RHU.00
44 45 46 47	21	Loyola-Sanchez A, Ri physical function of prevalence: a cross s 1:25–34. doi:10.100
48 49 50 51 52	22	Granados Y, Rosillo (rheumatic disease ir
53 54 55		
56 57 58		
59 60		For

- 11 Ugarte-Gil MF, Silvestre AMR, Pons-Estel BA. Access to an optimal treatment. Current situation. *Clin Rheumatol* 2015;**34 Suppl 1**:S59-66. doi:10.1007/s10067-015-3018-7
- 12 Colmenares-Roa T, Figueroa-Perea JG, Pelcastre-Villafuerte B, *et al.* Vulnerability as a palimpsest: Practices and public policy in a Mexican hospital setting. *Health Lond Engl 1997* 2021;:1363459320988879. doi:10.1177/1363459320988879
- Peláez-Ballestas I, Pons-Estel BA, Burgos-Vargas R. Epidemiology of rheumatic diseases in indigenous populations in Latin-Americans. *Clin Rheumatol* 2016;35 Suppl 1:1–3. doi:10.1007/s10067-016-3298-6
- 14 Singer M, Bulled N, Ostrach B, et al. Syndemics and the biosocial conception of health. Lancet Lond Engl 2017;389:941–50. doi:10.1016/S0140-6736(17)30003-X
- 15 Mendenhall E, Kohrt BA, Norris SA, et al. Non-communicable disease syndemics: poverty, depression, and diabetes among low-income populations. Lancet Lond Engl 2017;**389**:951–63. doi:10.1016/S0140-6736(17)30402-6
- 16 Willen SS, Knipper M, Abadía-Barrero CE, *et al.* Syndemic vulnerability and the right to health. *Lancet Lond Engl* 2017;**389**:964–77. doi:10.1016/S0140-6736(17)30261-1
- 17 Peláez-Ballestas I, Granados Y, Quintana R, et al. Epidemiology and socioeconomic impact of the rheumatic diseases on indigenous people: an invisible syndemic public health problem. Ann Rheum Dis 2018;77:1397–404. doi:10.1136/annrheumdis-2018-213625
- 18 Strozzi AG, Peláez-Ballestas I, Granados Y, *et al.* Syndemic and syndemogenesis of low back pain in Latin-American population: a network and cluster analysis. *Clin Rheumatol* 2020;**39**:2715–26. doi:10.1007/s10067-020-05047-x
- 19 Juárez V, Quintana R, Crespo ME, *et al.* Prevalence of musculoskeletal disorders and rheumatic diseases in an Argentinean indigenous Wichi community. *Clin Rheumatol* 2021;**40**:75–83. doi:10.1007/s10067-020-05130-3
- 20 Guevara SV, Feicán EA, Peláez I, *et al.* Prevalence of Rheumatic Diseases and Quality of Life in the Saraguro Indigenous People, Ecuador: A Cross-sectional Community-Based Study. *J Clin Rheumatol Pract Rep Rheum Musculoskelet Dis* 2020;**26**:S139–47. doi:10.1097/RHU.00000000001131
- 21 Loyola-Sanchez A, Richardson J, Pelaez-Ballestas I, *et al.* The impact of arthritis on the physical function of a rural Maya-Yucateco community and factors associated with its prevalence: a cross sectional, community-based study. *Clin Rheumatol* 2016;**35 Suppl** 1:25–34. doi:10.1007/s10067-015-3084-x
- 22 Granados Y, Rosillo C, Cedeño L, *et al.* Prevalence of musculoskeletal disorders and rheumatic disease in the Warao, Kari'ña, and Chaima indigenous populations of

Monagas State, Venezuela. *Clin Rheumatol* 2016;**35 Suppl 1**:53–61. doi:10.1007/s10067-016-3194-0

- 23 Ballestas IP, Santos AM, Angarita I, et al. Adecuación y validación transcultural del cuestionario COPCORD: Programa Orientado a la Comunidad para el Control de las Enfermedades Reumáticas en Colombia. Rev Colomb Reumatol 2019;26:88–96. doi:10.1016/j.rcreu.2019.01.004
- 24 Guevara-Pacheco S, Feicán-Alvarado A, Sanín LH, *et al.* Prevalence of musculoskeletal disorders and rheumatic diseases in Cuenca, Ecuador: a WHO-ILAR COPCORD study. *Rheumatol Int* 2016;**36**:1195–204. doi:10.1007/s00296-016-3446-y
- 25 Alvarez-Nemegyei J, Peláez-Ballestas I, Rodríguez-Amado J, et al. Prevalence of rheumatic regional pain syndromes in adults from Mexico: a community survey using COPCORD for screening and syndrome-specific diagnostic criteria. J Rheumatol Suppl 2011;86:15–20. doi:10.3899/jrheum.100953
- 26 Granados Y, Cedeño L, Rosillo C, et al. Prevalence of musculoskeletal disorders and rheumatic diseases in an urban community in Monagas State, Venezuela: a COPCORD study. *Clin Rheumatol* 2015;**34**:871–7. doi:10.1007/s10067-014-2689-9
- 27 Londoño J, Peláez Ballestas I, Cuervo F, *et al.* Prevalencia de la enfermedad reumática en Colombia, según estrategia COPCORD-Asociación Colombiana de Reumatología. Estudio de prevalencia de enfermedad reumática en población colombiana mayor de 18 años. *Rev Colomb Reumatol* 2018;**25**:245–56. doi:10.1016/j.rcreu.2018.08.003
- 28 Darmawan J. Recommendations from the Community Oriented Program for Control of Rheumatic Disease for data collection for the measurement and monitoring of health in developing countries. *Clin Rheumatol* 2007;**26**:853–7. doi:10.1007/s10067-007-0553-x
- 29 Muirden KD. Community Oriented Program for the Control of Rheumatic Diseases: studies of rheumatic diseases in the developing world. *Curr Opin Rheumatol* 2005;**17**:153–6. doi:10.1097/01.bor.0000151402.11028.53
- 30 Bruce B, Fries JF. The Health Assessment Questionnaire (HAQ). *Clin Exp Rheumatol* 2005;**23**:S14-18.
- 31 Seabold S, Perktold J. Statsmodels: Econometric and Statistical Modeling with Python. In: *Proceedings of the 9th Python in Science Conference*. 2010. 92–6. doi:10.25080/Majora-92bf1922-011
- 32 McFadden D. Quantitative Methods for Analyzing Travel Behaviour of Individuals: Some Recent Developments. Cowles Foundation for Research in Economics, Yale University 1977. https://econpapers.repec.org/paper/cwlcwldpp/474.htm (accessed 9 Nov 2022).

2 3 4 5		
6 7		
8 9 10	33	McFa 1974.
11 12 13 14	34	Chiesi <i>Encyc</i> 10499
15 16 17	35	Singha 2001;
18 19 20	36	Han J, eds. <i>L</i> doi:10
21 22 23	37	Bastia Manip
24 25 26 27 28	38	Ester cluste <i>Intern</i> Orego
29 30 31	39	Nerur inflam 0366(
32 33 34 35 36	40	Pelae: impac health 21362
37 38 39	41	Quint indige 2021;
40 41 42 43	42	Massa Ameri Arthri
44 45 46	43	Yip K, arthri doi:10
47 48 49 50 51	44	A Mix Clinica
52 53 54		
55 56 57 58		
59 60		

- 33 McFadden D. Conditional logit analysis of qualitative choice behavior. *Front Econom* 1974.
- 34 Chiesi AM. Network Analysis. In: Smelser NJ, Baltes PB, eds. International Encyclopedia of the Social & Behavioral Sciences. Oxford, UK: Pergamon 2001. 10499–502. doi:10.1016/B0-08-043076-7/04211-X
- 35 Singhal A. Modern Information Retrieval: A Brief Overview. *IEEE Data Eng Bull* 2001;**24**:35–43.
- Han J, Kamber M, Pei J. 2 Getting to Know Your Data. In: Han J, Kamber M, Pei J, eds. Data Mining (Third Edition). Boston: : Morgan Kaufmann 2012. 39–82. doi:10.1016/B978-0-12-381479-1.00002-2
- 37 Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating Networks. ICWSM 2009.
- 38 Ester M, Kriegel H-P, Sander J, *et al.* A density-based algorithm for discovering clusters in large spatial databases with noise. In: *Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.* Portland, Oregon: : AAAI Press 1996. 226–31.
- 39 Nerurkar L, Siebert S, McInnes IB, et al. Rheumatoid arthritis and depression: an inflammatory perspective. Lancet Psychiatry 2019;6:164–73. doi:10.1016/S2215-0366(18)30255-4
- 40 Pelaez-Ballestas I, Granados Y, Quintana R, *et al.* Epidemiology and socioeconomic impact of the rheumatic diseases on indigenous people: an invisible syndemic public health problem. *Ann Rheum Dis* 2018;**77**:1397–404. doi:10.1136/annrheumdis-2018-213625
- 41 Quintana R, Fernández S, Orzuza SM, *et al.* «Living with rheumatoid arthritis» in an indigenous qom population in Argentina. A qualitative study. *Reumatol Clin* 2021;**17**:543–8. doi:10.1016/j.reumae.2020.04.006
- 42 Massardo L, Pons-Estel BA, Wojdyla D, *et al.* Early rheumatoid arthritis in Latin America: low socioeconomic status related to high disease activity at baseline. *Arthritis Care Res* 2012;**64**:1135–43. doi:10.1002/acr.21680
- 43 Yip K, Navarro-Millán I. Racial, ethnic, and healthcare disparities in rheumatoid arthritis. *Curr Opin Rheumatol* 2021;**33**:117–21. doi:10.1097/BOR.000000000000782
- 44 A Mixed-Methods Systematic Review on Syndemics in Rheumatolo... : JCR: Journal of Clinical Rheumatology.

https://journals.lww.com/jclinrheum/Abstract/9900/A_Mixed_Methods_Systematic _Review_on_Syndemics_in.63.aspx (accessed 9 Nov 2022).

- 45 Norton S, Koduri G, Nikiphorou E, *et al.* A study of baseline prevalence and cumulative incidence of comorbidity and extra-articular manifestations in RA and their impact on outcome. *Rheumatol Oxf Engl* 2013;**52**:99–110. doi:10.1093/rheumatology/kes262
- 46 Radner H, Yoshida K, Frits M, *et al.* The impact of multimorbidity status on treatment response in rheumatoid arthritis patients initiating disease-modifying anti-rheumatic drugs. *Rheumatol Oxf Engl* 2015;**54**:2076–84. doi:10.1093/rheumatology/kev239
- 47 Ford ME, Kelly PA. Conceptualizing and categorizing race and ethnicity in health services research. *Health Serv Res* 2005;**40**:1658–75. doi:10.1111/j.1475-6773.2005.00449.x
- 48 Gibson O, Lisy K, Davy C, *et al.* Enablers and barriers to the implementation of primary health care interventions for Indigenous people with chronic diseases: a systematic review. *Implement Sci IS* 2015;**10**:71. doi:10.1186/s13012-015-0261-x

Figure Legend

Figure 1. Network and cluster analysis to describe groups with shared variables according to the

syndemic framework in the indigenous population. (Title)

Figure 2. Network and cluster analysis to describe groups with shared variables according to the

syndemic framework in the non-indigenous population. (Title).

Figure 3. Inequities and vulnerabilities in RMDs: a palimpsest model (Title)

A model of vulnerability in lavers analyzes how the determinants of health at different levels

-genetic, biological, psychological, social and political- interact over time, creating barriers

that lead to health inequity. (Figure caption)
Figure 1. Network and cluster analysis to describe groups with shared variables according to the syndemic framework in the indigenous population

Cluster	1	11	13	14	15	16
Total	1062	694	514	1097	3234	224
Health coverage	Partial	Full	Partial	Full	Partial	Private
Joint biomechanical stress	Unspecified	High	Medium	High	High	High
Gender	60.36	63.83	57.39	64.18	65.31	57.14
Age*	37.32 (15.00)	41.10 (21.68)	39.26 (15.52)	45.58 (18.60)	44.68 (17.61)	50.40 (17.39)
Formal schooling*	5.10 (3.56)	9.32 (5.52)	4.83 (4.39)	6.11 (4.55)	4.92 (3.74)	5.88 (4.63)
Argentina	82.86	0.00	28.40	0.00	11.87	8.04
Colombia	0.00	0.00	0.00	0.00	0.00	0.00
Ecuador	0.00	84.15	3.11	93.16	5.04	75.45
Mexico	7.72	15.85	19.07	6.84	60.36	16.52
Venezuela	9.42	0.00	49.42	0.00	22.73	0.00
Rheumatic disease (any)	31.83	32.28	29.57	41.66	40.45	47.32
Osteoarthritis	6.21	14.12	7.39	18.87	12.83	23.21
Rheumatoid arthritis	3.01	3.17	2.72	1.73	2.94	2.68
Backpain	19.02	10.66	14.98	18.60	15.34	15.18
RRPS	1.98	4.18	2.53	7.29	2.29	5.36
Musculoskeletal disorders	2.17	4.90	2.72	3.65	8.94	5.36
Fibromyalgia	0.09	3.46	0.58	4.92	1.67	5.80
Others	0.09	0.29	0.78	0.18	0.43	0.45
Historical pain	44.82	40.63	36.19	49.95	52.26	54.91
Non-traumatic pain (7 days)	20.72	7.49	17.32	10.12	27.40	13.84
Physical disability (HAQ-DI)	3.48	12.82	4.28	11.39	3.96	7.14
Diabetes mellitus	5.18	5.04	3.89	5.10	6.77	7.14
High blood pressure	15.35	10.23	7.78	12.94	13.42	17.41
Cardiovascular disease	5.74	1.30	2.72	3.01	3.34	4.02
Smoking	18.74	3.46	16.15	4.19	9.86	7.14
Alcoholism	14.69	10.95	19.84	14.77	23.13	23.66
Anxiety/depression	4.14	39.77	4.09	49.59	22.70	43.75
No comorbidition	42.00	24.44	£2.90	27.52	25.44	22.21

 No comorbidities
 42.09
 34.44
 53.89
 27.53
 35.44

 RRPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-DI) cut-off point of greater than 0.8.
 * Age and formal schooling show mean value (standard deviation)

Figure 1. Network and cluster analysis to describe groups with shared variables according to the syndemic framework in the indigenous population

215x279mm (300 x 300 DPI)

Figure 2. Network and cluster analysis to describe groups with shared variables according to the syndemic framework in the non-indigenous population

Total 4486 429 1223 1647 789 1333 Health coverage Partial Public Plil Partial coverage Partial coverage Partial coverage Partial coverage Partial coverage Partial coverage Private Joint biomechanical stress Unspecified High Medium High High High Partial coverage Parti				-						
Health overage Parial Public Full Public Full Full overage Parial overage	Total	4586	429	1223	1647	789	1353			
Joint biomechanical stress Unspecified High High High High Gender 78.28 95.07 78.00 50.27 6.12.2 87.66 Age* 46.99 (17.78) 40.82 (16.70) 44.45 (17.07) 41.10.83) 14.136 (17.3) 47.33 (17.15) Formal schooling* 7.78 (409) 7.82 (429) 7.92 (4.53) 11.138 (5.14) 8.69 (46.5) 7.50 (5.09) Argenina 0.00 0.00 0.00 0.00 0.000 0.000 0.000 Colombia 50.81 0.00 0.417 34.30 0.000	Health coverage	Partial	Public Full	Partial coverage	Full coverage	Partial coverage	Private			
Gender 78.28 99.67 77.80 50.27 61.22 87.66 Age* 46.99 (1/78) 40.82 (16.70) 44.45 (17.07) 44.13 (17.53) 47.33 (17.15) Formal schooling* 7.78 (4.08) 7.85 (4.29) 7.92 (4.53) 11.38 (5.14) 8.69 (4.65) 7.50 (5.09) Argentina 0.00 0.00 0.00 0.00 0.00 0.00 Colombia 50.81 0.00 4.17 34.30 0.13 0.00 Ecuador 0.00 0.70 36.96 42.74 0.00 0.00 Venezuela 9.92 58.87 22.05 9.96 100.00 Venezuela 9.42 0.00 0.00 0.00 0.25 0.00 Reburatoi disease (any) 40.49 22.84 42.44 41.89 20.41 13.90 Reburatoi dirhtritis 2.146 2.80 18.8 18.22 3.55 4.07 Backgnin 6.56 9.09 4.74 4.130 4.49 1.36	Joint biomechanical stress	Unspecified	High	Medium	High	High	High			
Age* 46.99 (17.78) 40.82 (16.70) 44.45 (17.07) 44.11 (18.83) 41.36 (17.53) 47.33 (17.15) Formal schooling* 7.78 (408) 7.82 (429) 7.92 (4.53) 11.38 (5.14) 8.89 (465) 7.50 (5.99) Argentina 0.00 0.00 0.00 0.00 0.00 0.00 Colombia 50.81 0.00 0.17 34.30 0.013 0.000 Ectador 0.00 0.70 36.66 42.74 0.00 0.00 Mexico 39.77 99.30 58.87 22.95 99.62 0.000 Octoarbitis 11.32 0.00 0.00 0.00 0.25 0.00 Recuratic disase (any) 40.49 29.44 44.44 4.189 20.41 1.30 Ostcoarthritis 11.32 9.09 7.44 5.59 7.48 4.955 Rekpain 6.56 9.09 4.74 3.10 4.94 1.85 Musculoskeletal disorders 4.49 5.36 2.04 2.33<	Gender	78.28	59.67	78.00	50.27	61.22	87.66			
Formal schooling* 7.78 (4.08) 7.82 (4.29) 7.92 (4.53) 11.38 (5.14) 8.89 (4.65) 7.50 (5.09) Argentina 0.00 0.025 0.00 0.00 0.025 0.00 0.00 0.025 0.00 0.00 0.025 0.00 0.025 0.00 0.01 1.03 0.025 0.00 0.01 1.04 1.39 0.41 1.39 0.41 1.39 0.41 1.39 0.41 1.39 0	Age*	46.99 (17.78)	40.82 (16.70)	44.45 (17.07)	44.11 (18.83)	41.36 (17.53)	47.33 (17.15)			
Argentina 0.00 0.00 0.00 0.00 0.00 Colombia 50.81 0.00 4.17 34.30 0.13 0.00 Ecuador 0.00 0.70 36.96 42.74 0.00 0.00 Mexico 39.77 99.30 58.87 22.95 99.62 100.00 Venezuela 9.42 0.00 0.00 0.025 0.00 Rheumatic disease (any) 40.49 29.84 42.44 41.89 20.41 13.90 Ostcoarthritis 11.32 9.09 7.44 5.59 7.7.8 44.95 Rheumatic disate (any) 6.65 9.09 7.44 3.10 4.94 1.85 RARPS 23.92 2.80 26.17 3.400 1.14 0.89 Nusculoskeletal disorders 4.49 5.36 2.04 2.43 2.92 2.00 Fibromyalgia 0.41 1.17 1.88 0.67 0.076 0.07 Others 0.37 <	Formal schooling*	7.78 (4.08)	7.85 (4.29)	7.92 (4.53)	11.38 (5.14)	8.69 (4.65)	7.50 (5.09)			
Colombia 50.81 0.00 4.17 34.30 0.03 0.00 Bcaudor 0.00 0.70 36.96 42.74 0.00 0.00 Mexico 39.77 99.30 58.87 22.95 99.62 100.00 Nenzorala 9.42 0.00 0.00 0.00 0.25 0.00 Rheumatic disease (any) 40.49 22.84 42.44 41.89 20.41 13.30 Ostecarthritis 2.46 2.80 1.88 1.82 3.55 4.07 Backpain 6.56 9.09 4.74 3.10 4.94 1.88 MRPS 23.92 2.80 26.17 34.00 1.14 0.89 Muscloskeletal disorders 4.49 5.36 2.04 2.33 2.92 2.00 Fibronyalgia 0.41 1.17 1.88 0.67 0.76 0.07 Others 0.37 0.23 0.25 0.79 0.13 0.30 Historical pain	Argentina	0.00	0.00	0.00	0.00	0.00	0.00			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Colombia	50.81	0.00	4.17	34.30	0.13	0.00			
Mexico 39.77 99.30 58.87 22.95 99.62 100.00 Venzuela 9.42 0.00 0.00 0.00 0.02 20.00 Rheumatic disease (any) 40.49 29.84 42.44 41.89 20.41 13.90 Ostecarthritis 11.32 9.09 7.744 5.59 7.48 4.95 Rheumatoi darthritis 2.46 2.80 1.88 1.82 3.55 4.07 Backpain 6.56 9.09 4.74 3.10 4.94 1.85 Muscoloskeletal disorders 4.49 5.36 2.04 2.43 2.92 2.00 Fibromyalgia 0.011 1.17 1.88 0.67 0.76 0.07 Others 0.37 0.23 0.25 0.79 0.13 0.30 Historical pain 57.78 20.51 35.32 47.54 23.32 17.44 Non-truumatic pain (7 days) 38.60 2.8.67 35.30 27.26 2.3.19 15.08	Ecuador	0.00	0.70	36.96	42.74	0.00	0.00			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mexico	39.77	99.30	58.87	22.95	99.62	100.00			
Rheumatic disease (any) 40.49 29.84 42.44 41.89 20.41 13.90 Ostecarthritis 11.32 9.09 7.44 5.59 7.48 4.95 Rheumatoid arthritis 2.46 2.80 1.88 1.82 3.55 4.07 Backpain 6.56 9.09 4.74 3.10 4.94 1.85 RRPS 2.32 2.80 2.617 34.00 1.14 0.88 Musculoskeletal disorders 4.49 5.36 2.04 2.43 2.02 2.00 Others 0.37 0.23 0.25 0.079 0.013 0.30 Historical pain 57.78 20.51 35.32 47.54 23.32 17.44 Non-traumatic pain (7 days) 38.60 28.67 33.69 27.26 23.19 15.08 Physical disability (HAQ-Di) 7.76 15.15 14.423 6.44 13.05 12.34 Cardiovascular disease 4.93 3.26 3.92 4.80 3.68 <td>Venezuela</td> <td>9.42</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.25</td> <td>0.00</td>	Venezuela	9.42	0.00	0.00	0.00	0.25	0.00			
Ostecantrinis 11.32 9.09 7.44 5.59 7.48 4.95 Buckmatoid arbritis 2.46 2.80 1.88 1.82 3.55 4.07 Backpain 6.56 9.09 4.74 3.10 4.94 1.88 RRPS 23.92 2.80 26.17 34.00 1.14 0.88 Musculoskeletal disorders 4.49 5.36 2.04 2.43 2.02 2.00 Fibromyalgia 0.41 1.17 1.88 0.67 0.66 0.07 Others 0.37 0.23 0.25 0.79 0.13 0.30 Historical pain 57.78 20.51 35.32 47.54 23.32 17.44 Non-traumatic pain (7 days) 38.60 28.67 33.59 27.26 23.19 15.08 Physical disability (HAQ-DD) 7.76 15.15 14.23 6.64 13.05 12.34 Cardiovascular disease 4.93 3.26 3.92 4.80 3.68 2.14 </td <td>Rheumatic disease (any)</td> <td>40.49</td> <td>29.84</td> <td>42.44</td> <td>41.89</td> <td>20.41</td> <td>13.90</td>	Rheumatic disease (any)	40.49	29.84	42.44	41.89	20.41	13.90			
Rheunatoid arthritis 2.46 2.80 1.88 1.82 3.55 4.07 Backpain 6.56 9.09 4.74 3.10 4.94 1.85 RRPS 23.92 2.80 26.17 34.00 1.14 0.89 Musculoskeletal disorders 4.49 5.36 2.04 2.43 2.292 2.00 Fibromyalgia 0.41 1.17 1.88 0.07 0.06 0.07 Others 0.037 0.23 0.25 0.79 0.13 0.30 Historical pain 57.78 20.51 3.532 47.54 23.32 17.44 Nor-traumatic pain (7 day) 36.00 25.67 3.09 27.26 23.19 15.08 Jubetes mellius 8.26 7.93 8.91 6.64 13.05 12.34 Jubetes mellius 8.26 7.93 8.91 6.66 9.38 10.20 Cardiovascular disease 4.93 3.26 3.92 4.430 3.78 2.040 </td <td>Osteoarthritis</td> <td>11.32</td> <td>9.09</td> <td>7.44</td> <td>5.59</td> <td>7.48</td> <td>4.95</td>	Osteoarthritis	11.32	9.09	7.44	5.59	7.48	4.95			
Backpain 6.56 9.09 4.74 3.10 4.94 1.85 RRPS 23.92 2.80 26.17 34.00 1.14 0.89 Musculoskeletal disorders 4.49 5.36 2.04 2.43 2.02 2.00 Fibromyalgia 0.41 1.17 1.88 0.67 0.76 0.07 Others 0.37 0.23 0.25 0.79 0.13 0.30 Musculoskeletal disolity (HAQ-DI) 57.78 20.51 35.32 47.54 23.32 17.44 Non-traumatic pain (7 days) 38.60 28.67 33.59 27.56 23.31 15.48 Physical disability (HAQ-DI) 7.76 15.15 14.23 6.64 13.05 12.34 Cardiovascular disease 4.93 3.26 3.92 4.80 17.87 20.40 Smoking 17.84 10.26 16.11 32.54 7.48 0.81 Cardiovascular disease 4.93 3.26 3.92 4.80 3.81 <td>Rheumatoid arthritis</td> <td>2.46</td> <td>2.80</td> <td>1.88</td> <td>1.82</td> <td>3.55</td> <td>4.07</td>	Rheumatoid arthritis	2.46	2.80	1.88	1.82	3.55	4.07			
RRPS 23.92 2.80 26.17 34.00 1.14 0.89 Musculoskeletal disorders 4.49 5.36 2.04 2.43 2.92 2.00 Fibromyalgia 0.41 1.17 1.88 0.07 0.07 0.07 Others 0.037 0.23 0.25 0.79 0.13 0.30 Historical pain 57.78 20.51 3.532 47.54 23.32 17.44 Non-resumatic pain (7 day) 38.60 28.67 33.69 27.26 23.19 15.68 Physical disability (HAQ-DI) 7.76 15.15 14.23 6.64 13.05 12.34 Diabetes mellius 8.26 7.93 8.91 6.86 9.38 10.20 Cardiovascular disease 4.93 3.26 3.92 4.430 3.68 2.14 Jonkeity 17.84 10.26 16.11 3.24 7.48 0.48 Anciotydepression 3.92 7.46 3.40 3.63 4.31 0	Backpain	6.56	9.09	4.74	3.10	4.94	1.85			
Musculoskeletal disorders 4.49 5.36 2.04 2.43 2.02 2.00 Others 0.01 1.17 1.88 0.67 0.76 0.07 Others 0.37 0.23 0.25 0.79 0.13 0.30 Historical pain 57.78 20.51 35.32 47.54 23.32 17.44 Non-traumatic pain (7 days) 33.60 2.8.67 33.69 27.26 23.19 15.08 Physical disability (HAQ-DI) 7.76 15.15 14.23 6.64 13.05 12.34 Inabetes mellitus 8.26 7.93 8.91 6.86 9.38 10.20 Cardiovascular disease 4.93 3.26 3.92 4.80 17.87 20.40 Cardiovascular disease 4.93 3.26 3.92 4.80 3.68 2.14 Smoking 17.84 10.26 16.11 32.54 7.48 0.81 Anciert/depression 3.92 7.46 3.19 2.37 4.31	RRPS	23.92	2.80	26.17	34.00	1.14	0.89			
Fibromyalgia 0.41 1.17 1.88 0.67 0.67 0.07 Others 0.37 0.23 0.25 0.79 0.13 0.30 Historical pain 57.78 20.51 35.32 47.54 23.32 17.44 Non-traumatic pain (7 days) 35.60 28.67 33.69 27.26 23.19 15.08 Physical disability (HAQ-DI) 7.76 15.15 14.23 6.64 13.05 12.34 Diabetes mellitus 8.26 7.93 8.91 6.86 9.38 10.20 Cardiovascular disease 22.68 13.75 19.46 18.40 17.87 20.40 Cardiovascular disease 4.93 3.26 3.92 4.80 3.68 2.14 Anciotydepression 3.92 7.46 10.11 2.24 7.48 0.81 Anxiety/depression 3.92 7.46 12.43 6.07 9.76 8.50 No comorbidities 38.03 43.36 34.10 38.13 <t< td=""><td>Musculoskeletal disorders</td><td>4.49</td><td>5.36</td><td>2.04</td><td>2.43</td><td>2.92</td><td>2.00</td></t<>	Musculoskeletal disorders	4.49	5.36	2.04	2.43	2.92	2.00			
Others 0.37 0.23 0.25 0.79 0.13 0.30 Historical pain 57.78 20.51 35.32 47.54 23.32 17.44 Non-traumatic pain (7 days) 38.60 28.67 33.69 27.26 23.19 15.08 Physical disability (HAQ-DI) 7.76 15.15 14.23 6.44 13.05 12.34 Inabetes mellius 8.26 7.93 8.91 6.86 9.38 10.20 High blood pressure 22.68 13.75 19.46 18.40 17.87 20.44 Cardiovascular disease 4.93 3.26 3.92 4.80 3.68 2.14 Smoking 17.84 10.26 16.11 32.24 7.48 0.81 Alcoholism 4.91 6.76 3.19 2.23 4.30 0.57 Anxiety/depression 3.92 7.46 12.43 6.07 4.31 0.59 No comorbidities 3.6.03 4.3.6 34.10 38.13 4.0.01 <td>Fibromyalgia</td> <td>0.41</td> <td>1.17</td> <td>1.88</td> <td>0.67</td> <td>0.76</td> <td>0.07</td>	Fibromyalgia	0.41	1.17	1.88	0.67	0.76	0.07			
Historical pain 57.78 20.51 33.52 47.54 23.32 17.44 Noor-traumatic pain (7 days) 38.60 28.67 33.69 27.26 23.19 15.08 Physical disability (HAQ-DD) 7.76 15.15 14.23 6.44 13.05 12.34 Diabetes mellius 8.26 7.93 8.91 6.86 9.38 10.20 High blood pressure 22.68 13.75 19.46 18.40 17.87 20.40 Candiovascular disease 4.93 3.26 3.92 4.80 3.68 2.14 Alcoholism 4.91 6.76 3.19 2.2.57 4.31 0.93 Anxiety/depression 3.92 7.46 12.43 6.07 9.76 8.50 No comorbidities 38.03 43.36 34.10 38.13 46.01 58.39 RPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-DD) cut-off point of greater than 0.8. 58.39	Others	0.37	0.23	0.25	0.79	0.13	0.30			
Non-traumatic prin (7 days) 38.60 28.67 33.69 27.26 23.19 15.08 Physical disability (HAQ-DI) 7.76 15.15 14.23 6.44 13.05 12.34 Diabetes nellitus 8.26 7.93 8.91 6.86 9.38 10.20 High blood pressure 22.68 13.75 19.46 18.40 17.87 20.40 Cardiovascular disease 4.493 3.26 3.92 4.80 3.68 2.14 Smoking 17.84 10.26 16.11 32.24 7.48 0.81 Alcoholism 4.91 6.76 3.19 2.37 4.31 0.59 Anxiety/depression 3.92 7.46 12.43 6.07 9.76 8.50 No comorbidities 3.02 7.46 12.43 6.07 9.76 8.50 No comorbidities 3.40 3.4.10 38.13 46.01 58.39 RPS: Rehumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-D) cut-off point of greater than 0.8. <	Historical pain	57.78	20.51	35.32	47.54	23.32	17.44			
Physical disability (HAQ-DI) 7.76 15.15 14.23 6.64 13.05 12.34 Diabetes mellius 8.26 7.93 8.91 6.86 9.38 10.20 High bood pressure 22.68 13.75 19.46 18.40 17.87 20.40 Cardiovascular disease 4.93 3.26 3.92 4.80 3.68 2.14 Smoking 17.84 10.26 16.11 32.54 7.48 0.81 Anciehydepresion 4.91 6.76 3.19 2.37 4.31 0.59 No comorbidities 3.02 7.46 12.43 3.607 9.76 8.50 No comorbidities regional pain syndromes. Health Assessment Questionmaire-Disability Index (HAQ-DD) cut-off point of greater than 0.8. 58.39	Non-traumatic pain (7 days)	38.60	28.67	33.69	27.26	23.19	15.08			
Diabetes mellius 8.26 7.93 8.91 6.86 9.28 10.20 High blood pressure 22.68 13.75 19.46 18.40 17.87 20.40 Cardiovascular disease 4.93 3.26 3.92 4.80 3.68 2.14 Smoking 17.84 10.26 16.11 32.54 7.48 0.81 Alcoholism 4.91 6.76 3.19 2.37 4.31 0.62 Anxiety/depression 3.92 7.46 12.43 6.07 9.76 8.50 No comorbidities 38.03 43.36 34.10 38.13 46.01 58.39 RPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-DI) cut-off point of greater than 0.8. 58.39	Physical disability (HAQ-DI)	7.76	15.15	14.23	6.44	13.05	12.34			
High blood pressure 22.68 13.75 19.46 18.40 17.87 20.40 Cardiovascular disease 4.93 3.26 3.92 4.90 3.68 2.14 Smoking 17.84 10.26 16.11 32.54 7.48 0.81 Alcoholism 4.91 6.76 3.19 2.37 4.31 0.59 Anxiety/depression 3.92 7.46 12.43 6.07 9.76 8.50 No comorbidities 36.03 43.36 14.43 36.01 58.39 8.83 46.01 58.39 RPS: Rheumatic regional pain syndromes. Health Assessment Questionmaire-Disability Index (HAQ-DU) cut-off point of greater than 0.8. 58.39	Diabetes mellitus	8.26	7.93	8.91	6.86	9.38	10.20			
Cardiovascular disease 4.93 3.26 3.92 4.80 3.68 2.14 Smoking 17.84 10.26 16.11 32.54 7.48 0.81 Alcoholism 4.91 6.76 3.19 2.37 4.31 0.69 Anxiety/depression 3.92 7.46 12.43 6.07 9.76 8.50 No comorbidities 38.03 44.36 34.10 38.13 46.01 58.39 RPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (IAQ-DI) cut-off point of greater than 0.8 58.39	High blood pressure	22.68	13.75	19.46	18.40	17.87	20.40			
Smoking 17.84 10.26 16.11 32.34 7.48 0.81 Alcoholism 4.91 6.76 3.19 2.37 4.31 0.59 Anxiety/depression 3.92 7.46 12.43 6.07 9.76 8.50 No comorbidities 3.03 43.36 34.10 38.13 46.01 58.39 RPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-DU) cut-off point of greater than 0.8. 58.39	Cardiovascular disease	4.93	3.26	3.92	4.80	3.68	2.14			
Alcoholism 4.91 6.76 3.19 2.37 4.31 0.59 Anxiet/depression 3.92 7.46 12.43 6.07 9.76 8.50 No comorbidities 38.03 43.36 34.10 38.13 46.01 58.39 RPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (IAQ-DI) cut-off point of greater than 0.8. 58.39 58.50 58.50	Smoking	17.84	10.26	16.11	32.54	7.48	0.81			
Anxiety/depression 3.92 7.46 12.43 6.07 9.76 8.50 No comorbidities 38.03 44.36 34.10 38.13 46.01 58.39 RPS: Sheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (IAQ-DI) cut-off point of greater than 0.8. 58.39	Alcoholism	4.91	6.76	3.19	2.37	4.31	0.59			
No comorbidities 38.03 43.36 34.10 38.13 46.01 58.39 RRPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-DI) cut-off point of greater than 0.8. 58.39 58	Anxiety/depression	3.92	7.46	12.43	6.07	9.76	8.50			
RRPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-DI) cut-off point of greater than 0.8.	No comorbidities	38.03	43.36	34.10	38.13	46.01	58.39			
	RRPS: Rheumatic regional pain syndr	RPS: Rheumatic regional pain syndromes. Health Assessment Ouestionnaire-Disability Index (IHAO-DI) cut-off point of greater than 0.8.								

* Age and formal schooling show mean value (standard deviation)

Figure 2. Network and cluster analysis to describe groups with shared variables according to the syndemic framework in the non-indigenous population

215x279mm (300 x 300 DPI)

Figure 3.	Inequities and	vulnerabilities ir	RMDs: a	palimpsest	mode

re 3. Inequities and vulnerabilities in RMDs	: a palimpsest model	
Layer of Inequity	Vulnerabilities	Examples
Layer 5	Political vulnerabilities	Healthcare system
Layer 4	Social vulnerabilities	Lifestyle and Ethnic minorities
Layer 3	Psychological vulnerabilities	Mental illness
Layer 2	Biological vulnerabilities	Individual patient and disease characteristics
Layer 1	Genetic vulnerability	Genetic predispositions

A model of vulnerability in layers analyzes how the determinants of health at different levels-genetic, biological, psychological, social and politicalinteract over time, creating barriers that lead to health inequity.

Figure 3. Inequities and vulnerabilities in RMDs: a palimpsest model

452x290mm (236 x 236 DPI)

Supplementary Table. Comparison of sociodemographic characteristics, health coverage, rheumatic diagnosis, pain, disability and comorbidities between indigenous and non-indigenous groups from Ecuador, Mexico and Argentina

	Indigenous	Non-	Totals	р
	n (%)	indigenous		-
	4599 (50.00)	n (%)	n (%)	
		4599 (50.00)	9198 (100.00)	
Gender (female)	2788 (60.62)	2729 (59.34)	5517 (59.98)	0.217
Age (years), mean (SD)	42.90 (18.71)	42.98 (17.58)	42.94 (18.16)	0.163
Urban setting	832 (18.09)	3624 (78.80)	4456 (48.45)	< 0.001
Educational level, mean number of years				
(SD)	6.74 (5.17)	9.17 (5.15)	7.95 (5.30)	< 0.001
	Health coverage *			
Full	1351 (29.38)	551 (11.98)	1902 (20.68)	< 0.001
Partial	2536 (55.14)	2401 (52.21)	4937 (53.67)	< 0.01
Private	245 (5.33)	501 (10.89)	746 (8.11)	< 0.001
Other**	171 (3.72)	34 (0.74)	205 (2.23)	< 0.001
Join	t biomechanical stre	SS ***		
High	2162 (47.01)	1176 (25.57)	3338 (36.29)	< 0.001
Medium	534 (11.61)	503 (10.94)	1037 (11.27)	0.323
Low	1472 (32.01)	1574 (34.22)	3046 (33.12)	0.025
Unspecified	254 (5.52)	267 (5.81)	521 (5.66)	0.588
	Rheumatic disease	2		
Totals	1428 (31.05)	1521 (33.07)	2949 (32.06)	0.040
Osteoarthritis	616 (13.39)	334 (7.26)	950 (10.33)	< 0.001
Rheumatoid arthritis	104 (2.26)	80 (1.74)	184 (2.00)	0.087
Back pain	521 (11.33)	138 (3.00)	659 (7.16)	< 0.001
RRPS	142 (3.09)	895 (19.46)	1037 (11.27)	< 0.001
Musculoeskeletical disorders	170 (3.70)	83 (1.80)	253 (2.75)	< 0.001
Fibromyalgia	89 (1.94)	50 (1.09)	139 (1.51)	< 0.01
Other ****	26 (0.57)	21 (0.46)	47 (0.51)	0.559
	Pain			
Historical pain	1839 (39.99)	1487 (32.33)	3326 (36.16)	< 0.001
Non-traumatic pain (7 days)	819 (17.81)	1012 (22.00)	1831 (19.91)	< 0.001
Physical disability (Health As	sessment Questionn	aire-Disability Inde	x (HAQ-DI)	
$HAQ \ge 0.8$	308 (6.70)	375 (8.15)	683 (7.43)	< 0.01
	Comorbidities			
Diabetes mellitus	236 (5.13)	326 (7.09)	562 (6.11)	< 0.001
High blood pressure	528 (11.48)	855 (18.59)	1383 (15.04)	< 0.001
Cardiovascular disease	142 (3.09)	150 (3.26)	292 (3.17)	0.677
Smoking	332 (7.22)	697 (15.16)	1029 (11.19)	< 0.001
Alcoholism	643 (13.98)	198 (4.31)	841 (9.14)	< 0.001
Anxiety/depression	913 (19.85)	501 (10.89)	1414 (15.37)	< 0.001
No comorbidities	2261 (49.16)	1991 (43.29)	4252 (46.23)	< 0.001

* Missing data: 296 (6.44%) indigenous and 1112 (24.18%) non-indigenous (total 1408 (15.31%))

** Other: Traditional healthcare

*** Missing data:177 (3.85%) indigenous and 1079 (23.46%) non-indigenous (total 1256 (13.65%))

**** Others: Indigenous: 18 ankylosing spondilytis, 4 gout, 1 sclerodermia and 2 psoriasis. Non-indigenous: 2 ankylosing spondilytis, 14 gout, and 1 psoriasis.

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title	6
		or the abstract	
		(b) Provide in the abstract an informative and balanced summary of	6,7
		what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	8,10
-		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	10
Methods			
Study design	4	Present key elements of study design early in the paper	10
Setting	5	Describe the setting, locations, and relevant dates, including periods of	10.11
6		recruitment, exposure, follow-up, and data collection	- 7
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	11
I		methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross sectional study. Give the eligibility criteria and the sources	
		Cross-sectional study—Give the engineering chieffa, and the sources	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and	
		the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	11,12
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	12
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	14
Study size	10	Explain how the study size was arrived at	13
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	12
-		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	12.13.1
		confounding	, -,
		(b) Describe any methods used to examine subgroups and interactions	13
		(c) Explain how missing data were addressed	N/A
		(d) Cohort study—If applicable, explain how loss to follow-up was	10/11
		addressed	
		Case control study. If applicable, explain how matching of access and	
		cuse-control study—in applicable, explain now matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods	
		taking account of sampling strategy	
		(<i>e</i>) Describe any sensitivity analyses	13

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

to or or the terms only

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers	14
		potentially eligible, examined for eligibility, confirmed eligible, included in the	
		study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	14
data		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	17
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over	
		time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary	15-16
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	17,18,19
		and their precision (eg, 95% confidence interval). Make clear which confounders	
		were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for	19
		a meaningful time period	
Other analyses	17	Report other analyses done eg analyses of subgroups and interactions, and	20,21
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	21,22,23
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	23
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	23
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	24
Other informati	on		
			25
Funding	22	Give the source of funding and the role of the funders for the present study and,	25

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

INEQUITY AND VULNERABILITY IN LATIN AMERICAN INDIGENOUS AND NON-INDIGENOUS POPULATIONS WITH RHEUMATIC DISEASES :A SYNDEMIC APPROACH

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069246.R1
Article Type:	Original research
Date Submitted by the Author:	17-Feb-2023
Complete List of Authors:	Granados, Ysabel; Hospital "Dr. Manuel Núñez Tovar," Gastelum Strozzi, Alfonso; Universidad Nacional Autonoma de Mexico, ICAT Alvarez-Nemegyei, Jose; Hospital Star Medica Merida Quintana, Rosana; Hospital Provincial de Rosario, Reumatology Julian-Santiago, Flor; Universidad Nacional Autonoma de Mexico Santos, Ana; Universidad de La Sabana, Rheumatology Guevara-Pacheco, Sergio; Universidad de Cuenca Loyola-Sanchez, Adalberto; University of Alberta Faculty of Medicine & Dentistry Goycochea-Robles, Maria Victoria; Universidad Nacional Autonoma de Mexico, Grupo Cochrane Juarez, Vicente; Hospital Señor del Milagro Garza-Elizondo, Mario Alberto; Hospital Universitario "Dr. José Eleuterio González" de la Universidad Autónoma de Nuevo León, Internal Medicine, Rheumatology Service Rueda, Juan; Universidad de La Sabana, Department of Rheumatology Burgos-Vargas, Ruben; Hospital General de Mexico Dr Eduardo Liceaga, Rheumatology Londoño, John; Universidad de La Sabana, Rheumatology; Hospital Militar Central, Rheumatology Pons-Estel, Bernardo; Centro Regional de Enfermedades Autoinmune y Reumáticas (CREAR) Pelaez-Ballestas, Ingris; Hospital General de México Dr Eduardo Liceaga, Rheumatology
Primary Subject Heading :	Rheumatology
Secondary Subject Heading:	Epidemiology, Global health, Public health
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, RHEUMATOLOGY, STATISTICS & RESEARCH METHODS
	·

SCHOLARONE"
Manuscripts
Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

2 3	1	INEQUITY AND VULNERABILITY IN LATIN AMERICAN INDIGENOUS AND
4 5 6	2	NON-INDIGENOUS POPULATIONS WITH RHEUMATIC DISEASES:
7 8 9	3	A SYNDEMIC APPROACH
10 11 12 13	4	1. Ysabel Granados, MD.
14 15 16	5	ORCID: 000-0002-7148-4060
16 17 18 19	6	e-mail: <u>ymgranados@gmail.com</u>
20 21 22	7	2. Alfonso Gastelum-Strozzi, PhD,
23 24 25 26	8	ORCID: 0000-0001-9668-5822
27 28 29	9	e-mail: <u>alfonso.gastelum@icat.unam.mx</u>
30 31 32	10	3. José Alvarez-Nemegyei, MD, PhD.
33 34 35	11	ORCID: 0000-0002-5499-5280
36 37 38	12	e-mail: <u>nemegyei@yahoo.com.mx</u>
39 40	13	4. Rosana Quintana, MD, PhD.
41 42 43	14	ORCID: 0000-0003-0643-2755
44 45 46	15	e-mail: <u>rosanaquintana@gmail.com</u>
47 48 49	16	5. Flor Julian-Santiago, MD, PhD
50 51 52	17	ORCID: 0000-0001-6137-045X
53 54 55 56 57	18	e-mail: <u>maifjs@hotmail.com</u>
58 59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
2
3
4
5
6
7
, 0
ð
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
27
20
28
29
30
31
32
22
33
34
35
36
37
20
38
39
40
41
<u>4</u> 2
42
43
44
45
46
47
-T/ 40
4ð
49
50
51
52
52
55
54
55
56
57
50
20
59
60

20	ORCID: ORCID 0000-0002-1973-8043
21	e-mail: ana.santos@unisabana.edu.co
22	7. Sergio Guevara, MD, PhD.
23	ORCID: 0000-0001-5798-6200
24	e-mail: <u>sergio_guevarap@yahoo.com</u>
25	8.Adalberto Loyola-Sanchez A, MD, PhD.
26	ORCID: 0000-0002-0082-2907
27	e-mail: adalbert@ualberta.ca
28	9. María Victoria Goycochea-Robles, MD, MSc.
29	ORCID: 0000-002-92488511
30	e-mail: mavis.goycochea@gmail.com
31	10. Vicente Juárez, MD.
32	ORCID: 0000-0003-3865-087X
33	e-mail: <u>vtejuarez@gmail.com</u>
34	11. Mario Garza-Elizondo, MD, PhD
35	ORCID: 0000-0002-8992-4714
36	e-mail: mariogarz@hotmail.com

6. Ana María Santos, PhD

ן ר		
2 3 4	37	12. Juan Rueda, MD, PhD candidate.
6 7	38	ORCID: 0000-0002-6263-2914
8 9 10	39	e-mail: juan.rueda@unisabana.edu.co
11 12 13	40	13. Ruben Burgos-Vargas, MD.
14 15 16	41	ORCID: 0000-0005-1058-8955
17 18 19	42	e-mail: <u>burgosv@gmail.com</u>
20 21 22	43	14. John Londoño, MD, PhD.
23 24 25	44	ORCID: 0000-0003-1074-644X
26 27 28	45	e-mail: john.londono@unisabana.edu.co
29 30 31	46	15. Bernardo A. Pons-Estel, MD.
32 33 34	47	ORCID: 0000-0003-2518-0266
35 36 37	48	e-mail: <u>bponsestel@gmail.com</u>
38 39 40	49	16. Ingris Peláez-Ballestas, MD, PhD ¹
41 42 43	50	ORCID: 0000-0001-5188-7375
44 45 46	51	e-mail: <u>pelaezin@gmail.com.</u>
47 48 49	52	Pons-Estel B.A and Peláez-Ballestas I. on behalf of the Latin American Study Group of
50 51	53	Rheumatic Diseases in Indigenous Peoples (GLADERPO).
52 53 54	54	Affiliations:
55 56 57	55	1. Hospital "Dr. Manuel Núñez Tovar," Maturín, Monagas, Venezuela.
58 59		

- 56 2. Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México,
- 57 Mexico City, Mexico.
- 58 3. Rheumatology Staff. Hospital Star Médica. Mérida, Yucatán, México
- 59 4. Centro Regional de Enfermedades Autoinmunes y Reumáticas (CREAR). Rosario, Santa
- 60 Fe, Argentina.
- 61 5. Independent researcher, Oaxaca, Mexico

62 6. Grupo Espondiloartropatias .Universidad La Sabana, Bogotá, Colombia.

- 63 7. Universidad de Cuenca, Cuenca, Ecuador.
- 64 8. Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- 65 9. Grupo Cochrane-UNAM- Hospital ABC Santa Fe, Ciudad de Mexico
- 66 10. Hospital Señor del Milagro, Salta, Argentina.
- 11. Hospital Universitario "José Eleuterio Gonzalez," Monterrey, Nuevo León, Mexico.
- 68 12. Grupo Espondiloartropatias.Universidad La Sabana, Bogotá, Colombia.
- 69 13. Rheumatology Unit, Hospital General de México "Dr. Eduardo Liceaga," Mexico City,
 70 Mexico.
- 71 14. Grupo Espondiloartropatias. Universidad La Sabana, Bogotá, Colombia.
- 72 15. Centro Regional de Enfermedades Autoinmunes y Reumáticas (CREAR). Rosario,
 73 Santa Fe, Argentina.
- 16. Rheumatology Unit, Hospital General de México "Dr. Eduardo Liceaga," Mexico City,
- 75 Mexico.

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

analysis.

Word count: 3850.

and their interactions.

using the syndemic approach.

Abstract.

Corresponding author

1 2 BMJ Open

Pelaez-Ballestas I., Ph.D. Rheumatology Unit, Hospital General de México "Dr. Eduardo

Keywords: Rheumatic diseases, inequity, vulnerability, Syndemics, Latin America, network

Liceaga." Dr. Balmis 148, Colonia Doctores, 06726, Mexico City. E-mail:

Running head: Inequity in Latin American people with rheumatic disease

heal

Syndemics are a framework that documents health inequities and vulnerabilities in

populations with rheumatic diseases. Compared to other approaches, syndemics are able to

conjunctly consider epidemiological, biological, sociodemographic and economic factors,

Objective. To estimate health inequity and vulnerability among Indigenous and non-

Indigenous populations with rheumatic and musculoskeletal disease (RMD) in Latin America

Design: This is a secondary analysis of a previously published large-scale study on the

pelaezin@gmail.com. Phone: +52 (55) 5004-3849.

3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

prevalence of RMD.	
For peer review only - http://bmjopen.bmj.com/site/about/guidelin	es.xhtml

96 Setting: Studies carried out in five Latin American countries (Argentina, Colombia, Ecuador,
97 Mexico and Venezuela). Health inequity and vulnerability in RMD were identified through
98 a syndemic approach using network and cluster analysis.

99 Participants. A total of 44,560 individuals were studied: 29.78% self-identified as
100 Indigenous, 60.92% were female, the mean age was 43.25 years. Twenty clusters were
101 identified in the Indigenous population and seventeen in the non-Indigenous population.

Results. The variables associated with RMD among Indigenous populations were rurality, public health system, high joint biomechanical stress, greater pain, disability and alcoholism; and among non-Indigenous people they were being a woman, urban origin, older age, private health system, joint biomechanical stress, greater pain and disability. We identified different health inequities among RMD patients (i.e. lower educational attainment, more comorbidities), associated with factors such as Indigenous self-identification and rural residence.

Conclusions. A syndemic approach enables us to identify health inequities in RMD, as
shown by higher prevalence of comorbidities, disability and socioeconomic factors like lower
educational attainment. These inequities exist for the overall population of patients with
RMD, though it is more evident in Indigenous groups with added layers of vulnerability.

- Strengths and limitations of this study
 - Syndemics are a framework using strategies from artificial intelligence to perform
 complex analyses that document health inequities.
 - The analysis of clusters and networks groups individuals by variables to document
 inequity, the principal objective of this study.

1		
2		
3	118 • T	The cross-sectional nature of this study is a limitation to establish causality.
4		5
5	119	
6	115	
7		
8	120	
9		
10		
11		
12		
17		
14		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32 22		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
4/ 10		
40 70		
47 50		
50		
52		
53		
54		
55		
56		
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

122 Introduction

Rheumatic and musculoskeletal diseases (RMD) are a significant cause of morbidity and
mortality worldwide [1]; they produce substantial socioeconomic impact and deterioration of
quality of life in patients, who represent approximately 10% of the general population [2].
Since 2000, the World Health Organization (WHO) has recognized RMD as a relevant health
problem, due to the increase in secondary disability and a greater demand for health resources
[3].

There is now a greater need to define global strategies for the timely access of patients with
RMD to health systems [4], including the evaluation of social determinants, such as gender,
education, work, income level, ethnicity and place of residence [5].

Latin America is an extensive geographic area made up of 26 countries, characterized by multiculturalism and great contrasts in political, social and economic aspects [4,6]. Significant social inequity has been documented, with marked disparities in health coverage for individuals and social groups; these inequities are observed within and among countries in the region [7]. Epidemiological studies have documented a prevalence of RMD between 23% and 46.5% in Latin America, with more aggressive presentations (higher morbidity and mortality) among Indigenous populations. Genetic predisposition to systemic lupus erythematosus (SLE) has also been identified among Indigenous groups [8], as well as a high prevalence of rheumatoid arthritis (RA) among Indigenous Mayan groups of Yucatan, Mexico [9] and the Qom of Argentina [10,11].

Despite the high prevalence of RMD in the Latin American region, these diseases continueto have a low priority in the planning of health policies [4]. Overall, the healthcare system in

Page 11 of 40

BMJ Open

Latin America is highly fragmented and disconnected. For rheumatology care specifically, 33.5% of rheumatologists work in public/government hospitals, 28.8% in private practice. 20.8% in private hospitals, and 15.5% in university hospitals, most of them distributed in large urban areas, with a significant lack in small cities and none in rural areas [12-16]. These differences in disease prevalence and distribution of health resources which limit access to rheumatology care in Latin America can be understood as health inequities. Health inequity is not synonymous with inequality. Inequity implies the idea of injustice and of lack of actions to avoid *preventable* differences. On the other hand, inequality describes differences in health outcomes that are not fundamentally unfair [12]. Health inequity is deeply connected to vulnerability. From a biomedical perspective, vulnerability means being susceptible to certain diseases or to environmental risk. However, vulnerability can also be understood as a product of the interaction between available resources (personal, family, community, cultural, economic, institutional), the sociocultural context of the patient, structural elements, and exposure to risk [12,17–20]. Therefore, vulnerability is a result of health inequity.

To document inequity in health, the syndemic model has proven useful to analyze the interaction of disease with social determinants that condition inequality in health, and how these lead to increased physical and environmental vulnerability [17,18,21,22]. Syndemics aggregate the interaction of two or more concurrent diseases, as well as the sociocultural and healthcare contexts which can exacerbate the negative effects of this interaction on the health of individuals, communities, and societies [21]. The syndemic framework evaluates the interaction of any type of disease in conditions of health inequality caused by poverty, stigmatization, stress or structural violence [21–23]. Thus, syndemics encompass social determinants, vulnerabilities, and inequities and inequalities in health as well.

Previous studies have shown that syndemics are a good comprehensive model to document inequity and inequality in health. In a study of RMD in Indigenous populations in Latin America, as well as a study of patients with low back pain, disease is associated with being a woman, belonging to an indigenous population, and having low educational attainment. It is also exacerbated by the presence of comorbidities, especially those within the mental health domain [8,24].

Given the intricacy of a syndemic approach, conventional statistical methodologies are insufficient. Instead, using strategies from graph theory (network analysis) and machine learning (cluster analysis) is necessary to perform complex analyses that document health inequities comprehensively. The syndemic approach is useful to identify health inequities and vulnerabilities in different population groups.

We hypothesize that there is a syndemic in Latin American populations suffering from rheumatic diseases, associated with comorbidities such as diabetes and hypertension, and living in a fragmented health care context. We also hypothesize that this phenomenon is more significant in vulnerable populations such as Indigenous peoples. Therefore, we proposed the following study to measure syndemics comparatively between Indigenous and non-Indigenous populations with RMD in Latin America.

185 MATERIALS AND METHODS

Design

187 This is a secondary analysis, based on multilevel network analysis using a syndemic
188 framework, of a previously published large-scale cross-sectional study on the prevalence of
189 RMD in five Latin American countries.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3 4	190	Data sources
5 6	191	We used a database compiled by GEEMA (Grupo de Estudios Epidemiológicos de
/ 8 9	192	Enfermedades Músculo Articulares), COPCORD-LATAM (Community Oriented Program
10 11	193	for Control of Rheumatic Diseases-Latin America) and GLADERPO (Grupo Latino
12 13	194	Americano de Estudios de Enfermedades Reumáticas en Pueblos Originarios).
14 15 16	195	GLADERPO recorded information on the Qom and Wichí Indigenous populations of
17 18 19	196	Argentina [10,25], Saraguro of Ecuador [26], Yucatec-Maya and Mixtec of Mexico [8,9] and
20 21	197	the Chaimas, Kariñas and Warao of Venezuela [27].
22 23	198	COPCORD-LATAM was developed with the results of epidemiological studies conducted
24 25 26	199	on the non-Indigenous populations of Colombia [28], Ecuador [29], Mexico [30] and
20 27 28	200	Venezuela [31], using COPCORD (Community Oriented Program for Control of Rheumatic
29 30	201	Diseases) methodology, culturally and linguistically adapted to the different communities
31 32 33	202	studied, and subsequently validated in each country.
34 35	203	The COPCORD methodology consists of trained health personnel administering a
36 37	204	questionnaire house to house, which identifies patients with pain of non-traumatic origin,
38 39 40	205	historical and in the last seven days. The participation of certified rheumatologists allowed
41	206	for the diagnosis of RMDs [29–33].
42 43 44	207	The same measurements were collected in all the studies: sociodemographic variables, joint
45 46	208	biomechanical stress, comorbidities, physical disability and accessibility to local health care.
47 48 49	209	Sociodemographic variables such as age, gender, self-defined ethnicity according to the
50 51	210	laws of each country (Indigenous and non-Indigenous), formal schooling (numbers of years
52 53 54 55 56	211	studied in the official education system) and place of residence (urban/rural).

Level of joint biomechanical stress was classified according to self-reported occupation. Individuals were asked for a visual recreation of their activity, according to the degree of effort and the body regions involved. Following a survey on the level of physical load repetitiveness, each occupation was classified into three levels of joint biomechanical stress in the workplace: high (e.g. farmers, homemakers, machine operators), medium (e.g. artisans, drivers, technicians) and low (e.g. merchants, professionals, students, teachers, retirees). **Comorbidities** were self-reported [32,33], while physical disability was measured with the Health Assessment Questionnaire-Disability Index (HAQ-DI), validated for each country and with an established cut-off point of greater than 0.8 [34]. Accessibility to the local healthcare system was classified by conducting an exercise of comparisons and equivalences among the researchers from the five participating countries. Considering all characteristics of the healthcare systems, the three subgroups used to classify accessibility were: *partial coverage*, involving a public system that covers physician appointments, laboratory tests and basic but not high specialty medications; *full coverage*, involving a social security system that covers all health expenses; and *private coverage*, where patients pay fully for their care.

229 Analysis

230 A multi-phase analysis was performed.

Phase 1. We applied inferential statistics (i.e., bivariate analysis) to explore associations
between ethnicity (Indigenous or non-Indigenous) and country of origin, and
sociodemographic characteristics (i.e., age, gender, formal schooling, urban/rural residence),

BMJ Open

rheumatic diagnoses, comorbidities, disability (HAQ-DI) and levels of accessibility (partial,total and private coverage).

Phase 2. We performed simple logistic regression models to identify factors (i.e.,
sociodemographic, comorbidities, disability, accessibility, and joint biomechanical stress)
associated with RMD diagnosis (i.e., present or absent) as a dependent variable by ethnicity
(Indigenous vs. non-Indigenous). We estimated odds ratios (OR), along with 95% confidence
intervals (CI 95%) and significance (p).

Phase 3. We used a network analysis approach [35] to generate groups with similar characteristics (e.g., sociodemographic, country, comorbidities, diagnoses, etc.) called clusters. These clusters helped to determine the negative characteristics associated with disease and disability using the syndemic framework. The network analysis method requires the definition of a characteristic that allows creation of connections between subjects; a measure of similarity was defined to create these. The similarity measure determined the relationships between the different subjects within the database. The measure of similarity evaluated the number of similarities between two subjects regarding the results of their evaluations. To construct the first part of the similarity measure, a vector was defined with the following variables: a) accessibility level, b) level of joint biomechanical stress, and c) urban/rural residence. Using the cosine similarity method, this vector was used to calculate a similarity index for each individual concerning the rest of the population [36]. The final similarity index was obtained by applying a weighted difference by years of education between each individual.

The similarity index was used to determine an individual's degree of similarity to the rest of the population and to build the relations between individuals. In the network definition, each individual is a node; an axis of relations is generated when the similarity index between two

individuals is greater than the average of the similarity indices plus the standard deviation of
the whole population [37]. The network obtained is simulated in Gephi [38] and the final
position of the nodes or individuals is used to define the new groups using the DBSCAN
method [39].

Due to the complexity of the representation of the clusters, we conducted a consensus process among all researchers to select the most relevant clusters regarding socio-economic and clinical impact, which included healthcare access, disability, educational level, and type of RMD. Selected clusters were further analyzed in network analysis, including the following factors in a hierarchical order of importance: 1) prevalence of RMD, 2) prevalence of rheumatoid arthritis (RA), and 3) the number of individuals comprising the cluster. All researchers assigned every cluster a weighted score for each of the three selected variables. Finally, six clusters were selected per group (i.e., Indigenous and non-Indigenous) according to their amount of representation of health inequity factors.

Phase 4. We conducted a sensitivity analysis to confirm no biases using a randomly selected weighted sample of Indigenous/non-Indigenous populations from the three countries that studied both at the same time (Ecuador, Mexico, and Venezuela), and two countries that only had samples of Indigenous (Argentina) or non-Indigenous (Colombia) populations. The clusters obtained through this analysis were defined by factors such as living in a rural setting, lower health coverage, and greater disability, which went beyond our initial Indigenous/non-Indigenous classification and impacted the management of rheumatic diseases. These emerging differences can be used to document inequity insofar as they highlight the variables which negatively affect the health of people with RMD.

17 of 40	BMJ Open									
279	279 Patient and Public Involvement									
280	Patients or the public WERE	NOT involve	d in the desi	gn or conduct	, or report					
281	dissemination plans of our research. The members of the public were involved at origin									
282	stages of each study including as cultural liaisons. We disseminated the main results to al									
283	participants and health authoritie	es to improve	health conditi	ons.						
284										
285	RESULTS									
286	A total of 44,560 individuals f	rom five Lati	n American (countries (Arg	entina, Col					
207	Equador Maying and Vanazuals	wara studia	d Ofthasa 2	0.780/(12.260)) colf identi					
287	Ecuador, Mexico and Venezuela) were studied. Of these, 29.78% (13,269) self-identified as									
288	Indigenous and 27,145 (60.92%) were female, with an average age of 43.25 (SD = 18.02									
289	years and a mean of 8.06 (SD = 5.02) years of schooling. RMD was diagnosed in 13,528									
290	(30.36%) individuals. Rheumatic regional pain syndromes (RRPS) was the rheumat									
291	diagnosis with the highest prevalence (6100, 13.69%) followed by osteoarthritis (3690									
292	8.28%), while RA was reported in (877, 1.97%) individuals (Table 1).									
293 294	Table 1. Comparison of sociodemo diagnosis, pain, disability and come	graphic charac orbidities betw	teristics, count een Indigenous	ry, health covera and non-Indiger	ge, rheumat nous groups					
		Indigenous n = 13269 (29.78)	Non- Indigenous n = 31291 (70.22)	Total n = 44560 (100.00)	р					
	Gender (female)	8010 (60.37)	19135 (61.15)	27145 (60.92)	0.123					
	Likon setting	42.23 (18.17)	43.69 (17.94)	43.25 (18.02)	<0.001					
		5877 (29.22)	24331 (77.70)	28208 (03.30)	<0.001					
	Educational level, mean number of years (SD)	7.13 (5.07) Countries	8.46 (4.95)	8.06 (5.02)	<0.001					
51 Argentina $2295 (17.30) 0 (0.00) 2295 (5.15)$										
	Ecuador	2682 (20.21)	4858 (15.53)	7540 (16.92)	<0.001					
	Mexico	6525 (49.17)	16085 (51.40)	22610 (50.74)	< 0.001					
	Venezuela	1533 (11.55)	3894 (12.44)	5427 (12.18)	< 0.01					
	Full	Health coverage 3481 (26 23)	4493 (14 36)	7974 (17 89)	< 0.001					
	Partial	7441 (56.08)	18314 (58.53)	25755 (57.80)	< 0.001					
	For peer review only -	http://bmjopen	.bmj.com/site/a	bout/guidelines.	khtml					

	n = 13269 (29.78)	Indigenous n = 31291 (70.22)	n = 44560 (100.00)	r
Gender (female)	8010 (60.37)	19135 (61.15)	27145 (60.92)	0.123
Age (years), mean (SD)		, <u>,</u>	, , , , , , , , , , , , , , , , , , ,	
	42.23 (18.17)	43.69 (17.94)	43.25 (18.02)	< 0.001
Urban setting	3877 (29.22)	24331 (77.76)	28208 (63.30)	< 0.001
Educational level, mean number of years (SD)	7.13 (5.07)	8.46 (4.95)	8.06 (5.02)	<0.001
	Countries			
Argentina	2295 (17.30)	0 (0.00)	2295 (5.15)	< 0.001
Colombia	234 (1.76)	6454 (20.63)	6688 (15.01)	< 0.001
Ecuador	2682 (20.21)	4858 (15.53)	7540 (16.92)	< 0.001
Mexico	6525 (49.17)	16085 (51.40)	22610 (50.74)	< 0.001
Venezuela	1533 (11.55)	3894 (12.44)	5427 (12.18)	< 0.01
	Health coverage	*		
Full	3481 (26.23)	4493 (14.36)	7974 (17.89)	< 0.001
Partial	7441 (56.08)	18314 (58.53)	25755 (57.80)	< 0.001

Private	795 (5.99)	1741 (5.56)	2536 (5.69)	0.0		
Other**	330 (2.49)	221 (0.71)	551 (1.24)	<0.		
	Joint biomechanical s	stress ***	· · ·			
High	5000 (37.68)	10199 (32.59)	15199 (34.11)	<0.		
Medium	1538 (11.59)	4720 (15.08)	6258 (14.04)	<0.		
Low	4014 (30.25)	9213 (29.44)	13227 (29.68)	0.0		
Unspecified	1815 (13.68)	2784 (8.90)	4599 (10.32)	<0.		
Rheumatic disease						
Totals	4012 (30.24)	9516 (30.41)	13528 (30.36)	0.7		
Osteoarthritis	1433 (10.80)	2257 (7.21)	3690 (8.28)	<0.		
Rheumatoid arthritis	278 (2.10)	599 (1.91)	877 (1.97)	0.2		
Back pain	1548 (11.67)	1281 (4.09)	2829 (6.35)	<0.		
RRPS	505 (3.81)	5595 (17.88)	6100 (13.69)	<0.		
Musculoskeletal disorders	521 (3.93)	664 (2.12)	1185 (2.66)	<0.		
Fibromyalgia	181 (1.36)	212 (0.68)	393 (0.88)	<0		
Other ****	45 (0.34)	118 (0.38)	163 (0.37)	0.6		
Pain						
Historical pain	5408 (40.76)	11780 (37.65)	17188 (38.57)	<0		
Non-traumatic pain (7 days)	2258 (17.02)	8024 (25.64)	10282 (23.07)	<0		
Physical disability (Heal	th Assessment Questic	onnaire-Disability Ind	ex (HAQ-DI)	•		
HAQ-DI ≥ 0.8	761 (5.74)	2558 (8.17)	3319 (7.45)	<0.		
	Comorbiditie	S	• • • •			
Diabetes mellitus	814 (6.13)	2279 (7.28)	3093 (6.94)	<0		
High blood pressure	1649 (12.43)	5613 (17.94)	7262 (16.30)	<0.		
Cardiovascular disease	415 (3.13)	1106 (3.53)	1521 (3.41)	0.0		
Smoking	1138 (8.58)	4996 (15.97)	6134 (13.77)	<0		
Alcoholism	1751 (13.20)	1068 (3.41)	2819 (6.33)	<0		
Anxiety/depression	2304 (17.36)	3727 (11.91)	6031 (13.53)	<0		
No comorbidities	6391 (48,16)	14450 (46.18)	20841 (46.77)	<0		

****** Other: Traditional healthcare

*** Missing data: 902 (7.01%) indigenous and 4375 (13.80%) not indigenous.

**** Others: Indigenous: 29 ankylosing spondylitis, 9 gout, 4 scleroderma and 3 psoriasis. Non-Indigenous: 39 ankylosing spondylitis, 74 gout, 1 scleroderma and 4 psoriasis.

> A lower urban origin (18.71%) and less years of formal schooling (6.74, SD = 5.71) were observed in the Indigenous population, while the non-Indigenous population had a predominance of private coverage (10.89%). High joint biomechanical stress (47.01%) and historical pain (39.99%) were more frequent in Indigenous populations. The prevalence of RMD was similar between populations studied; RA was more prevalent in Indigenous people (2.26% vs 1.74%), but not significantly. Non-Indigenous people had greater disability (8.15% with HAQ \geq 0.8) and higher prevalence of diabetes mellitus, high blood pressure and

BMJ Open

smoking (7.09%, 18.59% and 15.16%). Among Indigenous people, alcohol consumption and anxiety/depression were more prevalent (13.98% and 19.55%) (see supplementary table). In terms of the sub-analysis by country, Argentina had the youngest individuals (35.98, SD:=14.25); Ecuador and Colombia recorded a higher level of schooling (9.31, SD= 5.49) and a higher prevalence of RMD (47.69% and 40.76%); Argentina and Mexico had the highest prevalence of RA (3.01% and 2.22%); Colombia had a higher prevalence of historical and non-traumatic pain (73.95% and 43.94%); and Ecuador had the highest number of disabled people (8.70% with HAQ \geq 0.8) (Table 2).

Table 2. Comparison of sociodemographic characteristics, health coverage, rheumatic diagnosis,
pain, disability, and comorbidities between populations of five Latin American countries.

	Argentina	Colombia n (%)	Ecuador n (%)	Mexico	Venezuela n (%)	Totals* n (%)	р
	n (%)			n (%)			
	n = 2295 (5.15)	n = 6688 (15.01)	n = 7540 (16.92)	n = 22610 (50.74)	n = 5427 (12.18)	n = 44560 (100.00)	
Ethnicity (Indigenous)	2295 (100.00)	234 (3.50)	2682 (35.57)	6525 (28.86)	1533 (28.25)	13269 (29.78)	< 0.001
Gender (female)	1393 (60.70)	4280 (64.00)	4590 (60.88)	13634 (60.30)	3248 (59.85)	27145 (60.92)	< 0.001
Age (years), mean (SD)	35.98 (14.25)	46.41 (18.35)	43.39 (18.60)	43.08 (17.93)	42.98 (17.63)	43.25 (18.02)	< 0.001
Urban setting	0 (0.00)	6688 (100.00)	3384 (44.88)	14242 (62.99)	3894 (71.75)	28208 (63.30)	< 0.001
Educational level, mean							
number of years (SD)	5.43 (3.60)	9.19 (4.00)	9.31 (5.49)	7.41 (4.98)	8.77 (5.27)	8.06 (5.02)	< 0.001
			Health coverag	e *			
Total	2295 (100.00)	6527 (97.60)	5453 (72.32)	17114 (75.70)	5427 (100.00)	36816 (82.62)	
Full	29 (1.26)	1920 (28.71)	3148 (41.75)	2877 (12.72)	0 (0.00)	7974 (17.89)	< 0.001
Partial	2053 (89.46)	4465 (66.76)	405 (5.37)	13674 (60.48)	5158 (95.04)	25755 (57.80)	< 0.001
Private	183 (7.97)	39 (0.58)	1482 (19.66)	563 (2.49)	269 (4.96)	2536 (5.69)	< 0.001
Other**	30 (1.31)	103 (1.54)	418 (5.54)	0 (0.00)	0 (0.00)	551 (1.24)	< 0.001
		J	oint biomechanical s	tress ***			
Totals	1698 (74.00)	6686 (99.97)	7440 (98.67)	20253 (89.58)	3206 (59.08)	39283 (88.16)	
High	420 (18.30)	3511 (52.50)	3382 (44.85)	6667 (29.49)	1219 (22.46)	15199 (34.11)	< 0.001
Medium	159 (6.93)	1569 (23.46)	516 (6.84)	3438 (15.21)	576 (10.61)	6258 (14.04)	< 0.001
Low	120 (5.23)	1604 (23.98)	3510 (46.55)	6684 (29.56)	1309 (24.12)	13227 (29.68)	< 0.001
Unspecified	999 (43.53)	2 (0.03)	32 (0.42)	3464 (15.32)	102 (1.88)	4599 (10.32)	< 0.001
		-	Rheumatic dise	ase	-		
Totals	705 (30.72)	2726 (40.76)	3596 (47.69)	5092 (22.52)	1409 (25.96)	13528 (30.36)	< 0.001
Osteoarthritis	88 (3.83)	521 (7.79)	470 (6.23)	1797 (7.95)	814 (15.00)	3690 (8.28)	< 0.001
Rheumatoid arthritis	69 (3.01)	84 (1.26)	120 (1.59)	501 (2.22)	103 (1.90)	877 (1.97)	< 0.001
Back pain	460 (20.04)	237 (3.54)	474 (6.29)	1357 (6.00)	301 (5.55)	2829 (6.35)	< 0.001
RRPS	41 (1.79)	2726 (40.76)	2671 (35.42)	461 (2.04)	201 (3.70)	6100 (13.69)	< 0.001
Musculoskeletal							
disorders	50 (2.18)	0 (0.00)	62 (0.82)	1013 (4.48)	60 (1.11)	1185 (2.66)	< 0.001
Fibromyalgia	3 (0.13)	27 (0.40)	214 (2.84)	126 (0.56)	23 (0.42)	393 (0.88)	< 0.001
Other ****	2 (0.09)	26 (0.39)	32 (0.42)	80 (0.35)	23 (0.42)	163 (0.37)	0.179
			Pain				
Historical pain	938 (40.87)	4946 (73.95)	3420 (45.36)	6141 (27.16)	1743 (32.12)	17188 (38.57)	< 0.001
Non-traumatic pain (7 days)	402 (17.52)	2939 (43.94)	1525 (20.23)	4204 (18.59)	1212 (22.33)	10282 (23.07)	<0.001

3			Physic	al disability (Health	Assessment	Questionna	ire-Disability Index	(HAO-DI)		
4		$HAQ \ge 0.8$	95 (4.14)	400 (5.98)	656 (8.70)	1	741 (7.70)	427 (7.87)	3319 (7.45)	< 0.001
5			1	1	Come	orbidities			1	
6		Diabetes mellitus	125 (5.45)	428 (6.40)	382 (5.07)	1	898 (8.39)	260 (4.79)	3093 (6.94)	<0.001
7	-	High blood pressure	3/9 (16.51)	1591 (23.79)	1046 (13.8	57) 3	$\frac{0/8(13.61)}{71(2.08)}$	$\frac{1168(21.52)}{221(4.07)}$	/262 (16.30)	<0.001
0	F	Smoking	497 (21.66)	2409 (36 02)	1587 (21.0	15) 1	(2.08)	<u>561 (10 34)</u>	6134 (13 77)	<0.001
0		Alcoholism	379 (16.51)	0 (0.00)	470 (6.23)	1	523 (6.74)	447 (8.24)	2819 (6.33)	<0.001
9		Anxiety/depression	123 (5.36)	1463 (21.88)	1843 (24.4	4) 2	185 (9.66)	417 (7.68)	6031 (13.53)	< 0.001
10		No comorbidities	882 (38.43)	2483 (37.13)	2460 (32.6	(3) 1	2471 (55.16)	2545 (46.90)	20841 (46.77)	< 0.001
11	320	* Missing data: 77	44 (17.38)							
12 13	321	**Other: Tradition	nal healthcare							
14 15	322	*** Missing data: 5	277 (11.84)							
16 17	323	**** Others: Ankyl	osing spondylitis, go	ut, scleroderma, pso	riasis.					
18	324									
19 20 21	325									
21 22 23	326	A logistic reg	gression analys	sis was perfor	rmed by	ethnicity	7. In the Indig	genous popu	lation, the	
24 25	327	variables sign	nificantly asso	ciated with R	MD diag	nosis w	ere living in a	a rural settin	g, younger	
26 27 28	328	age, relying	on the public	health systen	n for trea	atment,	high levels o	of joint bior	nechanical	
29 30	329	stress, greate	er pain and g	reater disabil	lity. In t	urn, th	e variables a	associated w	vith RMD	
31 32	330	diagnosis in t	he non-Indige	nous populat	ion were	being a	woman, livi	ng in an urb	an setting,	
33 34 35	331	older age, rely	ying on the priv	vate sector for	r treatmei	nt, more	frequent joir	nt biomechar	nical stress	
36 37	332	regardless of	the level, gr	eater pain, g	reater di	sability	and less as	sociation w	ith having	
38 39 40	333	diabetes mell	itus (Table 3).							
40 41 42	334									
43 44	335									
45 46	336									
47	337	Table 3. Logis	tic regression. I	Dependent vari	iable: a rł	neumatio	disease. Inde	pendent varia	ibles:	
48	338	gender, place of	of residence, ag	e, schooling, h	ealth cove	erage, bi	omechanical s	tress, pain, fi	unctional	
49	339	capacity, and c	comorbidities.	-		-		-		
50		1 57								
51]	Indigenous		Non-Indi	genous		
52				OD (050/	CI two		OR (050/ CI	VO		
53					ed)	р	sided)	Р Р		
54		Г	Intercent	0.02.00	1 - 0.03)	< 0.01	0 10 (0 08 - 0 1	2) < 0.01		
55			Gender (female)	0.02 (0.0		~ 0.01	0.10 (0.08 - 0.1	~ 0.01		
56			Genuer (Tennale)	1.10 (0.9	6 - 1.25)	0.164	1.19 (1.11 - 1.2	7) < 0.01		
57										
58										
59									4	
60			For peer review	only - http://bm	njopen.bm	j.com/sit	e/about/guidel	ines.xhtml	\mathbf{T}_{i}	

BMJ Open

Age (years)	0.49 (0.41 - 0.59)	< 0.01	1.49 (1.37 - 1.62)	< 0.01			
Urban setting	1.02 (1.02 - 1.02)	< 0.01	1.00 (1.00 - 1.01)	< 0.01			
Educational level	0.99 (0.97 - 1.00)	0.051	1.01 (1.00 - 1.01)	0.081			
	Health cover	age		1			
Full	1.46 (1.11 - 1.91)	< 0.01	0.82 (0.74 - 0.91)	< 0.01			
Partial	1.15 (0.88 - 1.50)	0.322	0.59 (0.55 - 0.64)	< 0.01			
Private	1.55 (1.10 - 2.19)	0.013	1.43 (1.25 - 1.64)	< 0.01			
Other	1.36 (0.87 - 2.13)	0.172	0.98 (0.70 - 1.36)	0.900			
	Level of joint biomech	nanical stres	35	1			
High	1.18 (1.00 - 1.40)	0.054	1.55 (1.41 - 1.69)	< 0.01			
Medium	1.22 (0.96 - 1.56)	0.110	1.31 (1.17 - 1.46)	< 0.01			
Low	1.17 (0.97 - 1.42)	0.101	1.52 (1.38 - 1.66)	< 0.01			
Pain							
Historical pain	27.77 (24.09 - 32.01)	< 0.01	3.84 (3.59 - 4.11)	< 0.01			
Non-traumatic pain (7 days)	2.51 (2.18 - 2.89)	< 0.01	2.26 (2.11 - 2.43)	< 0.01			
Physical disability	(Health Assessment Quest	ionnaire-Di	sability Index (HAQ-DI)				
$HAQ \ge 0.8$	1.25 (1.00 - 1.56)	0.045	1.37 (1.23 - 1.52)	< 0.01			
	Comorbidit	ies		1			
Diabetes mellitus	0.95 (0.75 - 1.20)	0.653	0.82 (0.73 - 0.93)	< 0.01			
High blood pressure	0.98 (0.82 - 1.18)	0.842	0.95 (0.87 - 1.03)	0.226			
Cardiovascular disease	0.83 (0.62 - 1.12)	0.219	1.06 (0.91 - 1.24)	0.433			
Smoking	0.93 (0.74 - 1.16)	0.504	1.06 (0.97 - 1.16)	0.217			
Alcoholism	0.78 (0.64 - 0.94)	< 0.01	1.15 (0.97 - 1.37)	0.107			
Anxiety/depression	0.99 (0.84 - 1.17)	0.926	1.05 (0.96 - 1.16)	0.266			
No comorbidities	0.87 (0.74 - 1.03)	0.111	0.73 (0.67 - 0.80)	< 0.01			

Twenty clusters were identified in the Indigenous population and seventeen in the non-Indigenous population. In order to best represent the results, six clusters were selected for each group, using consensus and weighing as described in the methodology.

The six clusters selected from the Indigenous population were: Cluster 1 was represented by individuals with partial coverage, younger, with lower educational attainment, higher prevalence of RA and low back pain, and higher pain and smoking. Cluster 11 included

2	
3	
4	
5	
6	
7	
צ	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
17 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
18	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	

60

1

individuals with full coverage, greater functional limitation, and higher prevalence of RA 349 350 and anxiety/depression. Cluster 13 was represented by individuals with less schooling and a high percentage of smoking and alcoholism. Cluster 14 was represented by individuals with 351 full coverage, high prevalence of RMD, and higher percentage of anxiety/depression and 352 pain. Cluster 15 was the largest, with partial coverage, high level of joint biomechanical 353 354 stress, and higher prevalence of RMD and associated pain. Lastly, Cluster 16 was the smallest 355 and included individuals with private coverage, high level of joint biomechanical stress, older age, anxiety/depression and alcoholism, and the highest prevalence of RMD and associated 356 pain out of all the clusters (Figure 1). 357

In the non-Indigenous population, the six selected clusters were: Cluster 4 was the largest, represented by individuals with partial coverage, high level of joint biomechanical stress, higher percentage of pain, and higher prevalence of RMD, high blood pressure and anxiety/depression. Cluster 7 was the smallest, with a low percentage of pain and RMD, but greater physical disability. Cluster 8 included individuals with less years of formal schooling, partial health coverage, higher prevalence of RMD and anxiety/depression, medium level of joint biomechanical stress, and high physical disability.

Cluster 9 included individuals with higher educational attainment, full coverage, higher prevalence of RRPS, greater pain, greater level of smoking and less disability. Cluster 10 was represented by individuals with partial coverage, and lower prevalence of RMD and associated pain, but with greater limitation. Cluster 17 included only Mexican individuals with partial coverage, high level of joint biomechanical stress, lower educational attainment, and higher prevalence of RA, diabetes mellitus and high blood pressure (Figure 2).

371 **DISCUSSION**

BMJ Open

The syndemic approach analyzes the synergistic interrelationship between different biological and non-biological factors that lead to disease. The application of this approach to the area of health is relatively recent. Multiple studies describe how epidemiological and socioeconomic factors are related to disability and inequity in patients with RMD [40]. However, there are few publications that evaluate inflammatory joint diseases and other chronic musculoskeletal conditions from a broader social and biocultural context, taking into consideration how the socioeconomic characteristics of the environment interact with the disease.

In the present study, a syndemic approach was used to identify factors associated with health inequity [41]. The results obtained through a complex analysis of networks showed a greater clustering of patients with rheumatic diseases who shared common social determinants, such as rural setting and lower schooling. This coincides with the results published by Norton et al, who have described that the greater the comorbidities, the greater the risk of a negative impact on the evolution of RMD [42] and, consequently, the greater the difficulty to adequately control the disease [43].

This study identified factors associated with inequity in individuals with RMD in five Latin American countries with a syndemic approach. The clusters obtained through our analysis show differential negative impacts in the groups that were formed. The relevant emerging factors are living in rural communities, having lower educational attainment, and depending on the public healthcare system, described as fragmented in all participating countries. Comorbidities such as smoking, alcoholism and those related to mental health (anxiety/depression) are most prevalent overall, and greater in the Indigenous population. The differences detected through the clusters can be considered health inequities, since they

395 constitute avoidable differences such as low schooling and a health care system without full 396 coverage. Furthermore, the clusters that have greater impact are those which include 397 Indigenous people. All of the above attests to the inequity in RMD in low- and middle-398 income countries in general, and even more so in historically vulnerable populations, such as 399 Indigenous groups.

Multiple reports describe disparity and inequity among patients with RMD. Though they
contemplate the interaction of disease with epidemiological, biological and socioeconomic
factors, most of the research of this phenomenon does not include a conjunct and
comprehensive analysis of all factors as is achieved by syndemics [40].

Another important finding of the study is the clusters with higher prevalence of comorbidities, particularly high blood pressure, tobacco, and alcohol consumption, and those related to mental health (anxiety/depression). As previously reported, the greater the comorbidity, the greater the risk of negative impact on the evolution of RMD [42]. The coexistence of two or more conditions prevents the proper control of disease activity, hindering the achievement of therapeutic goals like those proposed by the treat to target recommendations [43].

The coexistence of several chronic conditions involving systemic inflammatory processes and deterioration in functional capacities, leads to a greater impact on the quality of life and greater demand of health services, to which many populations in Latin America have no universal access. Indeed, the results of this analysis identified several clusters with partial or no access to medical care coinciding with greater comorbidity (cluster 1, 10,11). The association between RMD severity and comorbidities as biological interactions is clear, but it is important to correlate these at a social level, since not having access to timely diagnoses

Page 25 of 40

BMJ Open

or specialized care increases the possibility of greater comorbidity and complications. Additionally, it is important to address the interaction of certain prevalent comorbidities (smoking, alcoholism, and mental health struggles) which contribute to the syndemic as both social and biological factors. While there is sufficient evidence to suggest the possibility of common pathophysiological mechanisms with inflammatory joint diseases, it has also been shown that states of anxiety and depression can be triggered by non-biological factors such as social isolation, poverty, mental health worldview or cultural stigmatization, and/or lack of access to healthcare [44].

When comparing inequity between population groups, the poverty rate in Indigenous and rural communities is higher, as reported in this study: 29.78% of the population self-identified as Indigenous, with a higher level of individuals from rural areas and fewer years of schooling. The prevalence of RA specifically was more pronounced in the Indigenous population, with the highest rates in Argentina and Mexico (3.01% and 2.22%) [8,10]. Previous research has similarly found that RMD are more frequent in the Indigenous populations than in the non-Indigenous populations of Canada, Australia, New Zealand and the United States [17].

The Indigenous population had a lower prevalence of disability despite presenting greater high level of joint biomechanical stress, historical pain and RA, which may be related to a worldview favoring normalization or underestimation of symptoms. In addition, the interpretation of these symptoms may be one of the causes of delay in seeking specialized care [11]. The relationship between ethnicity and health outcomes seems to be influenced by acculturation; that is, when one ethnic group is forced to adopt the beliefs and practices of another, the members develop negative health behaviors as coping mechanisms [45].

Health systems in Latin America are diverse and complex. Individuals in this study are
distributed among the spectrum of public (partial or full) and private systems. Most
Indigenous communities have public health coverage, though this does not guarantee access
or continuity of care and treatment. Limited access is not merely due to economic barriers,
but also related to ethnic, cultural and geographical factors, among others [8,24,40,46].
Indigenous communities are among the most vulnerable groups and, due to the conditions
described above, their inclusion into the healthcare system is complex [11,46,47].

The inaccessibility of the healthcare system, socioeconomic conditions, presence of comorbidities involving mental health, and RMD disease activity, are all factors that exist in interacting layers to create specific conditions of vulnerability for different patient populations. A model of vulnerability in layers, called a palimpsest design [12], analyzes how the determinants of health at different levels—genetic, biological, psychological, social and political—interact over time, creating barriers that lead to health inequity. The syndemic approach, in taking into consideration all factors and their interactions conjunctly, corresponds with a palimpsest model, providing evidence for the vulnerability of RMD patients associated with social factors such as rurality, low educational attainment, and greater reliance on the public health system (Figure 3).

458 Limitations

The cross-sectional nature of our study is a limitation to establish causality. However, the network and cluster analysis allowed the grouping of individuals by variables to document inequity, the principal objective of this study.

Page 27 of 40

1 ว

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ I 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
55	

60

462 Another limitation is the documentation of comorbidities through self-reporting, which can 463 condition a measurement error. However, an attempt was made to verify these reports 464 through the medications that individuals informed having taken.

465

466 In conclusion, the complex analysis from a syndemic approach allowed us to identify the greatest inequity in the clusters that group younger individuals, residents of rural areas, those 467 who self-identify as Indigenous, have lower educational attainment, higher prevalence of 468 RMD and RA specifically, greater comorbidities especially related to mental health and high 469 470 blood pressure, and partial coverage in the public healthcare system. Given the above we can assume that these social vulnerabilities and comorbidities lead to health inequities for 471 populations living in countries in which RMD are not considered a priority, resulting in lack 472 473 of coverage for prevention, diagnosis and management.

474

475 Acknowledgments

We thank all the participating communities and their authorities for allowing this study
to be conducted. We also thank all primary care physicians who collaborated in the study.
Amaranta Manrique de Lara for her critical reading, comments and editing.

479 We also thank all the researchers:

Argentina: Mario Goñi, Nora Mathern, Marisa Jorfen, Silvana Conti, Romina Nieto, Alvaro 480 Sanabria, Cristina Prigione, Adriana M. R. Silvestre, Vanina García, Julio Miljevic, Daniel 481 Dhair, Matias Laithe, Fadua Midauar, Maria Celeste Martin, Maria Cecilia Barrios, Vicente, 482 María Elena Crespo, Mariana Aciar, Emilio Buschiazzo, Natalia L Cucchiaro, Eugenia Picco, 483 Mario Ruiz, José Adolfo Sánchez, Rodolfo Franco, Natalia Estrella, Silvia Jorge, Cinthya 484 Retamozo, Sofia Fernandez, Martina Fay, Cecilia Camacho, Graciela Gomez, Jazmin 485 Petrelli, Andrés Honeri, Viviana Arenas Solórzano, Ana Bensi, Maria Elena Calvo, Marcela 486 Valdata. 487

488 Colombia: Rodrigo Giraldo,Ignacio Angarita, Jesus G. Ballesteros,Sofia Arias,Andres
489 Vásquez,Lina Valero, Ani Cortes,Estafania Castañeda,Elias Forero.

490 Ecuador: Astrid Feicán, Fernando Vintimilla, Jaime Vintimilla, Veronica Ochoa, Jorge
491 Delgado, Angelita Lliguisaca, Holger Dután.

México: Mario H. Cardiel, Jacqueline Rodríguez-Amado, Julio Casasola-Vargas, Conrado Garcia, Imelda García-Olivera, Natalia Santana, César Pacheco, Susana Aidee Gonzalez-Chávez. Hazel Garcia Morales. Arturo Velasco Gutierrez, JF Moctezuma-Rios, Everardo Álvarez-Hernández, Eduardo Navarro-Zarza, Angelia Angulo, Rosana Flores, Janeth Galván Padrón, Lorena Pérez B, Janett Riega Brenda Vaguez Fuentes, Miguel A Villarreal, Cassandra Skinner Taylor, Sara Marín, Dionicio GalarzaDelgado, Diana Flores Alvarado, Jorge A.Esquivel Varerio, Luz Helena Sanín, Marco Maradiaga Ceceño, Jorge Zamudio Lerm.

19 500 Venezuela: Ysabel Granados, Rosa Chacón, Ivan Stekman, Yanira Martínez, Gloris
 20 501 Sánchez, Celenia Rosillo, Ligia Cedeño.

Contributors: YG, AG-S, JA-N, RQ, FJ-S, AMS, SG, AL-S, MVG-R, VJ, MG-E, JCR, R B-V, JL, BA P-E, I P-B were involved in study conception, design, acquisition of data and drafting the manuscript. YG, AG-S, JA-N, RQ, FJ-S, AMS, SG, AL-S, MVG-R, VJ, MG-E and IP-B contributions to analysis and interpretation of data. YG and IP-B drafted the manuscript. All authors have read and approved the final version of the manuscript. Alfonso Gastelum-Strozzi develop all statistical analysis and modeling. IPB is the author acting as the guarantor for this study

33 510

Data sharing. The data are available but must be requested from the

researcher IPB through a specific application request for the use of data, which will be
 evaluated by all Group.

Transparency declaration. The lead author (the manuscript's guarantor) affirms that the
manuscript is an honest, accurate, and transparent account of the study being reported; that
no important aspects of the study have been omitted; and that any discrepancies from the
study as planned (and, if relevant, registered) have been explained.

44 518 Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you
to the Copyright Clearance Center's RightsLink service. You will be able to get a quick
price and instant permission to reuse the content in many different ways

523 Ethics approval
1		
2	F24	As the present investigation involves data callected as a part of prior studies, no specific
4	524	As the present investigation involves data collected as a part of prior studies, no specific study protocol approval was needed, as all institutional and Ethics Committees of each
5	525	participating institution (Argenting: 1619/2010 and 0127/2011: Equador: 2016-129IN) and
6	520	Mexico: $DI/11/404/B/3/123$ had already approved pertinent studies and authorities from
7	527	participating indigenous communities (18)
8 0	520	participating indigenous communities (18).
9 10	529	
11		
12	530	Funding: This work was supported by Federico Wilhelm Agricola Foundation, N/A.
13	531	Argentina, Asociacion Colombiana de Reumatologia (ASOREUMA), No156. Colombia,
14	532	Colegio Mexicano de Reumatología, N/A. México, National Council for Science and
15 16	533	Technology (CONACYT)-Mexico. Salud 2011-01-162154, Mexico, PDVSA East and
17	534	SUELOPETROL, N/A. Venezuela and Universidad de Cuenca, N/A. Ecuador.
18 19	535	Competing interests: non-financial associations that may be relevant to the submitted
20	526	manual interventional and an and a summation a intervente
21	536	manuscript. Authors declare no competing interests.
22	F 2 7	
23	537	
24 25	538	
26		
27		
28	539	References
29		
30 21	540	1 Bilsborrow JB. Peláez-Ballestas J. Pons-Estel B. <i>et al</i> . Global Rheumatology Research:
37	541	Erontiers Challenges and Opportunities Arthritis Rheumatol Hohoken NJ 2022 74-1
33	542	4 doi:10.1002/art 41980
34	342	4. doi.10.1002/art.41500
35	543	2 Cardiel MH. Present and future of rheumatic diseases in Latin America. Are we
36	544	prepared to face them? <i>Reumatol Clin</i> 2011: 7 :279–80.
3/	545	doi:10.1016/i reuma 2010.12.009
30 39	545	doi.10.1010/j./cd/iid.2010.12.003
40	546	3 Brooks PM. The burden of musculoskeletal diseasea global perspective. <i>Clin</i>
41	547	Rheumatol 2006: 25 :778–81, doi:10.1007/s10067-006-0240-3
42	517	
43	548	4 Briggs A, Slater H, Jordan J, <i>et al.</i> Towards a global strategy to improve
44 45	549	musculoskeletal health. Sydney, Australia: : Global Alliance, for Musculoskeletal Health
45 46	550	2021
47	550	
48	551	5 Commission on Social Determinants of Health. Subsanar las desigualdades en una
49	552	generación : alcanzar la equidad sanitaria actuando sobre los determinantes sociales
50	553	de la salud : informe final de la Comisión Sobre Determinantes Sociales de la Salud
51 52	554	Organización Mundial de la Salud 2009
52 53	555	https://apps.who.int/iris/handle/10665/44084 (accessed 3 Apr 2022)
54		(accessed S Apt 2022).
55		
56		
57		
58 50		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	556 557	6	OECD. <i>Health at a Glance 2021: OECD Indicators</i> . Paris: Organisation for Economic Co-operation and Development 2021, https://doi.org/10.1787/ae3016b9-ep.(accessed
5 6 7	558		3 Apr 2022).
7 8	559	7	Linares-Pérez N, Arellano OL. La equidad en salud: propuestas conceptuales, aspectos
9 10	560		críticos y perspectivas desde el campo de la Salud Colectiva. <i>Med Soc</i> 2008; 3 :247–59.
11	561	8	Peláez-Ballestas I, Granados Y, Quintana R, et al. Epidemiology and socioeconomic
12	562		impact of the rheumatic diseases on indigenous people: an invisible syndemic public
14	563		health problem. Ann Rheum Dis 2018;77:1397–404. doi:10.1136/annrheumdis-2018-
15	564		213625
16			
17	565	9	Loyola-Sanchez A, Richardson J, Pelaez-Ballestas I, et al. The impact of arthritis on the
18	566		physical function of a rural Maya-Yucateco community and factors associated with its
19 20	567		prevalence: a cross sectional, community-based study. <i>Clin Rheumatol</i> 2016; 35 Suppl
20	568		1 :25–34. doi:10.1007/s10067-015-3084-x
22			
23	569	10	Quintana R, Goñi M, Mathern N, et al. Rheumatoid arthritis in the indigenous gom
24	570		population of Rosario, Argentina: aggressive and disabling disease with inadequate
25	571		adherence to treatment in a community-based cohort study. <i>Clin Rheumatol</i>
26	572		2018: 37 ·2323–30. doi:10.1007/s10067-018-4103-5
27 28	572		
29	573	11	Quintana R. Fernández S. Orzuza SM. et al. «Living with rheumatoid arthritis» in an
30	574		indigenous dom population in Argentina, A qualitative study, <i>Reumatol Clin</i>
31	575		2021: 17 :543–8. doi:10.1016/i reumae 2020.04.006
32	575		2021,17.343 0. doi:10.1010/j.rednide.2020.04.000
33	576	12	Colmenares-Roa T. Figueroa-Perea JG. Pelcastre-Villafuerte B. <i>et al.</i> Vulnerability as a
34	577		palimosest: Practices and public policy in a Mexican hospital setting. <i>Health Lond Fnal</i>
36	578		1997 2021··1363459320988879 doi·10 1177/1363459320988879
37	570		
38	579	13	Londoño J. Peláez Ballestas I. Cuervo F. <i>et al.</i> Prevalencia de la enfermedad reumática
39	580	_	en Colombia, según estrategia COPCORD-Asociación Colombiana de Reumatología.
40 41	581		Estudio de prevalencia de enfermedad reumática en población colombiana mayor de
41	582		18 años Rev Colomb Reumatol 2018: 25 :245–56 doi:10.1016/j.rcreu 2018.08.003
43	502		10 anos. Nev colomb neumator 2010,29.245 50. aoi.10.1010, j. area.2010.00.005
44	583	14	Dantés OG. Sesma S. Becerril VM. <i>et al.</i> Sistema de salud de México. Salud Pública
45	584		México 2011: 53 :s220–32.
46			
4/ 10	585	15	Soriano ER. Defining Quality of Rheumatolgic Care: Argentina. J Clin Rheumatol Pract
40 49	586		<i>Rep Rheum Musculoskelet Dis</i> 2017: 23 :207–8. doi:10.1097/RHU.0000000000000540
50			······································
51	587	16	Pineda C, Sandoval H. Defining Quality of Rheumatologic Care: Mexico. J Clin
52	588		Rheumatol Pract Rep Rheum Musculoskelet Dis 2017: 23 :209–11.
53	589		doi:10.1097/RHU.00000000000532
54	505		
55 56			
57			
58			
59			2
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1			
2 3	500	17	Montenegro BA Stephens C Indigenous health in Latin America and the Caribbean
4 5	590 591	17	Lancet Lond Engl 2006; 367 :1859–69. doi:10.1016/S0140-6736(06)68808-9
6 7	592	18	Peláez-Ballestas I, Granados Y, Silvestre A, et al. Culture-sensitive adaptation and
8	593		validation of the community-oriented program for the control of rheumatic diseases
9	594		methodology for rheumatic disease in Latin American indigenous populations.
10 11	595		Rheumatol Int 2014; 34 :1299–309. doi:10.1007/s00296-014-2997-z
12	596	19	Ouintana R. Juárez V. Silvestre A. <i>et al</i> . Prevalencia de Artrtitis Reumatoide en dos
13 14	597	10	poblaciones originarias de Argentina. Estudio de base comunitaria: ¿"Dos caras de una
14	598		misma moneda"? Rev Fac Cienc Médicas Univ Nac Rosario Vol 1 2020 113-121
16	599		Published Online First: 16 June
17	600		2021 http://renhin.unr.edu.ar/xmlui/handle/2133/20993 (accessed 3 Apr 2022)
18	000		
19 20	601	20	Peláez-Ballestas I, Pons-Estel BA, Burgos-Vargas R. Epidemiology of rheumatic diseases
20	602		in indigenous populations in Latin-Americans. <i>Clin Rheumatol</i> 2016; 35 Suppl 1 :1–3.
22	603		doi:10.1007/s10067-016-3298-6
23			
24	604	21	Singer M, Bulled N, Ostrach B, et al. Syndemics and the biosocial conception of health.
25 26	605		Lancet Lond Engl 2017; 389 :941–50. doi:10.1016/S0140-6736(17)30003-X
20 27			
28	606	22	Mendenhall E, Kohrt BA, Norris SA, et al. Non-communicable disease syndemics:
29	607		poverty, depression, and diabetes among low-income populations. Lancet Lond Engl
30	608		2017; 389 :951–63. doi:10.1016/S0140-6736(17)30402-6
31 22			
33	609	23	Willen SS, Knipper M, Abadía-Barrero CE, et al. Syndemic vulnerability and the right to
34	610		health. <i>Lancet Lond Engl</i> 2017; 389 :964–77. doi:10.1016/S0140-6736(17)30261-1
35			
36	611	24	Strozzi AG, Peláez-Ballestas I, Granados Y, et al. Syndemic and syndemogenesis of low
3/	612		back pain in Latin-American population: a network and cluster analysis. <i>Clin</i>
39	613		<i>Rheumatol</i> 2020; 39 :2715–26. doi:10.1007/s10067-020-05047-x
40	64 A	25	luface V. Ovietana D. Crassa ME. et al. Drevelance of avvected stated discurdance and
41	614	25	Juarez V, Quintana R, Crespo ME, et al. Prevalence of musculoskeletal disorders and
42	615		rneumatic diseases in an Argentinean Indigenous Wichi community. <i>Clin Rheumatol</i>
43 44	616		2021; 40 :/5-83. doi:10.100//\$1006/-020-05130-3
44	617	26	Guovara SV Egicán EA Bolágz L at al Provalence of Phoumatic Diseases and Quality of
46	610	20	Life in the Saragura Indigonous Deeple, Ecuador: A Cross sectional Community Dased
47	018		Life in the Salaguro indigenous People, Ecuador. A Cross-sectional Community-Based
48	619		Sludy. J Chill Rheumatol Plact Rep Rheum Musculoskelet Dis 2020,20.5159-47.
49 50	620		doi:10.1097/RH0.00000000001131
50 51	621	27	Granados V. Rosillo C. Cedeño I. et al. Prevalence of musculoskeletal disorders and
52	622	21	rheumatic disease in the Warao. Kari'ña, and Chaima indigenous populations of
53	622		Monagas State Venezuela, <i>Clin Pheumatel</i> 2016; 35 Suppl 1 :52–61
54	621		doi:10.1007/s10067_016_3194_0
55 56	024		001.10.100//31000/-010-3134-0
50 57			
58			
59			2
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3	625	28	Ballestas IP, Santos AM, Angarita I, <i>et al</i> . Adecuación y validación transcultural del
4	626		cuestionario COPCORD: Programa Orientado a la Comunidad para el Control de las
5	627		Enfermedades Reumáticas en Colombia, <i>Rev Colomb Reumatol</i> 2019: 26 :88–96.
0 7	628		doi:10.1016/j.rcreu.2019.01.004
8			
9	629	29	Guevara-Pacheco S, Feicán-Alvarado A, Sanín LH, et al. Prevalence of musculoskeletal
10	630		disorders and rheumatic diseases in Cuenca, Ecuador: a WHO-ILAR COPCORD study.
11	631		Rheumatol Int 2016; 36 :1195–204. doi:10.1007/s00296-016-3446-y
12			
14	632	30	Alvarez-Nemegyei J, Peláez-Ballestas I, Rodríguez-Amado J, et al. Prevalence of
15	633		rheumatic regional pain syndromes in adults from Mexico: a community survey using
16	634		COPCORD for screening and syndrome-specific diagnostic criteria. J Rheumatol Suppl
17	635		2011; 86 :15–20. doi:10.3899/jrheum.100953
10 19			
20	636	31	Granados Y, Cedeño L, Rosillo C, et al. Prevalence of musculoskeletal disorders and
21	637		rheumatic diseases in an urban community in Monagas State, Venezuela: a COPCORD
22	638		study. <i>Clin Rheumatol</i> 2015; 34 :871–7. doi:10.1007/s10067-014-2689-9
23			
24 25	639	32	Darmawan J. Recommendations from the Community Oriented Program for Control of
26	640		Rheumatic Disease for data collection for the measurement and monitoring of health
27	641		in developing countries. <i>Clin Rheumatol</i> 2007; 26 :853–7. doi:10.1007/s10067-007-
28	642		0553-x
29			
30 31	643	33	Muirden KD. Community Oriented Program for the Control of Rheumatic Diseases:
32	644		studies of rheumatic diseases in the developing world. Curr Opin Rheumatol
33	645		2005; 17 :153–6. doi:10.1097/01.bor.0000151402.11028.53
34	6.46	24	De la Distriction de The Hacklin Assessment O service d'in (HAO) officie a plas and d
35	646	34	Bruce B, Fries JF. The Health Assessment Questionnaire (HAQ). Clin Exp Rheumdtol
30 37	647		2005; 23 :514-18.
38	619	25	Chiosi AM Notwork Analysis In: Smolsor NL Baltos PR ods International Encyclopedia
39	640	55	of the Social & Rehavioral Sciences, Oxford, LK: : Porgamon 2001, 10409–502
40	650		
41 42	050		001.10.1010/80-08-043070-7/04211-X
42	651	36	Singhal A Modern Information Retrieval: A Brief Overview IEEE Data Eng Bull
44	652	50	2001· 24 ·35–43
45	032		
46	653	37	Han J, Kamber M, Pei J. 2 - Getting to Know Your Data. In: Han J, Kamber M, Pei J, eds.
47	654		Data Minina (Third Edition). Boston: : Morgan Kaufmann 2012. 39–82.
40 49	655		doi:10.1016/B978-0-12-381479-1.00002-2
50			
51	656	38	Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and
52	657		Manipulating Networks. ICWSM 2009.
53			
54 55	658	39	Ester M, Kriegel H-P, Sander J, et al. A density-based algorithm for discovering clusters
56	659		in large spatial databases with noise. In: Proceedings of the Second International
57			
58			
59 60			For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml
00			

BMJ Open

2			
3 4 5	660 661		<i>Conference on Knowledge Discovery and Data Mining</i> . Portland, Oregon: : AAAI Press 1996. 226–31.
6		40	
7 8	662 663	40	arthritis. <i>Curr Opin Rheumatol</i> 2021; 33 :117–21. doi:10.1097/BOR.0000000000000782
9 10	664	41	Caribe CE para AL y el Panorama Social de América Latina 2020 CEPAL 2021
11	665		https://www.cepal.org/es/publicaciones/46687-panorama-social-america-latina-2020
12	666		(accessed 3 Apr 2022).
13 14	000		(400000000), p. 2022).
15	667	42	Norton S, Koduri G, Nikiphorou E, et al. A study of baseline prevalence and cumulative
16	668		incidence of comorbidity and extra-articular manifestations in RA and their impact on
17 18	669		outcome. Rheumatol Oxf Engl 2013;52:99–110. doi:10.1093/rheumatology/kes262
19	670	43	Radner H, Yoshida K, Frits M, et al. The impact of multimorbidity status on treatment
20 21	671		response in rheumatoid arthritis patients initiating disease-modifying anti-rheumatic
22 23	672		drugs. Rheumatol Oxf Engl 2015;54:2076–84. doi:10.1093/rheumatology/kev239
24	673	44	Nerurkar L, Siebert S, McInnes IB, et al. Rheumatoid arthritis and depression: an
25	674		inflammatory perspective. Lancet Psychiatry 2019;6:164–73. doi:10.1016/S2215-
26	675		0366(18)30255-4
27 28			
29	676	45	Ford ME, Kelly PA. Conceptualizing and categorizing race and ethnicity in health
30	677		services research. <i>Health Serv Res</i> 2005; 40 :1658–75. doi:10.1111/j.1475-
31	678		6773.2005.00449.x
32			
33 34	679	46	Massardo L, Pons-Estel BA, Wojdyla D, et al. Early rheumatoid arthritis in Latin
35	680		America: low socioeconomic status related to high disease activity at baseline.
36	681		Arthritis Care Res 2012;64:1135–43. doi:10.1002/acr.21680
37			
38	682	47	Gibson O, Lisy K, Davy C, et al. Enablers and barriers to the implementation of primary
39 40	683		health care interventions for Indigenous people with chronic diseases: a systematic
41	684		review. <i>Implement Sci IS</i> 2015; 10 :71. doi:10.1186/s13012-015-0261-x
42	605		
43	685		
44 45			
46	686		
47			
48	607		
49	687		
50 51			
52	688	Fig	jure Legend
53			
54			
55			
50 57			
58			
59			3
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3 4	689	Figure 1. Network and cluster analysis to describe groups with shared variables according to
5	690	the syndemic framework in the Indigenous population. (Title)
6 7		
8	691	RRPS: Rheumatic regional pain syndromes Health Assessment Ouestionnaire-Disability
9 10	692	Index (HAO-DI) cut-off point of greater than 0.8.
11	693	* Age and formal schooling show mean value (standard deviation)
12	694	**Circle size represents the number of individuals per cluster for visual comparison. The
13	695	cluster positions are the result of the network simulation: the position of each cluster is
14 15	696	obtained during the simulation depending on the similarity of the individuals.
15 16	co 7	
17	697	
18		
19 20	698	Figure 2. Network and cluster analysis to describe groups with shared variables according to
21	600	the sum density from every design to discuss a surplation (Title)
22	699	the syndemic framework in the non-indigenous population. (Title).
23		
24 25	700	RRPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability
26	701	Index (HAQ-DI) cut-off point of greater than 0.8.
27	702	* Age and formal schooling show mean value (standard deviation)
28	703	**Circle size represents the number of individuals per cluster for visual comparison. The
29 30	704	cluster positions are the result of the network simulation; the position of each cluster is
31	705	obtained during the simulation depending on the similarity of the individuals.
32	706	
33		
34 35	707	Figure 2 Inaquities and values chilities in PMDs: a polimersest model (Title)
36	/0/	rigure 5. mequities and vulnerabilities in RMDs. a painipsest model (Title)
37		
38 39	708	A model of vulnerability in lavers analyzes how the determinants of health at different levels
40		
41	709	-genetic, biological, psychological, social and political- interact over time, creating barriers
42 43	710	that lead to health inequity (Figure caption)
44	710	that lead to health hequity. (I igure caption)
45		
46	711	
4/ 48		
49		
50		
51		
52 53		
54		
55		
56 57		
57 58		
59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

0.6

0.5

Cluster position on the x axis

• 4

0.7

0.9

0.8

Figure 1. Network and cluster analysis to describe groups with shared variables according to the syndemic framework in the indigenous population.

Cluster	1	11	13	14	15	16
Total	1062	694	514	1097	3234	224
Health coverage	Partial	Full	Partial	Full	Partial	Private
Joint biomechanical stress	Unspecified	High	Medium	High	High	High
Gender	60.36	63.83	57.39	64.18	65.31	57.14
Age*	37.32 (15.00)	41.10 (21.68)	39.26 (15.52)	45.58 (18.60)	44.68 (17.61)	50.40 (17.39)
Formal schooling*	5.10 (3.56)	9.32 (5.52)	4.83 (4.39)	6.11 (4.55)	4.92 (3.74)	5.88 (4.63)
Argentina	82.86	0.00	28.40	0.00	11.87	8.04
Colombia	0.00	0.00	0.00	0.00	0.00	0.00
Ecuador	0.00	84.15	3.11	93.16	5.04	75.45
Mexico	7.72	15.85	19.07	6.84	60.36	16.52
Venezuela	9.42	0.00	49.42	0.00	22.73	0.00
Rheumatic disease (any)	31.83	32.28	29.57	41.66	40.45	47.32
Osteoarthritis	6.21	14.12	7.39	18.87	12.83	23.21
Rheumatoid arthritis	3.01	3.17	2.72	1.73	2.94	2.68
Backpain	19.02	10.66	14.98	18.60	15.34	15.18
RRPS	1.98	4.18	2.53	7.29	2.29	5.36
Musculoskeletal disorders	2.17	4.90	2.72	3.65	8.94	5.36
Fibromyalgia	0.09	3.46	0.58	4.92	1.67	5.80
Others	0.09	0.29	0.78	0.18	0.43	0.45
Historical pain	44.82	40.63	36.19	49.95	52.26	54.91
Non-traumatic pain (7 days)	20.72	7.49	17.32	10.12	27.40	13.84
Physical disability (HAQ-DI)	3.48	12.82	4.28	11.39	3.96	7.14
Diabetes mellitus	5.18	5.04	3.89	5.10	6.77	7.14
High blood pressure	15.35	10.23	7.78	12.94	13.42	17.41
Cardiovascular disease	5.74	1.30	2.72	3.01	3.34	4.02
Smoking	18.74	3.46	16.15	4.19	9.86	7.14
Alcoholism	14.69	10.95	19.84	14.77	23.13	23.66
Anxiety/depression	4.14	39.77	4.09	49.59	22.70	43.75
No comorbidities	42.09	34.44	53.89	27.53	35.44	23.21

RRPS: Rheumatic resident 42.09

0.4

0.3

0.1

0.2

tion on tion or tion

0.3

0.1

őd

Clu 0.2

RRPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-D) cut-off point of greater than 0.8. * Age and formal schooling show mean value (standard deviation) * "Circle size regrestent amount of individual per duster for visual comparison. The cluster positions are the result of the network simulation, the position of each cluster is obtained during the simulation depending on the similarity of the individuals.

Figure 1. Network and cluster analysis to describe groups with shared variables according to the syndemic framework in the indigenous population. (Title)

RRPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-DI) cutoff point of greater than 0.8.

* Age and formal schooling show mean value (standard deviation)

**Circle size represents the number of individuals per cluster for visual comparison. The cluster positions are the result of the network simulation; the position of each cluster is obtained during the simulation depending on the similarity of the individuals.

548x710mm (236 x 236 DPI)

Figure 2. Network and cluster analysis to describe groups with shared variables according to the syndemic framework in the non-indigenous population

Cluster	4	7	8	9	10	17
Total	4586	429	1223	1647	789	1353
Health coverage	Partial	Public Full	Partial coverage	Full coverage	Partial coverage	Private
Joint biomechanical stress	Unspecified	High	Medium	High	High	High
Gender	78.28	59.67	78.00	50.27	61.22	87.60
Age*	46.99 (17.78)	40.82 (16.70)	44.45 (17.07)	44.11 (18.83)	41.36 (17.53)	47.33 (17.15
Formal schooling*	7.78 (4.08)	7.85 (4.29)	7.92 (4.53)	11.38 (5.14)	8.69 (4.65)	7.50 (5.09)
Argentina	0.00	0.00	0.00	0.00	0.00	0.00
Colombia	50.81	0.00	4.17	34.30	0.13	0.00
Ecuador	0.00	0.70	36.96	42.74	0.00	0.00
Mexico	39.77	99.30	58.87	22.95	99.62	100.00
Venezuela	9.42	0.00	0.00	0.00	0.25	0.00
Rheumatic disease (any)	40.49	29.84	42.44	41.89	20.41	13.90
Osteoarthritis	11.32	9.09	7.44	5.59	7.48	4.95
Rheumatoid arthritis	2.46	2.80	1.88	1.82	3.55	4.07
Backpain	6.56	9.09	4.74	3.10	4.94	1.85
RRPS	23.92	2.80	26.17	34.00	1.14	0.89
Musculoskeletal disorders	4.49	5.36	2.04	2.43	2.92	2.00
Fibromyalgia	0.41	1.17	1.88	0.67	0.76	0.07
Others	0.37	0.23	0.25	0.79	0.13	0.30
Historical pain	57.78	20.51	35.32	47.54	23.32	17.44
Non-traumatic pain (7 days)	38.60	28.67	33.69	27.26	23.19	15.08
Physical disability (HAQ-DI)	7.76	15.15	14.23	6.44	13.05	12.34
Diabetes mellitus	8.26	7.93	8.91	6.86	9.38	10.20
High blood pressure	22.68	13.75	19.46	18.40	17.87	20.40
Cardiovascular disease	4.93	3.26	3.92	4.80	3.68	2.14
Smoking	17.84	10.26	16.11	32.54	7.48	0.81
Alcoholism	4.91	6.76	3.19	2.37	4.31	0.59
Anxiety/depression	3.92	7.46	12.43	6.07	9.76	8.50
No comorbidities	38.03	43.36	34.10	38,13	46.01	58.39

 No comorbidities
 3.2.2
 1.7.40
 12.4.3
 0.001
 9.7.00
 6.8

 No comorbidities
 3.8.03
 43.3.6
 34.1.0
 38.13
 46.01
 58.

 RRPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-DI) cut-off point of greater than 0.8.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *

Figure 2. Network and cluster analysis to describe groups with shared variables according to the syndemic framework in the non-indigenous population. (Title)RRPS: Rheumatic regional pain syndromes. Health Assessment Questionnaire-Disability Index (HAQ-DI) cut-off point of greater than 0.8.* Age and formal schooling show mean value (standard deviation)**Circle size represents the number of individuals per cluster for visual comparison. The cluster positions are the result of the network simulation; the position of each cluster is obtained during the simulation depending on the similarity of the individuals.

548x710mm (236 x 236 DPI)

Figure 3. Inequities and vulnerabilities in RMDs: a palimpsest model

Layer of Inequity	Vulnerabilities	Examples
Layer 5	Political vulnerabilities	Healthcare system
Layer 4	Social vulnerabilities	Lifestyle and Ethnic minorities
Layer 3	Psychological vulnerabilities	Mental illness
Layer 2	Biological vulnerabilities	Individual patient and disease characteristics
Layer 1	Genetic vulnerability	Genetic predispositions

A model of vulnerability in layers analyzes how the determinants of health at different levels—genetic, biological, psychological, social and political interact over time, creating barriers that lead to health inequity.

Figure 3. Inequities and vulnerabilities in MDs: a palimpsest model.(Title)

A model of vulnerability in layers analyzes how the determinants of health at different levels- genetic, biological, psychological, social and political-interact over time, creating barriers that lead to health inequity.

177x114mm (300 x 300 DPI)

Supplementary Table. Comparison of sociodemographic characteristics, health coverage, rheumatic diagnosis, pain, disability and comorbidities between indigenous and non-indigenous groups from Ecuador, Mexico and Argentina

	Indigenous	Non-	Totals	р
	n (%)	indigenous		-
	4599 (50.00)	n (%)	n (%)	
		4599 (50.00)	9198 (100.00)	
Gender (female)	2788 (60.62)	2729 (59.34)	5517 (59.98)	0.217
Age (years), mean (SD)	42.90 (18.71)	42.98 (17.58)	42.94 (18.16)	0.163
Urban setting	832 (18.09)	3624 (78.80)	4456 (48.45)	< 0.001
Educational level, mean number of years				
(SD)	6.74 (5.17)	9.17 (5.15)	7.95 (5.30)	< 0.001
	Health coverage *			
Full	1351 (29.38)	551 (11.98)	1902 (20.68)	< 0.001
Partial	2536 (55.14)	2401 (52.21)	4937 (53.67)	< 0.01
Private	245 (5.33)	501 (10.89)	746 (8.11)	< 0.001
Other**	171 (3.72)	34 (0.74)	205 (2.23)	< 0.001
Join	t biomechanical stre	SS ***		
High	2162 (47.01)	1176 (25.57)	3338 (36.29)	< 0.001
Medium	534 (11.61)	503 (10.94)	1037 (11.27)	0.323
Low	1472 (32.01)	1574 (34.22)	3046 (33.12)	0.025
Unspecified	254 (5.52)	267 (5.81)	521 (5.66)	0.588
	Rheumatic disease	2		
Totals	1428 (31.05)	1521 (33.07)	2949 (32.06)	0.040
Osteoarthritis	616 (13.39)	334 (7.26)	950 (10.33)	< 0.001
Rheumatoid arthritis	104 (2.26)	80 (1.74)	184 (2.00)	0.087
Back pain	521 (11.33)	138 (3.00)	659 (7.16)	< 0.001
RRPS	142 (3.09)	895 (19.46)	1037 (11.27)	< 0.001
Musculoeskeletical disorders	170 (3.70)	83 (1.80)	253 (2.75)	< 0.001
Fibromyalgia	89 (1.94)	50 (1.09)	139 (1.51)	< 0.01
Other ****	26 (0.57)	21 (0.46)	47 (0.51)	0.559
	Pain			
Historical pain	1839 (39.99)	1487 (32.33)	3326 (36.16)	< 0.001
Non-traumatic pain (7 days)	819 (17.81)	1012 (22.00)	1831 (19.91)	< 0.001
Physical disability (Health As	sessment Questionn	aire-Disability Inde	x (HAQ-DI)	
$HAQ \ge 0.8$	308 (6.70)	375 (8.15)	683 (7.43)	< 0.01
	Comorbidities			
Diabetes mellitus	236 (5.13)	326 (7.09)	562 (6.11)	< 0.001
High blood pressure	528 (11.48)	855 (18.59)	1383 (15.04)	< 0.001
Cardiovascular disease	142 (3.09)	150 (3.26)	292 (3.17)	0.677
Smoking	332 (7.22)	697 (15.16)	1029 (11.19)	< 0.001
Alcoholism	643 (13.98)	198 (4.31)	841 (9.14)	< 0.001
Anxiety/depression	913 (19.85)	501 (10.89)	1414 (15.37)	< 0.001
No comorbidities	2261 (49.16)	1991 (43.29)	4252 (46.23)	< 0.001

* Missing data: 296 (6.44%) indigenous and 1112 (24.18%) non-indigenous (total 1408 (15.31%))

** Other: Traditional healthcare

*** Missing data:177 (3.85%) indigenous and 1079 (23.46%) non-indigenous (total 1256 (13.65%))

**** Others: Indigenous: 18 ankylosing spondilytis, 4 gout, 1 sclerodermia and 2 psoriasis. Non-indigenous: 2 ankylosing spondilytis, 14 gout, and 1 psoriasis.

STROBE Statement—checklist of items that should be included in reports of observational studies

Item No	Recommendation	Page No
1	(a) Indicate the study's design with a commonly used term in the	6
	title or the abstract	
	(b) Provide in the abstract an informative and balanced summary of	6,7
	what was done and what was found	
		·
2	Explain the scientific background and rationale for the	8,10
	investigation being reported	
3	State specific objectives, including any prespecified hypotheses	10
4	Present key elements of study design early in the paper	10
5	Describe the setting, locations, and relevant dates, including	10 11
5	periods of recruitment, exposure, follow up, and data collection	10,11
((r) Colour study. Cive the eligibility exiteria and the sources and	11
0	(a) Conort study—Give the eligibility criteria, and the sources and	11
	methods of selection of participants. Describe methods of follow-	
	up Creation of the circular dealing in the second s	
	<i>Case-control study</i> —Give the eligibility criteria, and the sources	
	and methods of case ascertainment and control selection. Give the	
	rationale for the choice of cases and controls	
	Cross-sectional study—Give the eligibility criteria, and the sources	
	and methods of selection of participants	
	(b) Cohort study—For matched studies, give matching criteria and	Not
	number of exposed and unexposed	Applicable
	<i>Case-control study</i> —For matched studies, give matching criteria	
	and the number of controls per case	
7	Clearly define all outcomes, exposures, predictors, potential	11,12
	confounders, and effect modifiers. Give diagnostic criteria, if	
	applicable	
8*	For each variable of interest, give sources of data and details of	12
	methods of assessment (measurement). Describe comparability of	
	assessment methods if there is more than one group	
9	Describe any efforts to address potential sources of bias	14
10	Explain how the study size was arrived at	13
11	Explain how quantitative variables were handled in the analyses. If	12
	applicable, describe which groupings were chosen and why	
12	(a) Describe all statistical methods, including those used to control	12,13,14
	for confounding	
	(b) Describe any methods used to examine subgroups and	13
	interactions	
	(c) Explain how missing data were addressed	Not
	-	Applicable
	(d) Cohort study—If applicable, explain how loss to follow-up was	Not
	addressed	Applicable
	<i>Case-control study</i> —If applicable, explain how matching of cases	11
	Item No 1 2 3 4 5 6 7 8* 9 10 11 12	Item No Recommendation 1 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and what was found 2 Explain the scientific background and rationale for the investigation being reported 3 State specific objectives, including any prespecified hypotheses 4 Present key elements of study design early in the paper 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection methods of selection of participants. Describe methods of follow- up 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and methods of selection of participants 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 9 Describe any efforts to address potential sources of bias 10 Explain how the study size was arrived at

	<i>Cross-sectional study</i> —If applicable describe analytical methods	
	taking account of sampling strategy	
	(e) Describe any sensitivity analyses	13
Continued on next page		I

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers	14
		potentially eligible, examined for eligibility, confirmed eligible, included in	
		the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Not
			Applica
		(c) Consider use of a flow diagram	Not
			Applica
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	14
data		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	17
		interest	
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	Not
			Applica
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over	Not
		time	Applica
		Case-control study—Report numbers in each exposure category, or summary	Not
		measures of exposure	Applica
		Cross-sectional study—Report numbers of outcome events or summary	15-16
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	17,18,1
		estimates and their precision (eg, 95% confidence interval). Make clear which	
		confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Not
		L.	Applica
		(c) If relevant, consider translating estimates of relative risk into absolute risk	19
		for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and	20,21
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	21,22,2
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias	23
		or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	23
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	24
Other informati	on		
Other mior mati			
Funding	22	Give the source of funding and the role of the funders for the present study	25

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at

http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer teriew only