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1. Basic assumptions and population model

We use a continuous-time, discrete-state Markov process to describe births and deaths in a population of replicating individuals.
We study a family of population models by making the following axiomatic assumptions about the birth process:

Assumption 1.1 Let the stochastic process X
(i)
t denote the number of offspring that individual i produces in time 0 → t. We

assume that the stochastic process satisfies the following four properties:
(1)X(i)

0 = 0;
(2)Independent increment: X

(i)
t+τ − X

(i)
t is independent of X

(i)
t ;

(3)Stationary increment: X
(i)
t+τ − X

(i)
t and X

(i)
τ have the same distribution;

(4)Non-decreasing: X
(i)
t+τ − X

(i)
t ≥ 0.

Given these properties, the mean and variance of X
(i)
t are both linear functions of t, and the offspring distribution (the number

of offspring within unit of time) is homogeneous and independent of time. We use ξi to denote the offspring distribution. To
describe the distribution of ξi we make the following axiomatic assumptions about its expectation and variance:

Assumption 1.2 The mean and variance of ξi are given by
(1) E(ξi) = B + sπi;
(2) Var(ξi) = δ1B + δ2sπi.

Here, the parameter B denotes the baseline of birth rate, πi denotes individual i’s payoff (obtained from pairwise social
interactions in the population), and s denotes the selection intensity. A larger value of s means that payoffs have a stronger
effect on individual’s birth process. In this paper, we adopt the common assumption that the selection intensity is weak
(s ≪ 1).

The expected number of offspring in one unit of time, E(ξi), is called the fitness of individual i. In the regime of weak
selection we can expand E(ξi) as a Taylor series and truncate it to first order in πi. There may be a number of different birth
models for which this truncation yields part (1) of Assumption 1.2. Note that in a classical discrete-time model of reproduction,
such as the Moran process, fitness is often assumed to be an exponential function of payoff, i.e, exp(B + sπi). This is consistent
with our definition of fitness E(ξi) = B + sπi in continuous time.

The space of models defined by the axioms above includes models in which the birth process is not Poisson, but is rather
over-dispersed. There are many ways to produce over-dispersion, where the mean and variance are correlated in different ways
(1, 2), such as quasi-Poisson model (variance is proportional to mean), mixed-effects Poisson model and negative binomial
model (variance is a quadratic function of mean). Here, we stipulate only a general form of correlation between variance and
mean: Var(ξi) = f(E(ξi)) = f(B + sπi). In the regime of weak selection s ≪ 1, we can expand the variance to first order in s,
which yields (2) in Assumption 1.2. The parameter δ1 measures how the variance component in the offspring distribution
scales with the baseline birth rate, which is the same for all individuals. Whereas the parameter δ2 measures how the variance
component of the offspring distribution scales with the current payoff of individual i, which may vary across individuals. The
case δ1 = δ2 = 1 simplifies to a classic Poisson birth process. Whereas if δ1 > 1, the birth processes is over-dispersed (because
we work in the regime s ≪ 1).

2 of 26 Guocheng Wang, Qi Su, Long Wang, and Joshua B. Plotkin



Suppose there are N individuals of a given phenotype. Thus these N individuals have the same but independent birth rates.
The overall birth rate of this phenotype is then

N∑
i=1

ξi, [1]

which converges to a normal distribution when N is large, by the central limit theorem. We approximate the Markov process
by a diffusion equation, which depends only on the first two moments of ξi and is expected to be a good approximation in large
enough populations. In addition, we perform explicit simulations of processes, and compare their results to the predictions
derived by the diffusion approximation, in Section 3.

We assume death events follow a Poisson process governed by two terms, for each phenotype. One term arises from a
constant baseline death rate, denoted by D. The other term corresponds to deaths caused by competition among individuals
for limited resources, which introduces a carrying capacity on the entire population. Specifically, the competition process is
modelled by a reaction process

X + Y → X, [2]

which takes place with constant rate λ and X and Y are any two individuals. Thus, the death rate caused by competition is λ
times the population size.

Given these assumptions, the population is described by a continuous-time discrete state Markov process, which can be
approximated by a diffusion equation. We start by using the traditional donation game as an example, to produce payoff
expressions and derive the corresponding diffusion equation. Consider a population composed of x cooperators and y defectors.
Each individual plays games with all other players (including self) and obtains an average payoff. Each cooperator provides a
benefit b to his opponent and pays a cost c, but a defector contributes nothing and pays no cost. The payoff matrix for a
pairwise interaction is as follows:

C D
C
D

(
b − c −c

b 0

)
. [3]

Summing over all pairwise interactions, the total payoff for a cooperator and defector are

πC = x

x + y
b − c, [4a]

πD = x

x + y
b. [4b]

We assume that in a short time interval ∆t, the number of births of cooperators is ∆x+, and the number of deaths of
cooperators is ∆x−. Thus the increment of cooperators is ∆x = ∆x+ − ∆x−. The same applies to defectors, y. Then, we
obtain the following expressions for mean change in state of short time ∆t

E[∆x(t)|x(t), y(t)] =x(t)[B + sπC − D − λ(x(t) + y(t))]∆t, [5a]
E[∆y(t)|x(t), y(t)] =y(t)[B + sπD − D − λ(x(t) + y(t))]∆t. [5b]

Since deaths follow a Poisson process, the variance of ∆x− equals to its mean, namely Dx∆t + λx(x + y)∆t. Moreover, ∆x+ is
independent of ∆x−, which leads to the following expressions for the variance in state change of short time ∆t

E[∆x(t)2|x(t), y(t)] ≈Var[∆x(t)+ − ∆x(t)−] = Var[∆x(t)+] + Var[∆x(t)−]
=x(t)(δ1B + δ2sπC)∆t + Dx(t)∆t + λx(t)(x(t) + y(t))∆t + o(∆t), [6a]

E[∆y(t)2|x(t), y(t)] ≈Var[∆y(t)+ − ∆y(t)−] = Var[∆y(t)+] + Var[∆y(t)−]
=y(t)(δ1B + δ2sπD)∆t + Dy(t)∆t + λy(t)(x(t) + y(t))∆t + o(∆t). [6b]

Thus, we obtain
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lim
∆t→0

E[∆x(t)|x(t) = x, y(t) = y]
∆t

= x[B + sπC − D − λ(x + y)], [7a]

lim
∆t→0

E[∆y(t)|x(t) = x, y(t) = y]
∆t

= y[B + sπD − D − λ(x + y)], [7b]

lim
∆t→0

E[∆x(t)2|x(t) = x, y(t) = y]
∆t

= (δ1B + δ2sπC)x + Dx + λx(x + y), [7c]

lim
∆t→0

E[∆y(t)2|x(t) = x, y(t) = y]
∆t

= (δ1B + δ2sπD)y + Dy + λy(x + y), [7d]

lim
∆t→0

E[∆x(t)∆y(t)|x(t) = x, y(t) = y]
∆t

= 0. [7e]

In what follows, for simplicity we use α to denote B − D, which represents the baseline net growth rate of the population,
independent of payoff effects. Then we can then use the following diffusion equation to approximate the Markov process(3):

dx =x [α + sπC − λ(x + y)] dt +
√

(δ1B + δ2sπC)x + Dx + λx(x + y)dW
(1)
t , [8a]

dy =y [α + sπD − λ(x + y)] dt +
√

(δ1B + δ2sπD)y + Dy + λy(x + y)dW
(2)
t , [8b]

where W
(1)
t and W

(2)
t are two independent Wiener processes, and the diffusion terms are interpreted in the sense of Itô.

2. Methods

A. Fixation probability. To investigate the dynamics of population size and cooperator frequency, we introduce a coordinates
transformation, setting p = x/(x + y) and n = x + y. Applying Itô’s lemma

dp = ∂p

∂x
dx + ∂p

∂y
dy + 1

2
∂2p

∂x2 (dx)2 + 1
2

∂2p

∂y2 (dy)2, [9a]

dn = ∂n

∂x
dx + ∂n

∂y
dy + 1

2
∂2n

∂x2 (dx)2 + 1
2

∂2n

∂y2 (dy)2, [9b]

to Eq. 8 we obtain

dp = − scp(1 − p)dt + 1 − p

n

√
x(δ1B + δ2sπC + D + λn)dW

(1)
t

− p

n

√
y(δ1B + δsπD + D + λn)dW

(2)
t − xy(δ1B + δ2sπC + D + λn)

n3

(
dW

(1)
t

)2

+ xy(δ1B + δ2sπD + D + λn)
n3

(
dW

(2)
t

)2
, [10a]

dn =[nα + s(b − c)pn − λn2]dt +
√

x(δ1B + δ2sπC + D + λn)dW
(1)
t

+
√

y(δ1B + δsπD + D + λn)dW
(2)
t . [10b]

Remembering (dWt)2 = dt and omitting terms of order O(s) in the diffusion term of Eq. 10a (more accurately, we further
assume δ1B ≫ δ2s such that δ2sπC and δ2sπD can be omitted), we obtain

dp =scp(1 − p)
(

δ2

n
− 1

)
dt + 1 − p

n

√
x(δ1B + D + λn)dW

(1)
t − p

n

√
y(δ1B + D + λn)dW

(2)
t , [11a]

dn =[nα + s(b − c)pn − λn2]dt +
√

x(δ1B + D + λn)dW
(1)
t +

√
y(δ1B + D + λn)dW

(2)
t . [11b]

We work in the regime of s ≪ α. Here the population growth rate is mainly determined by the baseline birth and death
rates α. If α > 0, the population will grow logistically until it reaches the carrying capacity. If α < 0, the population will
eventually perish. The case of α = 0 is a critical case, where the growth rate is totally determined by payoffs. In this paper, we
only discuss the case of α > 0.

We first consider a corresponding deterministic system, which serves as a reference to this stochastic system. In the
deterministic system we neglect stochasticity (variance) in the number of birth and death events per time interval. For the
birth process, when δ1 = δ2 = 0, the variance becomes zero and thus the birth process simplifies to a deterministic process. The
death process is modelled as a Poisson process. Each individual dies at rate D + λn. And the overall death rate is Dn + λn2.
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Thus, within one unit of time the expected number of individuals who die obeys a Poisson distribution with mean Dn + λn2

and variance Dn + λn2. In the corresponding deterministic system we ignore the variance of the death process, as well, which
means we assume the number of individuals who die is not stochastic, but strictly equal to Dn + λn2. Given these assumptions,
the stochastic term of Eq. 8 vanishes and the equation simplifies to an ordinary differential equation:

dx =x [α + sπC − λ(x + y)] dt [12a]
dy =y [α + sπD − λ(x + y)] dt. [12b]

By a parameter transformation we obtain

dp = − scp(1 − p)dt [13a]
dn =[nα + s(b − c)pn − λn2]dt. [13b]

Here, dp is always negative, which means a cooperator will never be favored by selection.
In the regime s ≪ α, the system features a timescale separation. n equilibrates much more quickly than p. Therefore,

given an arbitrary initial configuration p0 and n0, before p changes at all the dynamical system rapidly converges to the slow
manifold defined by dn = 0, or more explicitly,

n = α + s(b − c)p
λ

≈ α

λ
. [14]

The slow manifold is in fact the carrying capacity of the environment, denoted by M . It reflects the maximum number of
individuals that the environment can sustain. For the stochastic system, the system still shows the features of fast-slow
dynamics (Fig. S2)(4). The population size n will quickly converges to M , and then fluctuate around it.

Since the population reaches the carrying capacity rapidly, and the population size then fluctuate around M in subsequent
evolution, we can use M to replace n in Eq. 11a. Remembering D + λM = B, we obtain a one-dimensional diffusion system
describing the evolution of cooperator frequency on the slow manifold:

dp = scp(1 − p)
(

δ2

M
− 1

)
dt +

√
(δ1 + 1)Bp(1 − p)

M

(√
1 − pdW

(1)
t − √

pdW
(2)
t

)
. [15]

The solution of Eq. 15 is a Markov process with the infinitesimal generator given by

Lf = scp(1 − p)
(

δ2

M
− 1

)
∂f

∂p
+ (δ1 + 1)Bp(1 − p)

2M

∂2f

∂p2 . [16]

For Eq. 8, x = 0 and y = 0 are two absorbing states. Given the initial number of cooperators x0 and defectors y0, for some
time t, if x(t) > 0 and y(t) = 0 (i.e. p = 1) is satisfied, we say cooperators have fixed (5). The probability that cooperators will
fix is called fixation probability, denoted ρ. Given the initial frequency of cooperators p0 (p0 = x0/(x0 + y0)), the fixation
probability of cooperators ρ(p0) is the solution of { Lρ = 0,

ρ(1) = 1,
ρ(0) = 0.

[17]

The solution of this equation can be calculated explicitly (3), which is

ρ(p0) =
∫ p0

0 S(x)dx∫ 1
0 S(x)dx

, [18]

where

S(x) = exp
(∫

−2E(p)
D(p) dp

)
, [19a]

E(p) = scp(1 − p)
(

δ2

M
− 1

)
, [19b]

D(p) = (δ1 + 1)Bp(1 − p)
M

. [19c]

Using this method, we obtain the fixation probability:

ρ(p0) =
exp

[
2sc

(δ1+1)B
(M − δ2)p0

]
− 1

exp
[

2sc
(δ1+1)B

(M − δ2)
]

− 1
≈ p0 − sc

(δ1 + 1)B (M − δ2) p0(1 − p0). [20]
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If s → 0, ρ(p0) → p0, which means that fixation probability in the absence of selection is equal to the initial frequency of
cooperators. Furthermore, if 2scM/(δ1B + B) − 2δ2sc/(δ1B + B) < 0, i.e.

M < δ2, [21]

the fixation probability will exceed that of neutral drift, i.e. ρ(p0) > p0, which means that cooperation is favored by natural
selection.

Our analysis in the main text and above is based on an approximation by separation of timescales. Here we briefly discuss
the accuracy of this approximation. Suppose the system starts at state (n0, p0), with n0 < M . When the population size hits
the slow manifold n = M we denote the fraction of cooperators as ps. The precise fixation probability is then

ρ(p0, n0) = ps − sc

(δ1 + 1)B (M − δ2) ps(1 − ps). [22]

For α ≫ s, n equilibrates much more quickly than p. And so in our analysis by separation of timescales, so we use the
approximation that ps equals p0. However, in the full SDE system with finite α, ps will not equal p0 exactly; there will be
some slight deviation in p by the time n = M . Given Eq. 11, the drift term of dp is

scp(1 − p)
(

δ2

n
− 1

)
[23]

Under analysis by timescale separation we derived δ2 = M as a critical value that determines whether cooperation is favored or
not. When we choose δ2 = M , we note that the drift term above becomes scp(1 − p)(M/n − 1). Before the system reaches the
slow manifold, then, the drift term is always positive. which means p is expected to increase slightly while approaching the
slow manifold in the full SDE. Thus, ps is expected to be slightly larger than p0. As a result (Eq. 22), without making the
approximation of timescale separation the fixation probability is actually slightly larger than p0, so that our approximation
Eq. 21 is an over-estimate. Likewise, the actual critical value of δ2 to favor cooperation, without approximation by timescale
separation, is slightly lower than M , which can be seen visually in Fig. 2 in the main text.

B. Intuition for the effects of demographic stochasticity. In Fig. 3 of the main text, we illustrate how fluctuations taking the
trajectories off the slow manifold quickly return to the slow manifold, travelling along one of the the fast manifolds. The
position where the trajectories return to the slow manifold is expected to have a deviation from the original starting point,
which yields an effective advective force on the cooperator frequency p along the slow manifold. Here, we provide detailed
calculation for this advective force.

As summarized in Fig. 3 of the main text, we suppose the initial number of cooperators and defectors are x and y, lying on
the slow manifold x + y = M . As shown in Fig. 3, due to the noise the trajectory may fluctuate to point x + ∆x and y + ∆y
within a short time ∆t. Then, it will return along a fast manifold to the slow manifold at point (x′, y′). As a result there is an
effective advective force on the number of cooperators (i.e. x′ − x) along the slow manifold. We now derive the expectation of
x′ − x.

As summarized in Fig. 3B in the main text, we can obtain an expression for the return point:

x′ = (x + y) x + ∆x

x + y + ∆x + ∆y
. [24]

Then, we have

E[x′ − x] =E

[
x + ∆x

1 + ∆x+∆y
x+y

− x

]

≈E
[

(x + ∆x)
(

1 − ∆x + ∆y

x + y
+ (∆x + ∆y)2

(x + y)2

)
− x

]
=E

[
− y

(x + y)2 ∆x2 + x

(x + y)2 ∆y2
]

. [25a]

Here, (∆x, ∆y) obeys a two-dimensional Gaussian distribution. According to Eq. 7, we have

E[∆x2] ≈ Var(∆x) = x(δ1B + δ2sπC + D + λ(x + y))∆t, [26a]
E[∆y2] ≈ Var(∆y) = y(δ1B + δ2sπD + D + λ(x + y))∆t. [26b]

Substituting Eq. 26 into Eq. 25, we have

E[x′ − x] = xy

(x + y)2 δ2s(πD − πC)∆t. [27]
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Thus, when πC < πD, the advective force induced by noise tends to increase the number of cooperators. When πD < πC , the
number of cooperators is expected to decreases, and thus defectors are expected to increase.

Furthermore, since (∆x, ∆y) obeys a two-dimensional Gaussian distribution, the shape of the fluctuation is an ellipse. The
lengths of the two principle axes represent the standard deviation of ∆x and ∆y (square root of the variance). We can choose
the four endpoints of the ellipse to illustrate the direction of advective force (Fig. S4).

3. Examples: some explicit birth-death processes

We have analyzed a large class of models by stipulating axiomatic forms for the mean and variance in the birth process,
and studying it by approximation using a diffusion equation. Here, for concreteness sake, we specify some explicit discrete-
state/continuous time processes that satisfy our axioms (Assumption 1.1 and Assumption 1.2), and we demonstrate that our
analysis predicts their behavior.

Poisson process
Most prior studies depict birth events often through a reaction equation

Y
θ−→ Y + Y, [28]

where Y is an arbitrary individual and θ is the birth rate. This assumption produces a birth process that is Poisson with
intensity θ. Within a time interval [t, t + ∆t], the offspring number of the individual obeys a Poisson distribution with
expectation θi∆t and variance θi∆t. As usual, the variance is equal to the mean in this classic case.

In our more general family of models we consider the number of offspring ξi produced by individual i within one unit of
time, which is assumed to satisfy

E(ξi) = B + sπi = θi, [29a]
Var(ξi) = δ1B + δ2sπi = θi. [29b]

Our family of models thus contains the classical Poisson birth process in the case case δ1 = δ2 = 1. In this case, the condition
that cooperation is favored becomes to

M < 1, [30]

which can never be achieved since the carrying capacity can never be lower than 1. And so, under our family of models, a
strictly Poisson birth process can never favor cooperation.

Compound Poisson process
In Poisson process there is only one offspring produced in each reproduction event. However, for many species in nature, a
large number of offspring are produced simultaneously in each reproduction event. We call the number of offspring produced
(instantaneously) in a single reproduction event the “litter size". In general the litter size is stochastic. In this section we
describe how to model such a birth process using a compound Poisson process.

We use Mt to denote the times of reproduction events from 0 to t and we assume that Mt is a Poisson process with intensity
θ. And in each reproduction event, the litter size Z obeys a distribution with mean µ and variance σ2. Therefore, the total
number of offspring in [0, t] is

X(t) =
M(t)∑
k=1

Zk. [31]

We can derive the mean and variance of X(t).

EX(t) =E[E[X(t)|M(t)]]
=E[E[M(t)µ]
=θµt, [32a]

Var(X(t)) =E[X(t)2] − (E[X(t)])2

=E[E[X(t)2|M(t)]] − θ2µ2t2

=E[M(t)σ2 + M(t)2µ2] − θ2µ2t2

=θ(σ2 + µ2)t. [32b]

Thus, X(t) is also a stochastic process with stationary and independent increments that satisfies Assumption 1.1. From
Assumption 1.2, we obtain
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E(ξi) =B + sπi = θiµi, [33a]
Var(ξi) =δ1B + δ2sπi = θi(µ2

i + σ2
i ). [33b]

Here, the litter size Z can be any random variable over non-negative integers, with an arbitrary probability distribution. In
this paper we consider two specific cases: Z obeys a Poisson distribution, or a negative binomial distribution.

Case 1: A Poisson litter size
First we study the case where Z has the Poisson distribution. For a player with payoff πi, we assume that Mt is a Poisson
process with parameter θi, and Z obeys a Poisson distribution with parameter µi. Then, Eq. 33 gives that

B + sπi =θiµi, [34a]
δ1B + δ2sπi =θi(µ2

i + µi). [34b]

The reproduction process of an individual is totally controlled by the two parameters, θi and µi. On the other hand, the
reproduction process is determined by sπi. Thus, θi and µi are functions of sπi. In the regime of weak selection (s ≪ 1), any
function of sπi can be expanded in a Taylor series around s = 0. Neglecting higher order terms in s leads to θi and µi linear in
πi. Thus, we can assume

θi = θ0 + kθsπi, [35a]
µi = µ0 + kµsπi. [35b]

Substituting Eq. 35 into Eq. 34, we can obtain

B + sπi = θ0µ0 + (θ0kµ + µ0kθ)sπi + o(s), [36a]
δ1B + δ2sπi = θ0(µ2

0 + µ0) + [kθ(µ2
0 + µ0) + θ0(2µ0kµ + kµ)]sπi + o(s). [36b]

Comparing the both sides of Eq. 36 yields

B =θ0µ0, [37a]
1 =θ0kµ + µ0kθ, [37b]

δ1B =θ0(µ2
0 + µ0), [37c]

δ2 =kθ(µ2
0 + µ0) + θ0(2µ0kµ + kµ). [37d]

There are four equations and four unknowns (θ0, µ0, kθ, kµ), and so this system is solvable. We can solve that:

θ0 = B

δ1 − 1 , [38a]

µ0 =δ1 − 1, [38b]

kθ =(2δ1 − δ2) − 1
(δ1 − 1)2 , [38c]

kµ =δ2 − δ1

B
. [38d]

It is worth noting that this construction is meaningful only when θi and µi are positive. Because s ≪ 1, we expect that θi

and µi are positive only when θ0 and µ0 are positive, which requires δ1 > 1. This means that for any parameters δ1, δ2, and B,
provided δ1 > 1, we can construct such a Poisson-Poisson process that satisfies Assumption 1.2. Note also that a birth process
based on Poisson-Poisson process always naturally leads to over-dispersion in the number of offspring.

Case 2: A negative binomial litter size
Now we study the case where Z follows a negative binomial Poisson distribution. For a player with payoff πi, we assume that
Mt is a Poisson process with parameter θi, and Z obeys a negative binomial distribution with parameters qi and m (qi ∈ (0, 1)
and m ∈ N∗). The negative binomial distribution has mean qim/(1 − qi) and variance qim/(1 − qi)2. Since m is an integer and
cannot change continuously with πi, we assume that all individuals share an identical m.
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Then, Assumption 1.2 and Eq. 32 give

B + sπi =θi

(
qim

1 − qi

)
, [39a]

δ1B + δ2sπi =θi

(
q2

i m2

(1 − qi)2 + qim

(1 − qi)2

)
. [39b]

Similarly, we further assume that θi and qi are linear in πi, that is

θi = θ0 + kθsπi, [40a]
qi = q0 + kqsπi. [40b]

Substituting Eq. 40 into Eq. 39 and using similar techniques, we can solve to find

θ0 = B(1 + m)
(δ1 − 1)m, [41a]

q0 = δ1 − 1
δ1 + m

, [41b]

kθ =(2δ1 − δ2 − 1)(m + 1)
(δ1 − 1)2m

, [41c]

kq =(m + 1)(δ2 − δ1)
B(δ1 + m)2 . [41d]

Similarly, this construction is meaningful only when θ0 is positive and q0 is in [0, 1], which implies δ1 > 1. And so we see that
birth process based on Poisson-negative binomial process always leads to over-dispersion. Given these equations (Eq. 38 and
41), we can always choose parameters of the compound Poisson process that satisfy our general stipulations on the mean and
variance in the total offspring produced per unit time (Assumption 2), provided δ1 > 1 and δ2 > 0.

We can compare Monte-Carlo simulations of these explicit population processes (discrete state, continuous time) to the
analytical prediction for the fixation probability that we derived from a stochastic differential equation (Eq. 20). We find good
agreement between the individual-based simulations and analytic approximations, for carrying capacities as small as M = 100
or M = 200 (Fig. S3). Note that in both cases shown in Fig. S3, for sufficiently large δ2 we have kθ < 0 and km > 0 or kq > 0.
In other words, higher payoffs reduce the rate of birth events but increase the mean litter size per birth event; and when these
effects are strong enough, then selection favors cooperation.

Here in our construction, we have assumed m is fixed and the same for all individuals. If m can vary for different individuals,
the construction will be more complicated and not unique. Moreover, we have only considered two examples of compound
Poisson process here, but many other construction can be derived similarly. And so Assumption 1.2 is very general axiom so
that the space of models we analyze covers a wide range of birth processes.

4. Extensions

A. General games. So far, we have analyzed the classic donation games, to explore the effects of demographic stochasticity on
the evolution of cooperation. To explore more general results, we extend our model to general two-player/two-action games. A
general two-player two-action game has the following payoff structure

C D
C
D

(
a b
c d

)
.

Here, the two strategies are still called cooperation (C) and defection (D), which are now just generic terms that carry no
implied meaning. When two cooperators interact, they both receive payoff a. When a cooperator encounters a defector, the
cooperator receives b while the defector receives c. Mutual defection brings d to both players.

If there are x players employing cooperation and y players employing defection, their payoffs are respectively

πC = xa + yb

x + y
, [42]

πD = xc + yd

x + y
. [43]

As before, we make the parameter transformation p = x/(x + y) and n = x + y. Then, under the assumption of α ≫ s, we can
still separate the timescale of n and p, which gives

Guocheng Wang, Qi Su, Long Wang, and Joshua B. Plotkin 9 of 26



dp = sp(1 − p)
[(

1 − δ2

M

)
(b − d + (a − b − c + d)p)

]
dt +

√
(δ1 + 1)Bp(1 − p)

M

(√
1 − pdW

(1)
t − √

pdW
(2)
t

)
, [44]

where M is the carrying capacity given by M = α/λ.

A.1. ODE-based analysis. If the carrying capacity is large, the diffusion term is very small, and thus has little influence on the
dynamics. Thus, to provide an rough intuitive interpretation, we first analyze Eq. 44 by omitting its diffusion term altogether,
which simplifies to an ordinary differential equation (ODE). That is

dp = sp(1 − p)
[(

1 − δ2

M

)
(b − d + (a − b − c + d)p)

]
dt. [45]

If we ignore s and let δ2 = 0 in Eq. 45, it actually degenerates to the classic replicator equation.
We denote Eq. 45 as dp = f(p)dt in what follows. This equation has three equilibrium points:

p = 0, [46a]
p = 1, [46b]

p = p∗ = d − b

a − b − c + d
. [46c]

These equilibrium points are meaningful only if they are located in the domain [0, 1]. Games can be classified into three
scenarios in terms of the number of equilibrium points within [0, 1] and their stabilities. We will analyze the effects of
demographic noise for the three scenarios respectively.

Dominance games:
For a dominance game, a player’s best choice of strategy does not depend on the opponent’s strategy. Without loss of

generality, we suppose a < c and b < d such that defection is always the best choice (e.g., prisoner’s dilemma).
Since the definition domain of p is [0, 1], in this case, p∗ /∈ [0, 1]. Thus, Eq. 45 has only two fixed points: p = 0 and p = 1.
If δ2 < M , we have

df(p)
dp

∣∣∣∣
p=0,δ2<M

< 0 and df(p)
dp

∣∣∣∣
p=1,δ2<M

> 0. [47]

Thus, only p = 0 (i.e. defectors take over the population) is stable. However, we find that

df(p)
dp

∣∣∣∣
δ2<M

· df(p)
dp

∣∣∣∣
δ2>M

< 0, [48]

which means δ2 > M can alter the stability of equilibrium points. If δ2 > M , p = 1 becomes stable but p = 0 is unstable, which
implies cooperators will take over the population.

Coexistence games:
If c > a and b > d, this game is a coexistence game. The best choice for an individual is to choose the opposite strategy of

her opponent’s. In this case, all of the three points (Eq. 46) are in [0, 1]. Hence the system has three equilibrium points.
When δ2 < M , we have

df(p)
dp

∣∣∣∣
p=0,δ2<M

> 0,
df(p)

dp

∣∣∣∣
p=1,δ2<M

> 0, and df(p)
dp

∣∣∣∣
p=p∗,δ2<M

< 0 [49]

Thus, only p = p∗ is stable, which means cooperators and defectors will coexist in the equilibrium state.
But for δ2 > M , p = 0 and p = 1 becomes stable but p = (d − b)/(a − b − c + d) is unstable, which means cooperators or

defectors will finally take over the population. Cooperators and defectors can never coexist.

Coordination games:
If a > c and d > b, the game is a coordination game. The best choice is to choose the same strategy as your opponent.

Similar to the coexistence game, all of the three equilibrium points exist. However, given δ2 < M , the interior point (p∗) is no
longer stable and the two points on the boundary (p = 0 and p = 1) are stable. Thus, the system will eventually converge to
full-cooperator or full-defector state according to the initial configuration.

If δ2 > M , the coordination game can be transformed to a coexistence game. Specifically, p∗ becomes stable and another
two points are unstable, which means cooperators and defectors will coexist.
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Generally, under the condition of δ2 > M , the changes on dynamics can be viewed as doing a transformation on the payoff
matrix. For any games, it can transform the payoff matrix to its opposite one, i.e.,(

a b
c d

)
⇒

(
−a −b
−c −d

)
.

Thus, compared to the classical outcome, which occurs for δ2 < M , we have the following effects when δ2 > M : for a dominance
game the dominant strategy is swapped; coexistence games are transformed to coordination games; a coordination games are
transformed to coexistence games.

A.2. Stationary distribution. The analysis above is obtained by omitting the stochastic term, reducing the analysis to an ODE. If
we retain the stochastic term, Eq. 45 is a Markov process that has two absorbing states p = 0 and p = 1. Thus, this Markov
process is not ergodic and the stationary distribution is not unique. A technical approach to studying this is to assume the
boundaries are reflecting, so that no states are absorbing (3), conditioned on n > 0. Mechanistically, this means that when
the number of cooperators (defectors) becomes zero, a new cooperator (defector) arises instantly in the population. Thus the
definition domain of p becomes [1/M, 1 − 1/M ] approximately. Similar techniques are also used in (6). This approach makes
the Markov process ergodic and the stationary distribution (denoted by v∗(p)) is unique. A frequency p with greater density in
stationary distribution means that trajectories spend more time in the neighborhood of p. The stationary distribution v∗(p) is
the solution of the following Fokker-Planck equation:

− d
dp

A(p)v∗(p) + 1
2

d2

dp2 B(p)v∗(p) = 0 [50]

where A(p) and B(p) is given by

A(p) =sp(1 − p)
(

1 − δ2

M

)
[b − d + (a − b − c + d)p] [51a]

B(p) =(δ1 + 1)Bp(1 − p)
2M

[51b]

The solution of this equation can be expressed explicitly (3):

v∗(p) = N
B(p) exp

[
2

∫ p

0

A(p′)
B(p′) dp′

]
, [52]

where N is a normalization constant such that ∫ 1−1/M

1/M

v∗(p)dp = 1. [53]

By some basic manipulations, we obtain the stationary distribution. That is

v∗(p) = N M

(δ1 + 1)Bp(1 − p) exp
[

2sM

(δ1 + 1)B

(
1 − δ2

M

)
[(b − d)p + 1

2(a − b − c + d)p2]
]

[54]

In the following analyse we omit N since it does not affect the shape of the distribution. We find that Eq. 54 is the product
of two components:

v1(p) = M

(δ1 + 1)Bp(1 − p) [55a]

v2(p) = exp
[

2sM

(δ1 + 1)B

(
1 − δ2

M

)
[(b − d)p + 1

2(a − b − c + d)p2]
]

. [55b]

Here, v1(p) is an U-shape distribution, where the boundaries p = 1 and p = 0 have the largest probability density. For v2(p),
since the exponential function is monotonic increasing, the shape of v2(p) is determined by the quadratic function inside. If
δ2 < M , for the prisoner’s dilemma (dominance game), v2(p) achieves its extremum at p = 0. For a coordination game or a
coexistence game, v2(p) achieves its extremum in the interior (p = p∗) or on the boundary (p = 0 and p = 1) respectively. If
δ2 > M , the maximum of v2(p) in the case of δ2 < M is now turned to be minimum, and vice versa.

if (δ1 + 1)B is small, the shape of v∗(p) is mainly determined by v2(p) because exponential function is dominant. Thus,
we can see the humps of the stationary distribution are in accordance with the stable equilibria in the deterministic analysis.
And large δ2 can alter the position of the humps in stationary distribution, which confirms that large δ2 can transform the
dynamics of a game. However, if (δ1 + 1)B is large, v∗(p) is dominated by v1(p). The stationary distribution is always U-shape,
so all games have similar properties with coordination games. This kind of transformation is not found in ODE-based analysis.

Thus, we can conclude that for a coexistence game, the previously condition we derived for transformation into a coordination
game, δ2 > M , is actually conservative, since δ1 also works to transform the game into a coordination game. However, for a
coordination game, the condition δ2 > M is liberal, since the heterogeneity in variance (large δ2) should offset the effects of δ1
first when it tries to transform the game into a coexistence game.
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A.3. Games with multiple strategies. All prior analysese have focused on games with only two possible actions. Here we extend
our analysis to the case of games with more than two strategies, which includes the famous rock-paper-scissors game with
non-transitive payoff structure. For a two-player game with m strategies, suppose its payoff matrix is

A =

 a11 · · · a1m

...
. . .

...
am1 · · · amm

 .

Let ni denote the number of individuals who adopt strategy i (the population size is n =
∑

ni), and pi denote the frequency
of strategy i. This gives pi = ni/n. Collecting all frequencies, we get a vector p = [p1, · · · , pn]. The payoff of individuals with
strategy i is

πi = (Ap)i, [56]

and its growth equation is

dni = ni[α + sπi − λn]dt +
√

ni(δ1B + δ2sπi + D + λn)dW
(i)
t . [57]

Applying Itô’s lemma

dpi =
m∑

k=1

∂pi

∂nk
dnk + 1

2

m∑
k=1

∂2pi

∂n2
k

(dnk)2, [58]

and separating the timescale of n and p (assuming α ≫ s), we obtain the stochastic differential equation for pi:

dpi = s
(

1 − δ2

M

)
pi (πi − π̄) dt +

√
(δ1 + 1)Bpi

M
dW

(i)
t − pi

m∑
j=1

√
(δ1 + 1)Bpj

M
dW

(j)
t [59]

where π̄ =
∑

piπi is the average payoff. This is a n − 1 dimensional system. For large M , the diffusion term can also be
ignored. This shows that for games with multiple strategies, when δ2 > M , the sign of the drift term can also be changed. And
so once again, similar to the case of two-action games, we find that large heterogeneity in offspring variance due to payoff
(large δ2) can reverse the direction of evolution.

Using similar techniques, we can also analyze the stationary distribution with reflecting boundaries. Suppose the stationary
distribution is v∗(p) = v∗(p1, p2, · · · , pn−1). The corresponding Fokker-Planck equation is

−
n−1∑
i=1

∂

∂pi
Ai(p)v∗(p) + 1

2

n−1∑
i,j=1

∂2

∂pi∂pj
Bij(p)v∗(p) = 0, [60]

where

Ai(p) =
(

s − sδ2

M

)
pi(πi − π̄) [61]

Bij(p) =
{

− (δ1+1)B
M

pipj i ̸= j
(δ1+1)B

M
pi(1 − pi) i = j

. [62]

Unfortunately, it is difficult to obtain an explicit solution for this equation. And so we resort to simulations to show that large
offspring variance can qualitatively change the directions of evolution and the stationary distribution (Fig. S5).

B. Dynamics in slow-growing populations. In all our analyses above we have assumed that the net baseline growth rate,
α = B − D, is sufficiently large compared to selection intensity s, so that the population rapidly approaches carrying capacity.
In this setting the analysis can be simplified to a one-dimensional system (for two-strategy games), by separation of timescales.
By contrast, in this section we focus on the case in which the net baseline growth rate of the population is small. In particular,
we study the case when baseline growth has the same order as selection, α = O(s). In this regime the population grows very
slowly and fixation of one type or another typically occurs long before reaching carrying capacity. The key question still
remains: can large offspring variance qualitatively change the evolutionary outcome? We analyze this question in the case of
the donation game.
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B.1. Fixation probability. Since the system can no longer be simplified to a single dimension along the slow manifold, the fixation
probability will now depend on the initial population size as well as the initial frequency of cooperators. Suppose there are n0
individuals and a portion p0 of them are cooperators initially. Given Eq. 11, the fixation probability ρ(p0, n0) of cooperators
satisfies the following backward Kolmogorov equation (in the following derivation, we omit the subscripts and write the fixation
probability as ρ(p, n)): { Gρ(p, n) = 0,

ρ(1, n) = 1, n > 0
ρ(0, n) = 0, n > 0

[63]

where

Gf =
[

−scp(1 − p) + δ2sc
p(1 − p)

n

]
∂f

∂p
+ [α + s(b − c)pn − λn2]∂f

∂n

+(δ1B + D + λn)p(1 − p)
2n

∂2f

∂p2 + (δ1B + D + λn)n
2

∂2f

∂n2 [64a]

is the infinitesimal generator of Eq. 11. In the neutral case (s = 0), we can verify that the solution of Eq. 63 is ρ = p. Thus, the
fixation probability equals the initial frequency p0 when s = 0. For weak selection, inspired by the form of fixation probability
in Eq. 20 and the boundary conditions of Eq. 63, we make the ansatz that the solution has the following form (5)

ρ(p, n) = p + sp(1 − p)ϕ(n) + o(s). [65]
Substituting Eq. 65 into Eq. 63 and only retaining the first-order term of s (note that α = O(s) and λ ≪ s due to the large
carrying capacity), we can obtain

− c + δ2c

n
− δ1B + D

n
ϕ + (δ1B + D)n

2 ϕ′′ = 0. [66]

This is an Euler-Cauchy equation, whose solution is

ϕ(n) = A1n2 + A2

n
− cn

δ1B + D
+ δ2c

δ1B + D
. [67]

where A1 and A2 are arbitrary constants. Substitution into Eq. 65 yields

ρ(p, n) = p + sp(1 − p)
(

A1n2 + A2

n
− cn

δ1B + D
+ δ2c

δ1B + D
.
)

[68]

To satisfy the boundary conditions (i.e. ρ(0, n) = 0 and ρ(1, n) = 1), p(1 − p)ϕ(n) must equal to 0 when p = 0 and p = 1, which
has already been satisfied. Furthermore, when c = 0, cooperators and defectors always have the same payoffs. Thus, in this
case, the evolution is also equivalent to a neutral drift and the fixation probability must equal p, which yields p(1 − p)ϕ(n) = 0
for all p when c = 0. We obtain A1 = A2 = 0. So the fixation probability of cooperators is

ρ = p0 − sc

δ1B + D
p0(1 − p0)(n0 − δ2). [69]

Note that this expression for the fixation probability is similar to Eq. 20 (ignoring the difference in the coefficient), but the
carrying capacity M has been replaced by initial population size n0. If

δ2 > n0, [70]
then the fixation probability exceeds p0, which means cooperation is be favored by selection. The form of this condition is
similar to Eq. 21. Moreover, numerical simulations and individual-based simulations (based on compound Poisson processes)
both verify that this condition accurately predicts when cooperation will be favored in a slow-growing population (Fig. S6 and
S7).

B.2. Extinction and persistence. When α ∼ s the population size grows slowly. For small initial population size n0, fixation occurs
rapidly, so that fixation typically occurs before the population reaches carrying capacity. After cooperators or defectors become
fixed, the system then becomes a one-dimensional process, where all individuals have the same payoff and thus have the same
variance in offspring number. The population will then either go extinct, or grow logistically until the population reaches
the carry capacity (Fig. S8) (and thereafter persist for exponentially long in the carrying capacity, see Appendix B). Here,
we analyze the process of extinction or persistence in the case when cooperators fix (the procedures are analogous in case of
defectors fixing first).

If cooperators become fixed, the system then contains only cooperators for all subsequent evolution. Therefore it becomes a
one-dimensional diffusion process, which is given by

dx = x[α + s(b − c) − λx]dt +
√

x(δ1B + D + λx)dW
(1)
t . [71]
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By analyzing the corresponding deterministic system (δ1 = δ2 = 0), the carrying capacity of cooperators is given by

MC = α + s(b − c)
λ

. [72]

For the stochastic system, we first analyze the case of no competition for resources (i.e., λ = 0, and so no carrying capacity).
The equation becomes

dx = x[α + s(b − c)]dt +
√

x(δ1B + D)dW
(1)
t . [73]

When we ignore the stochastic term, this equation represents exponential growth. The population size grows without bound.
When the stochastic term is considered, given there are xf cooperators after they become fixed, there are two scenarios: grow
to infinity or go extinct, since x = 0 is an absorbing state. The probability that cooperators go extinct given that there are xf

cooperators after their fixation can be computed by (3)

PC =

∫ ∞
xf

s(z)dz∫ ∞
0 s(z)dz

. [74]

where

s(z) = exp
(∫

−2E(z)
D(z) dz

)
, E(z) = z[α + s(b − c)], D(z) = δ1Bz + Dz. [75]

After some manipulations, we obtain

PC = exp
(

−2(s(b − c) + α)xf

δ1B + D

)
, [76]

which is termed as perishing probability here. And the probability of growing to infinity is thus 1 − PC .
When competition for resources is considered (λ ̸= 0), the population can never grow without bound. There are only one

absorbing state x = 0 and the population size is bounded due to the restriction of carrying capacity. Thus, for all xf , the
probability that cooperators finally perish is 1. However, the population usually does not perish directly after they fix, but the
population still grows to the carrying capacity and fluctuates around it for a very long time (in fact, exponentially long in the
carrying capacity (see (7) and Appendix B)) before their extinction (Fig. S8). Thus, when the carrying capacity is large, in any
practical application the population will not go extinct once it has reached carrying capacity. So we can artificially divide
the dynamics into two scenarios: given there are xf cooperators after they become fixed, the cooperators will either perish
directly (Fig. S8A), or they grow to carrying capacity and then fluctuate around it for an extremely long time (Fig. S8C).
Since the initial population size is small, the competition among individuals can be ignored before the population size reaches
the carrying capacity. The probability of perishing directly can be approximated by the case of no competition, i.e. PC . And
the probability of reaching carrying capacity is approximated by 1 − PC . This approximation agrees well with simulations
(Fig. S9A).

Similarly, if defectors become fixed, then the extinction probability can also be obtained using the same method. That is

PD = exp
(

− yf α

δ1B + D

)
. [77]

And if they do not go extinct rapidly they will grow and finally reach their carrying capacity, which is given by

MD = α

λ
. [78]

Note that the carrying capacities for cooperators and defectors are no longer identical compared to the case of α ≫ s. The
cooperators have an extra advantage in that their carrying capacity is larger than defectors’.

Now, we consider the two processes (fixation and extinction/persistence) together. Suppose there are x0 cooperators and y0
defectors in the population initially. We call the probability that cooperators become fixed and then keep growing to carrying
capacity MC the “persistence probability" (for cooperators). Thus, the persistence probability is determined by the combination
of the fixation probability and (one minus) the extinction probability. However, the exact number of cooperators or defectors
when they become fixed (i.e. xf and yf ) is difficult to analyze. So it is difficult to give an explicit expression for the persistence
probability. However, intuitively, since fixation is fast and the growth rate α is small, the population size after fixation will not
change much compared to the initial population size. Thus, we expect that xf and yf have the same order as n0.

We have already shown that when δ2 > M , cooperation will be favored by the selection. Here, we show that even when
δ2 < M , cooperators may have a greater persistence advantages than defectors. By Eq. 69, we see that when δ2 < M , larger
variance in due to baseline births δ1 is beneficial to the fixation of cooperators, but it also leads to more likely extinction
after they fix (see Eq. 76). Thus we predict that intermediate δ1 is most beneficial for cooperators’ persistence. For defectors,
larger δ1 is detrimental to their fixation and also detrimental to their growth to MD after fixation. Thus, large δ1 is always
detrimental to defectors persisting (Fig. S9B). For some intermediate δ1, cooperators may have greater persistence probability
than defectors, which is a different sense in which offspring variance can foster the evolution of cooperation.
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Similarly, we find that given a fixed initial frequency p0, larger initial population size n0 is detrimental to cooperators’
fixation but beneficial for their growth to carrying capacity MC after fixation (since xf ∼ n0). And so we also predict that an
intermediate value of the initial population size n0 is most beneficial to cooperators’ persistence. But for defectors, larger n0 is
always beneficial for defector’s persistence (Fig. S9C).

Based on the discussions above, we conclude that cooperators may have an advantage over defectors in stochastic populations
for three distinct reasons: (1) larger fixation probability; (2) larger carrying capacity; (3) larger persistence probability.

Appendix A: Details of simulations

Two methods of simulation are used in this work: numerical simulations by sampling the SDE, and Monte Carlo simulations
based on compound Poisson process. Here, we provide more details about these simulations.

Numerical simulations:
Numerical simulations are based on Eq. 8. We choose a small time step ∆t = 0.01 and set the initial configuration (x0 and y0).
The Euler-Maruyama scheme is used to sample Eq. 8 (8), which is given by

xt+∆t = xt + xt(α + sπC − λ(xt + yt))∆t +
√

xt(δ1B + δ2sπC + D + λ(xt + yt))∆W
(1)
t [79a]

yt+∆t = yt + yt(α + sπD − λ(xt + yt))∆t +
√

yt(δ1B + δ2sπD + D + λ(xt + yt))∆W
(2)
t . [79b]

Here, ∆W
(1)
t ∼ N(0, ∆t) and ∆W

(2)
t ∼ N(0, ∆t) are two independent Gaussian random variables. In each time step, by

sampling random numbers from ∆W
(1)
t and ∆W

(2)
t , we can obtain the population composition in the next time step. By

iteration of this procedure, a trajectory of evolution is obtained. Then, we can simulate a large number replicate trajectories
and compute the fixation probability.

Monte Carlo simulations:
Monte Carlo simulations must rely on a explicit reproducing process. Here, as we showed in Section 3, we assume the birth
process is a compound Poisson process and the death process is a classic Poisson process.

For compound Poisson process, the times of birth events is still a classic Poisson process. Thus, we can consider the birth
events and death events together. We refer to them collectively as the updating events. In the following, we only illustrate the
procedure of simulation by taking the Poisson-Poisson process as an example, which is similar to Poisson-Negative binomial
process.

For a cooperator, its birth event takes place at rate θC (i.e., the parameter of Mt in Section 3), and θD for a defector.
In each birth event, the litter size obeys a Poisson distribution with parameter µC (µD for a defector). Using the property
of Poisson process that the sum of two Poisson process is also a Poisson process with rate summed, the birth events of all
cooperators take place at rate xθC , and yθD for defectors. Similarly, the death events take place at rate Dx + λx(x + y) for
cooperators, and Dy + λy(x + y) for defectors. Thus, the updating events take places with rate

R = xθC + yθD + Dx + λx(x + y) + Dy + λy(x + y). [80]

In the simulation, we first set the initial configuration of population (x0 and y0). Suppose in time T , there are xT cooperators
and yT defectors. Since the time interval between two consecutive events of a Poisson process follows an exponential distribution
with the same parameter of the Poisson process, we sample a value of ∆T according to an exponential distribution with
parameter R. Then, in time T + ∆T , the population composition is computed by the following rule:
Step 1. We generate a random number r which is uniformly sampled from [0, 1].
Step 2. The population composition updates in one of the following ways according to the value of r.

• Cooperators’ birth: If r < xθC/R (with probability xθC/R), then xT +∆T = xT + δx and yT +∆T = yT , where δx is an
integer randomly sampled from a Poisson distribution with parameter µC (Poisson-Poisson process).

• Defectors’ birth: If xθC/R ≤ r < (xθC + yθD)/R (with probability yθC/R), then xT +∆T = xT and yT +∆T = yT + δy ,
where δy is an integer randomly sampled from a Poisson distribution with parameter µD (Poisson-Poisson process).

• Cooperators’ death: If (xθC + yθD)/R ≤ r < (xθC + yθD + Dx + λx(x + y))/R (with probability (Dx + λx(x + y))/R),
then xT +∆T = xT − 1 and yT +∆T = yT .

• Defectors’ death: If ((xθC + yθD + Dx + λx(x + y))/R ≤ r < 1 (with probability (Dy + λy(x + y))/R), then xT +∆T = xT

and yT +∆T = yT − 1.

Thus, we obtain the population composition in time T + ∆T . Next, we sample another ∆T , and the algorithm enters the
next cycle. Recording all time steps and the corresponding population composition, we obtain a trajectory of evolution.
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Appendix B: Proof for exponential extinction time

Here, we show that if the number of a phenotype has reached its carrying capacity, the expected time for its extinction is
exponentially long in the carrying capacity.

We consider a phenotype whose growth rate is r once fixed in the population (r = α + s(b − c) for cooperators and r = α for
defectors). Supposing the carrying capacity is M , we have λ = r/M . The evolutionary equation after they are fixed becomes

dx = rx
(

1 − x

M

)
dt +

√
x(δ1B + D)dW

(1)
t . [81]

Supposing the population has already reached the carrying capacity (x = M), the expected time of extinction (denoted by τ)
is (3)

E[τ ] = 2
∫ M

0

(∫ z

0
s(y)dy

)
m(z)dz [82]

where

s(z) = exp
(∫

−2rz(1 − z/M)
z(δ1B + D) dz

)
= exp

(
− 2r

δ1B + D

(
z − z2

2M

))
, [83a]

m(z) =1/(z(δ1B + D)s(z)). [83b]

Remembering that for a convex function f(x), it satisfies

(b − a)f
(

a + b

2

)
<

∫ b

a

f(x)dx, [84]

we have

E[τ ] = 2
∫ M

0

(∫ z

0
s(y)dy

)
m(z)dz

> 2
∫ M

0
z exp

(
− 2r

δ1B + D

(
z

2 − z2

8M

))
m(z)dz [since s(x) is convex]

= 2
δ1B + D

∫ M

0
exp

(
− 2r

δ1B + D

(
−z

2 + 3z2

8M

))
dz

= 2
δ1B + D

∫ M

0
exp

(
− 2r

δ1B + D

z

2

(
−1 + 3z

4M

))
dz

>
2

δ1B + D

∫ M

0
exp

(
r

δ1B + D

z

4

)
dz [since z(1 − 3z

4M
) > z

4 ]

= 8
r

exp
(

r

4(δ1B + D)M

)
. [85]

Thus, for sufficiently large M , the time for extinction is very long. In practice, this duration of time may be so long that we
reasonably say the population will persist, conditional on reaching carrying capacity.
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Fig. S1. The initial frequency of cooperators and δ1 can affect the fixation probability. Under neutral drift, the fixation probability equals to the initial frequency of
cooperators, p0. The panels show the fixation probabilities minus p0. If ρ − p0 exceeds zero cooperation is favored by natural selection, and vice versa. (A) For all δ1,
cooperation is never favored by selection, although large δ1 makes the fixation probability closer to neutral drift. Furthermore, the fixation probability for intermediate initial
frequency p0 deviates the most from neutrality. (B) By contrast, large δ2 can cause selection to favor fixation of cooperators. For the case of M = 1, 000, when δ2 < 1, 000,
cooperation is never favored and p = 0.5 is the most detrimental to the evolution of cooperation. But when δ2 > M , all fixation probabilities exceed that of neutral drift, and
p0 = 0.5 is the most beneficial to cooperation. And when δ2 = M , the fixation probability equals to the neutral case. Numerical simulations (dots) agree well with analytical
approximations (dashed lines). Parameters: B = 2, D = 1, b = 1.1, c = 1, s = 0.001, n0 = 500, λ = 10−3(M = 1000), δ2 = 1 (A), δ1 = 2 (B).
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Fig. S2. Simulations showing fast and slow manifolds. (A) When the growth rate is much larger than selection intensity (α ≫ s), population size equilibrates much faster
than the frequency of cooperators: n is the fast variable and p is the slow variable. In a deterministic analysis, all trajectories rapidly approach the slow manifold, without
changes in p, and then move along the slow manifold. (B) Simulations of the stochastic model illustrate the timescale separation. For six different settings of initial states (solide
point), we show trajectories produced by numerical simulation of Eq. 8. The trajectories exhibit behavior that agrees well with the deterministic analysis of the fast-slow system.
Parameters: B = 2, D = 1, λ = 0.001, δ1 = δ2 = 1, b = 1.1, c = 1, s = 0.001.

18 of 26 Guocheng Wang, Qi Su, Long Wang, and Joshua B. Plotkin



0.499

0.501

0.503

0 100 200 300 0 100 200 300
2δ 2δ

M = 100
M = 200

Poisson-Poisson Poisson-Negative binomial

0.497

A B

0.4 5.16
5 67

i i

i i

s
s

θ π
µ π
= −
= +

0.499

0.501

0.503

0.497

0.48 6.19
0.45 3.32

i i

i i

s
q s
θ π

π
= −
= +

0.4 1.96
5 27

i i

i i

s
s

θ π
µ π
= −
= +

0.48 2.35
0.45 1.34

i i

i i

s
q s
θ π

π
= −

= +

Fig. S3. Selection for cooperation in a compound Poisson birth process. We simulated a compound Poisson birth process with either a Poisson-distributed litter size (A)
or a negative binomial litter size (B). The parameters of the birth process (θi and µi in panel A; θi and qi in panel B) can be chosen to satisfy our general conditions for the
mean and variance in total offspring produced per unit time, for any choice of δ1 > 1, δ2, and B. Two examples with the parameters that correspond to (δ1 = 6, δ2 = 60)
and (δ1 = 6, δ2 = 140) are shown in each panel. Blue squares indicate the fixation probability of cooperators, starting from an initial population with x0 = y0 = 50,
observed in 5 × 107 replicate Monte Carlo simulations, with carrying capacity either M = 100 or M = 200. Selection favors cooperation if the fixation probability ρ exceeds
the initial fraction of cooperators, 0.5 (horizontal dashed line). The solid lines plot our analytical approximation for the fixation probability (Eq. 20). As predicted by our analysis,
cooperation is favored when δ2 > M . Parameters: B = 2, D = 1, δ1 = 6, s = 0.001, b = 1.1, c = 1, m = 5 (negative binomial), x0 = y0 = 50, λ = 1/100
(M = 100) or λ = 1/200 (M = 200).
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Fig. S4. How demographic stochasticity can favor cooperation or defection. Stochastic fluctuations away from the slow manifold, followed by rapid return, can induce an
advective force on the frequency of cooperators. For simplicity we consider constant payoffs, where πC and πD are independent of the number of cooperators and defectors.
The ellipses illustrate the variance-covariance structure of two-dimensional Gaussian fluctuations around the slow manifold from a given point x = M/2 and y = M/2 (red
point O). (A) When πC = πD , fluctuations from point O are isotropic, shown as a circle. We consider four representative fluctuations from point O, X−, X+, Y−, Y+, and
the following points of return X′

−, X′
+, Y ′

−, Y ′
+ to the slow manifold. For isotropic fluctuations there is no expected change in p after return to the slow manifold. (B) For

πC < πD , the Gaussian fluctuations are an-isotropic, shown as an ellipse, with larger fluctuations in the number of defectors. This asymmetry leads to an expected increase
in cooperator frequency p after return to the slow manifold, as indicated by the blue arrow. (C) For πC > πD , the larger fluctuation occurs in the number of cooperators, which
leads to an expected decrease in cooperator frequency after return to the slow manifold. These effects of an-isotropic noise are similar to those discussed by (9), but they arise
here even when both types have the same baseline birth rate and the same carrying capacity.
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Fig. S5. Demographic noise produces qualitatively different evolutionary outcomes in a game with three strategies. We show evolutionary trajectories in simplices
representing three strategic frequencies in three different games (rows A, B, C). Blue trajectories show simulations of the stochastic system starting from the red point; and gray
trajectories show the dynamics predicted by the classic replicator dynamics in an infinite population. When the offspring variance related to payoff, δ2, is sufficiently large, it can
convert an unstable (stable) equilibrium point into a stable (unstable) equilibrium (A, B). For the rock-paper-scissors game (row C), the classic replicator dynamics predicts a
spiral sink towards a stable point with all three strategies present. The stochastic system does not follow any of these trajectories exactly, but its direction can be reversed when
δ2 is large (panel C shows the ensemble average trajectory over 1000 simulations). Furthermore, if we assume that the boundary is reflecting, the stationary distributions
(conditioned on n > 0) also show that large δ2 qualitatively changes the qualitatively (D, E, F). Parameters: B = 2, D = 1, s = 0.001, δ1 = 2, λ = 10−4.
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Fig. S6. Cooperation is favored if δ2 > n0 in a slow-growing population. When the baseline growth rate is small, namely α ∼ s, we can still obtain an analytic prediction
for the fixation probability of cooperation. In this figure, each pixel represents the fixation probability minus p0 (the neutral fixation probability). The blue region means
cooperation is favored and the red region means defection is favored. (A) shows the fixation probabilities sampled from the stochastic differential equation (Eq. 8). (B) is
obtained from our analytical approximation (Eq. 69). As predicted, when δ2 exceeds the initial population size, namely, δ2 > n0, cooperators are favored by selection in a
slow-growing population. Parameters: b = 1.1, c = 1, s = 0.005, λ = 10−5, B = 2, D = 1.995.
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Fig. S7. Selection for cooperation in a compound Poisson process, for a slow-growing population. Here, we consider the case of a slow-growing population, with α ∼ s.
We simulated a compound Poisson birth process with either a Poisson-distributed litter size (A) or a negative binomial litter size (B). The parameters of the birth process (θi and
µi in panel A; θi and qi in panel B) can be chosen to satisfy our general conditions for the mean and variance in total offspring produced per unit time, for any choice of
δ1 > 1, δ2, and B. Two examples with the parameters that correspond to (δ1 = 2, δ2 = 10) and (δ1 = 2, δ2 = 30) are shown in each panel. Blue squares indicate the
fixation probability of cooperators, starting from an initial population with x0 = y0 = 10 (n0 = 20), observed in 107 replicate Monte Carlo simulations. Selection favors
cooperation if the fixation probability ρ exceeds the initial fraction of cooperators, p0 = 0.5 (horizontal dashed line). The solid lines plot our analytical approximation for the
fixation probability (Eq. 69). As predicted by our analysis, cooperation is favored when δ2 > n0 in a slow-growing population. Parameters: B = 2, D = 1.998, s = 0.005,
b = 1.1, c = 1, λ = 10−6, δ1 = 2, m = 5(B).
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Fig. S8. Sample trajectories of evolution in a slow-growing population. If the baseline growth rate is small (α ∼ s), given a small initial population then fixation always
occurs before the population size reaches carrying capacity. Since there is only one absorbing state (x = y = 0), all trajectories eventually absorb into extinction. However, if
one phenotype reaches carrying capacity, the time to absorption is exponentially long in the carrying capacity, so that the population effectively persists for large finite times. We
therefore classify the trajectories into four types: (A) Cooperators fix but then perish. (B) defectors fix but then perish. (C) Cooperators fix and then reach their carrying capacity
MC . (D) Defectors fix and then reach their carrying capacity MD . Parameters: b = 3, c = 1, s = 0.01, B = 0.25, D = 0.24, x(0) = y(0) = 10, λ = 2 × 10−5,
δ1 = δ2 = 1.
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Fig. S9. Persistence probabilities of cooperators and defectors in slow-growing populations. When the baseline growth rate is small (i.e., α ∼ s), fixation of one type or
the other will occur before the population reaches carrying capacity. The probability that a phenotype not only fixes, but also reaches its carrying capacity in subsequent
evolution is called the persistence probability. (A) Take cooperators as an example. If there are xf cooperators when they become fixed, the probability that they grow to
carrying capacity can be estimated by the probability that the population grows without bound in the case without resource competition. This approximation agrees well with
simulations. (B) For cooperators, values of δ1 that are either too large or too small are both detrimental to cooperator persistence. Intermediate values of δ1 are most beneficial
to cooperator persistence. For defectors, larger δ1 is always detrimental to defector persistence. (C) Similarly, Intermediate values of the initial population size is most beneficial
to cooperator persistence. However, larger initial population sizes are always beneficial for defector persistence. These results agree with our theoretical analysis in Section B.2.
Parameters: b = 2, c = 1, s = 0.01, B = 0.1, D = 0.09, λ = 10−5, δ2 = 1, δ1 = 10 (C), x0 = y0 = 20 (B), p0 = 0.5 (C).
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