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Supplementary Information for

Identifying Regulation with Adversarial Surrogate

SI1 Feedback control in biological system models

Let the observed system be a non-linear dynamical system formulated by the stochastic di↵er-

ential state space model,

dx = f(x, d)dt+ ⌅(x, d)d⇠. (S.1)

where both the deterministic term f : Rn⇥b �! Rn and the stochastic term ⌅ : Rn⇥b �! Rn are

a function of the state and an external input d 2 Rb. The term d⇠ is an increment of a Wiener

process. For details on the formalization of continuous-time stochastic di↵erential equations we

refer the reader to Chapter 3 in [Åström, 2012].

Biological systems internally regulate some of the state variables, or, more generally, some

combinations of the state variables. We denote such an internally regulated combination by

c(t) 2 R and denote by cset the set-point value of the regulation such that the biological

system maintains a small deviation from the set-point value, namely kc(t) � csetk22 is small.

Human-engineered systems are commonly represented by two separate entities – a plant and

a controller. Biological systems, in contrast, are commonly modeled by a single dynamical

equation. Therefore, the controlled objective and the control signal in a biological system

model are implicit. Although control theory typically assumes the existence of a separate plant

and controller (see Chapter 1.2 in [Åström and Murray, 2021]), most theoretical results and

analysis tools, among them the analysis algorithm represented herein, do not require such a

separation [Cosentino and Bates, 2011].

We do not observe the complete state of the system, but some function of the internal state

that might be partial. Let y 2 Rm be a vector of observables which is some instantaneous

function of the internal state, the input and a white measurement noise v 2 Rm,

y = h(x, d, v). (S.2)

Since we only have access to the observations y, we seek some regulated combinations of ob-
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servations, which, assuming observability1, should hold for the internal variables. In this study

we present Identifying Regulation with Adverserial Surrogates (IRAS), a novel data analysis

algorithm that receives a dataset of observed systems and yields regulated combinations that

are jointly held by the observed system. These combinations are of two types: instantaneous

combinations and combinations of measurements that are observed along a fixed-length time

window.

SI2 Notations

Dynamical systems

• x(s) 2 Rn - state of system s

• ✓(s) - parameter vector of system s

• d(s) 2 Rb - external input to system s

• fs : Rn⇥b �! Rn, ⌅s 2 Rn⇥n �! Rn - functions describing the deterministic and stochastic

components of system s such that dx(s) = fs
�
x(s), d(s)

�
dt + ⌅s(x, d)d⇠(s) where dt is a

time increment and d⇠(s) is the increment of a Weiner process.

• y 2 Rm - observation obtained from system s

• v 2 Rm - measurement noise in system s

• h : Rn⇥b⇥m �! Rm - measurement equation of system s such that y(s) = h(x(s), d(s), v(s); ✓s)

Dataset

• z(s)k 2 Rm̃, m̃ = m+b - concatenation of the external known input d(s) and the observation

y(s) sampled at time t(s)k

• z(s)k:k+T 2 Rm̃⇥T+1 - concatenation of T samples, z(s)k:k+T =
h
z(s)k z(s)k+1 . . . z(s)k+T

i

• z(s)k,i 2 R - the ith entry of z(s)k

• Ns - number of samples (z(s)k ) obtained from system s

• M - number of observed systems

Regulated signal and combination

• c(s)set 2 R - set-point value of system s

1
Observability, in the sense of Control Theory, refers to the ability of determining the internal state of a

system given measurements, e.g. Chapter 1.7. in [Simon, 2006]
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• c(T,a,s)k 2 R - the value of the most regulated signal of system s at time k over a time-scale

of T consecutive samples

• gT : Rm̃⇥(T+1) �! R - the most regulated combination over a time-scale of T consecutive

samples for all M observed systems such that c(T,a,s)k = gT
⇣
z(s)k�T :k; ✓

(s)
⌘

Algorithm variables

• ⌦(T,↵,s) - a set that consists of N (T,↵,s) members, ↵ 2 {a, n, p}

• z(T,↵,s)k 2 Rm̃⇥(T+1) - a member of the set ⌦(T,↵,s)

• p⌦(T,↵,s) : Rm̃⇥(T+1) �! R - the distribution from which members were sampled to the set

⌦(T,↵,s)

• ✓̂(s)t 2 Rl - estimated parameters of system s in iteration t of IRAS

• ĝT,!t : Rl+m̃⇥(T+1) �! R - the estimated regulated combination, a function parameterized

by the parameters vector !t

• ĉ(T,↵,s,t)k 2 R - estimated regulated signal of system s at time k in iteration t of Algorithm

1 such that ĉ(T,↵,s,t)k = ĝT,!t

⇣
z(T,↵,s,t)k ; ✓̂(s)t

⌘

• pĉ(T,↵,s,t) : R �! R the distribution of ĉ(T,↵,s,t) such that ĉ(T,↵,s,t)k = ĝT,!t

⇣
z(T,↵,s,t)k ; ✓̂(s)t

⌘
.

• p̂(T,↵,s,t)b - value of bin b of the histogram of ĉ(T,↵,s,t)k over all k; B(T,s,t)
b - set of values

included in bin b

SI3 Problem formulation

As described in section SI1, the systems we observe are non-linear stochastic dynamical systems.

We analyze a dataset of observations of multiple similar systems, where the dynamic and

observation equations of system s are given by

dx(s) = fs
�
x(s), d(s)

�
dt+ ⌅s(x, d)d⇠

(s) ; y(s) = hs(x
(s), d(s), v(s)). (S.3)

Discrete time formulation Although we handle real-world systems that are by nature con-

tinuous time systems, we formulate the problem in discrete time so that the formulation is

suitable for working on sampled data. At time t(s)k , let z(s)k 2 Rm̃, m̃ = m+ b, be the concatena-

tion of the external known input d(s) 2 Rb and the observation y(s) 2 Rm sampled at time t(s)k

and let z(s)k,i be the i
th entry of z(s)k . Denote by Ns the number of samples obtained from system

s, and by M the total number of observed systems. Figure SI 1 illustrates the notation.
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Figure SI 1: Observed data notations. The kth observation of system s is noted by z(s)k 2 Rm̃

where the ith observable is noted by z(s)k,i 2 R. In this illustration the number of observed
systems is M = 3, the number of samples obtained from each system is Ns = 7 for all systems
s = 0, . . . ,M � 1 and there are two observables, m̃ = 2.

The methodology we hereby suggest for detecting regulated combinations is based on three

key principles. (i) A combination that is regulated by the system has a time-dependent structure

and is therefore sensitive to shu✏es of the time-axis that decouple the components z(s)k,i that

when coupled form z(s)k ; (ii) Di↵erent observed systems might regulate the same combination,

yet about di↵erent set-points; (iii) A measure for the regulated combination must be universal

in the sense that it is independent of physical units.

SI3.1 Single player optimization

In what follows we construct the optimization algorithm in several methodological stages. (i)

We begin by formulating a precise mathematical objective that follows the principles of a

regulated combination mentioned above, and construct an optimization scheme that minimizes

this objective. (ii) We then analyze the optimal solutions and show that they fail to capture the

regulated combination. (iii) To address this shortcoming, in the final stage we construct a two-

player optimization scheme that minimizes the same objective yet with respect to a dynamic

selection of the observations;

Let gT : Rm̃⇥(T+1) �! R be a function of T+1 consecutive observations, T � 0, parameterized

by ✓(s). For T = 0 it is a function of the elements in a single observation. The vector ✓(s) consists

of parameters which are specific to system s. We refer to gT (·) as the regulated combination

and to its output c(T,a,s)k as the regulated signal such that for all k � T ,

c(T,a,s)k + c(s)set = gT
⇣
z(s)k�T :k; ✓

(s)
⌘
+ c(s)set . (S.4)
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By not including the set-points c(s)set in gT (·) we follow the second key principle mentioned

above, namely, allowing the systems to regulate the same combination, yet about di↵erent set-

points for di↵erent systems. For the construction of an optimization criterion that derives the

regulated combination (in the common cases when it is unknown) we should define an objective

that obeys the key principles. Intuitively one expects the regulated signal to fluctuate about

the set-point with ‘small’ deviations, a notion that requires a normalization scheme. A popular

normalized measure for the fluctuations of a time-series is the coe�cient of variation, CV, which

is the standard deviation divided by the mean value. The CV measure does not consider time

dependencies in the signal which is our first key principle for a regulated combination. As a

result, in many cases one can obtain a combination of two independent observables having an

extremely low CV value. In addition, CV is not invariant to the physical units in use as its

value is changed by adding an o↵set (Celsius vs Fahrenheit), a violation of the third principle.

We propose to measure the ratio of standard deviations between the regulated signal and a

signal which is created by evaluating the regulated combination on time-shu✏ed observations.

We begin by examining the output of the regulated combination for two types of inputs.

The first is the authentic input signal that consists of T + 1 consecutive observations as in

(S.4). The second input consists of non-consecutive, shu✏ed observations, that aim to impact

the temporal correlations of the original data. We introduce these two sets for each system s,

corresponding to the two input types. The sets are denoted by ⌦(T,<type>,s), and are constructed

as follows.

The first, authentic dataset, consists of the original observed data,

⌦(T,a,s) =
n
z(T,a,s)k

�
= z(s)k:k+T

oN(T,a,s)�1

k=0
,

where N (T,a,s) = Ns � T . The second dataset, referred to as the ‘naively shu✏ed dataset’,

and denoted by ⌦(T,n,s), is composed of elements z(T,n,s)k , each being a concatenation of non-

consecutive bins. For T > 0, z(T,n,s)k contains a sequence of T consecutive bins from the

original data, followed by a bin drawn uniformly from the time-series z(s)0:Ns�1. This destroys the

correlations between the (T + 1)th bin and the preceding T bins. For T = 0, z(0,n,s)k has each

and every entry z(0,n,s)k,i drawn uniformly from z(s)0:Ns�1,i. Figure SI 2 illustrates the composition

of these sets. Formally,

⌦(T,n,s) =

8
><

>:
z(T,n,s)k

�
=

8
><

>:

h
z(s)k0,0

, z(s)k1,1
, . . . , z(s)km̃�1,m̃�1

i0
| ki ⇠ U [0, Ns � 1], if T = 0

h
z(s)
k̃:k̃+T�1

, z(s)jk

i
| jk ⇠ U [0, Ns � 1], if T > 0

9
>=

>;

N(T,n,s)�1

k=0

,

(S.5)

where k̃ = mod(k,Ns � T ) and N (T,n,s) � N (T,a,s). Note that the dataset ⌦(T,n,s) is stochastic,

and is thus not limited in size to N (T,a,s), the number of members in the authentic set. To obtain
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Figure SI 2: Illustration of the composition of the sets. (a) Examples of members z(T,a,s)k of the

authentic sets ⌦T,a,s. A member z(T,a,s)k has T +1 consecutive samples starting at sample k. (b)

Example of members z(T,n,s)k of the naive shu✏e sets ⌦T,n,s for T > 0. A member z(T,n,s)k has
T consecutive samples starting at sample k followed by a sample from a random time point.
(c) Example of members z(0,n,s)k of the naive shu✏e sets ⌦0,n,s. A member z(0,n,s)k has each
observable from a random time point.

su�cient variety in the shu✏ed data we suggest setting N (T,n,s) to be an order of magnitude

higher than N (T,a,s). Denote the distribution of members in the authentic set by p⌦(T,a,s) , and of

members in the naive shu✏e set by p⌦(T,n,s) , and note that by definition the support of p⌦(T,n,s)

contains the support of p⌦(T,a,s) , {z | p⌦(T,n,s)(z) > 0} ◆ {z | p⌦(T,a,s)(z) > 0}.
We continue by examining the output of gT (·), the regulated combination, for two types of

inputs,

c(T,↵,s)k
�
= gT

⇣
z(T,↵,s)k ; ✓(s)

⌘
, (S.6)

either when evaluated on members of the authentic set (↵ = a) or when evaluated on members

of the naive shu✏e set (↵ = n). Since gT (·) is a regulated combination, and following the

principle by which a regulated combination has a time-dependent structure, the time-series

c(T,a,s)k is expected to have a smaller standard deviation than the time-series c(T,n,s)k , in which

the time dependency of the regulated signal was violated by the shu✏e. Figure SI 3 illustrates

the time-series at the output of the regulated combination gT (·) in both cases. We can now form

an optimization problem to obtain the combination that is most sensitive to the time shu✏e

with respect to the ratio of standard deviations. We refer to this optimization as the ‘single

player’ because it involves only the ‘combination player’. As is shown below this optimization

6



Figure SI 3: Illustrating the time-series at the output of the regulated combination gT (·) when
evaluated on members of the authentic set ⌦(T,a,s) and on the naive shu✏ed set ⌦(T,n,s). The
shu✏ed data violates the relations between data-points resulting in an increased standard
deviation of the corresponding time-series.

turns out not to yield a signal that the system regulates.

Single-player formulation. Let ✓̂(s) 2 Rl, be a vector of estimated parameters of system s

and let ĝT,! : Rl+m̃⇥(T+1) �! R be a function parameterized by the parameter vector !. The

function ĝT,!⇤(·) of the regulated combination is the solution of the optimization problem that is

qualitatively written as,

!⇤,�⇤ = argmin
!,�

Es

�
⇣
ĉ(T,a,s)k ⇠ pĉ(T,a,s)

⌘

�
⇣
ĉ(T,n,s)k ⇠ pĉ(T,n,s)

⌘

s.t ĉ(T,↵,s)k = ĝT,!
⇣
z(T,↵,s)k ; ✓̂(s)t

⌘
, ↵ 2 {a, n}

z(T,↵,s)k ⇠ p⌦(T,a,s) ,

✓̂(s)� = ⇥̂� (p⌦(T,a,s)) ,

(S.7)

and exactly, for a given dataset, as,

!⇤,�⇤ = argmin
!,�

M�1X

s=0

�(ĉ(T,a,s)
0:N(T,a,s)�1

)

�(ĉ(T,n,s)
0:N(T,n,s)�1

)

s.t ĉ(T,↵,s)k = ĝT,!
⇣
z(T,↵,s)k , ✓̂(s)�

⌘
, ↵ 2 {a, n}

✓̂(s)� = ⇥̂�(⌦
(T,a,s)),

(S.8)

where ⇥̂� : R(1+m̃(T+1))⇥maxs[N(T,a,s)] �! Rl is a function parameterized by the parameters vector

�.

Optimization problem (S.8), illustrated in figure SI 4, has numerous di↵erent solutions that

yield zero objective value, among which is the solution

ĝT,!⇤

⇣
z̃; ✓̂(s)

⌘
=

8
<

:
0, if z̃ 2 [s⌦(T,a,s)

1, otherwise
. (S.9)
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Figure SI 4: Block diagram of optimization (S.8). The function ĝT,!(·) is optimized to yield the

minimal std-ratio, averaged over all systems s, between the time-series ĉ(T,a,s)k and ĉ(T,n,s)k which
are its outputs when evaluated on members of the authentic set ⌦(T,a,s) and the naive shu✏e
set ⌦(T,n,s) respectively. The function ⇥̂�, depending on parameters �, is used to estimate the
parameters ✓̂(s) based on the authentic inputs. The gradients, r� and r!, contribute to the
learning process with respect to the std-ratio objective.

Solution (S.9) is far from representing a combination that yields a biologically-plausible regu-

lated signal since it is simply ĉ(T,a,s)k ⌘ 0. While we are looking for a combination that represents

an active feedback mechanism, optimization (S.8) yields a solution that represents a feature

that the authentic time-series always obeys while the time-shu✏ed series do not.

SI3.2 Two player optimization

In Section SI3.1 we translated the principle by which a time-regulated combination has a struc-

ture that is sensitive to shu✏es of the time axis to a single-objective optimization that seeks to

minimize the ratio of the standard deviations, (S.8). We showed that this optimization scheme

does not yield a combination that the system indeed regulates, but, rather, a combination that

merely represents a feature that is always obeyed by the data. Analyzing its failure allows us

to identify a way to correct it: if we constrain the time-shu✏ing to include only shu✏es that

are plausible in light of the data distribution, we may prevent the optimization algorithm from

constructing artefact functions that rely solely on structural di↵erence between the measured

and shu✏ed ensembles. In what follows we construct an objective that yields a biologically

plausible combination. We do so by constructing IRAS, a two-player algorithm (Algorithm

1) in which one player aims to minimize the ratio of standard deviations, while the second

player seeks to keep the optimized combination biologically plausible. To do so we introduce

an adaptive shu✏e scheme based on the naive shu✏e set introduced above.

Recall that in each iteration t of the game, the ‘naive shu✏e set’, ⌦(T,n,s)
t , is constructed

stochastically by (S.5) - Algorithm 1 line 8. To construct the new shu✏e set, a ‘shu✏e player’

examines the ‘naive shu✏e set’, and, according to some fixed policy ⇧ (to be described below),

creates a subset, ⌦(T,p,s)
t ,

⌦(T,p,s)
t =

n
z(T,p,s,t)k

oN(T,p,s,t)�1

k=0
= ⇧

⇣
⌦(T,n,s)

t

⌘
, (S.10)
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Algorithm 1 IRAS

1: Input: {z(s)0:Ns�1}M�1
s=0 , T , l, ĝT,!0(·), ⇥̂�0(·), ⌘, nEpochs

2: for s = 0, . . . ,M � 1 do

3: Construct the authentic set ⌦(T,a,s)

4: end for

5: t 0 t < nEpochs
6: for s = 0, . . . ,M � 1 do

7: ✓̂(s)  ⇥̂�t(⌦
(T,a,s)) {System parameters estimation}

8: Construct the naive shu✏e set ⌦(T,n,s) {A stochastic set}
9: Construct the plausible shu✏e set ⌦(T,p,s)  ⇧(⌦(T,n,s)) {Shu✏e player}
10: ĉ(T,a,s)  ĝT,!t(⌦

(T,a,s), ✓̂(s)) {Combination player: regulated signal (authentic)}
11: ĉ(T,p,s)  ĝT,!t(⌦

(T,p,s), ✓̂(s)) {Combination player: regulated signal (shu✏ed)}
12: end for

13: sr  Es
�(ĉ(T,a,s))
�(ĉ(T,p,s))

{Std-ratio}
14: !t+1  !t � ⌘r!tsr, �t+1  �t � ⌘r�tsr {Update step}
15: t t+ 1
16: return !nEpochs,�nEpochs {The parameters of the regulated combination}

which we refer to as the ‘plausible shu✏e set’, and which has N (T,p,s,t) members denoted by

z(T,p,s,t)k - Algorithm 1 line 9. Once the ‘plausible shu✏e set’ set is created, a ‘combination

player’ has the objective of minimizing the mean (over all systems) of the ratio of standard

deviations, as in (S.8), except that now the regulated combination is evaluated on members of

the ‘plausible shu✏e set’, ⌦(T,p,s)
t , wheres in (S.8) it was evaluated on members of the ‘naive

shu✏e set’, ⌦(T,n,s)
t . In Algorithm 1, lines 10�11, the combination player evaluates the current

combination ĝT,!t on the two sets, in line 13 it averages the std-ratio over all systems and in

line 14 it updates the regulated combination to yield ĝT,!t+1(·) and ⇥̂�t+1(·).
In Section SI3.1 we analyzed the case where the policy of the shu✏e player is to leave the

naive shu✏ed set untouched such that ⌦(T,p,s)
t = ⌦(T,n,s)

t , and showed that such a policy yields

a combination that represents the feature that is most strongly maintained by the authentic

time-series, while being violated by the shu✏ed time-series. To confront this problem, assume

that the combination player has learned a combination ĝT,!t(·) whose violation is biologically

non-plausible, thus, a feature that the feedback controller in the system does not operate to

maintain. The combination player has learned such a feature because the naive shu✏e set

contains members that violate it, that is, members that are not biologically plausible. To

derive biologically plausible features, namely features that the controller actively works to

regulate, we would like the shu✏e player to eliminate the biologically non-plausible members

from the naive shu✏e set. This encourages the combination player to learn the combination

that is actively maintained by the controller in the system. To do so we set the shu✏e policy ⇧

such that the plausible shu✏e set resembles the authentic set with respect to the combination

ĝT,! while maintaining the di↵erences between the naive and authentic sets. Technically, the

9



Figure SI 5: The optimization flow in iteration t. (a) The shu✏e player examines the his-
tograms p̂T,a,s,t and p̂T,n,s,t of combination values derived from the authentic set and the naive
shu✏e set respectively and constructs the ‘plausible shu✏e set’ ⌦(T,p,s)

t . The combination player
ĝT,!t calculates the time-series ĉ(T,a,s,t)k and ĉ(T,p,s,t)k and its weights, !t, and the weights �t of

the function ⇥̂�t(·) (that estimates the system parameters ✓̂(s)t ) are updated as to minimize the
std-ratio. (b) Histograms of 13 bins with borders according to (S.18). The histogram p̂(T,p,s,t)

of combination values evaluated on the plausible shu✏e set resembles the histogram p̂(T,a,s,t) of
combination values evaluated on the authentic set while the histogram p̂(T,n,s,t) that corresponds
to the naive shu✏e set is significantly wider.

shu✏e player has an information constraint because it only has access to values under the

combination ĝT,!(z). Therefore, it outputs data-points distributed by z ⇠ p⌦(T,p,s) such that

p⌦(T,p,s)(z) = p⌦(T,n,s)(z)⇣�(ĝT,!(z)), (S.11)

where ⇣�(·) : R �! R is a function parameterized by �. Figure SI 5a illustrates the two-player

optimization where the objective of the combination player is,

Combination player !⇤,�⇤ = argmin
!,�

Es

�
⇣
ĉ(T,a,s)k ⇠ pĉ(T,a,s)

⌘

�
⇣
ĉ(T,p,s)k ⇠ pĉ(T,p,s)

⌘

s.t ĉ(T,↵,s)k = ĝT,!
⇣
z(T,↵,s)k ; ✓̂(s)t

⌘
, ↵ 2 {a, n}

z(T,↵,s)k ⇠ p⌦(T,a,s)

✓̂(s)� = ⇥̂� (p⌦(T,a,s)) .

(S.12)
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The objective of the shu✏e player is

Shu✏e player �(s)(!,�) = argmin
�

D (pĉ(T,a,s) , pĉ(T,p,s))

s.t pĉ(T,p,s)(c) =

Z

{z|ĝT,!(z,✓̂
(s)
� )=c}

p⌦(T,p,s)(z)dz

p⌦(T,p,s)(z) = p⌦(T,n,s)(z)⇣�(ĝT,!(z, ✓̂
(s)
� ))

✓̂(s)� = ⇥̂� (p⌦(T,a,s)) ,

(S.13)

where D(·, ·) is a distributional distance metric and ⇣�(·) : R �! R is a function parameterized

by �, as in (S.11). To solve the joint optimization problem (S.12-S.13) we use the iterative

algorithm, Algorithm 1. Let the estimated combination be ĝT,!t(·), a function parameterized

by the vector !t, where t is the optimization-iteration index. For a given policy ⇧, a gradient-

descent update step of the two-players optimization algorithm is given by,

"
!t+1

�t+1

#
=

"
!t

�t

#
� ⌘r2

664
!t

�t

3

775

M�1X

s=0

�(ĉ(T,a,s,t)
0:N(T,a,s)�1

)

�(ĉ(T,p,s,t)
0:N(T,p,s,t)�1

)

s.t ĉ(T,a,s,t)k = ĝT,!t

⇣
z(T,a,s)k ; ✓̂(s)t

⌘

ĉ(T,p,s,t)k = ĝT,!t

⇣
z(T,p,s,t)k ; ✓̂(s)t

⌘

✓̂(s)t = ⇥̂�t(⌦
(T,a,s)).

(S.14)

We are left with describing the technical details of the policy ⇧ that creates the plausible shu✏e

set that resembles the authentic set with respect to the combination ĝT,!.

SI3.2.1 Shu✏e player

Claim The optimal solution to the shu✏e player’s optimization problem (S.13) is

⇣�(c) =
pĉ(T,a,s)(c)

pĉ(T,n,s)(c)
. (S.15)
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Proof.

pĉ(T,p,s)(c) =

Z

{z|ĝT,!(z,✓̂
(s)
� )=c}

p⌦(T,p,s)(z)dz

(i)
=

Z

{z|ĝT,!(z,✓̂
(s)
� )=c}

p⌦(T,n,s)(z)⇣�(ĝT,!(z, ✓̂
(s)
� ))dz

(ii)
=

Z

{z|ĝT,!(z,✓̂
(s)
� )=c}

p⌦(T,n,s)(z)⇣�(c)dz

= ⇣�(c)

Z

{z|ĝT,!(z,✓̂
(s)
� )=c}

p⌦(T,n,s)(z)dz

= ⇣�(c)pĉ(T,n,s)(c)

(iii)
=

pĉ(T,a,s)(c)

pĉ(T,n,s)(c)
pĉ(T,n,s)(c)

= pĉ(T,a,s)(c)

(S.16)

where in (i) we substitute (S.11), in (ii) we inserted the projection, ĝT,!(z, ✓̂
(s)
� ) = c and in (iii)

we substitute (S.15). It immediately follows that,

D (pĉ(T,a,s) , pĉ(T,p,s)) |
⇣�(c)=

p
ĉ(T,a,s) (c)

p
ĉ(T,n,s) (c)

= D (pĉ(T,a,s) , pĉ(T,a,s)) = 0. (S.17)

According to (S.13), the policy ⇧ should perform changes to the naive shu✏e set to obey

the constraint by which the distributions of the authentic data and player-shu✏ed data, with

respect to ĝT,!, are identical, as manifested in (S.17). To do so the shu✏e player estimates these

distributions by constructing 1D histograms, and then samples members from the naive shu✏e

set to obtain similar histograms. In each iteration, let the distributions of the combination

values of each observed system be approximated by a histogram over the set of bins,

B(T,s,t)
b =

8
>>><

>>>:

{c | c 2 (�1,mink ĉ
(T,a,s,t)
k )}, if b = �1

{c | c 2 mink ĉ
(T,a,s,t)
k + [bWt, (b+ 1)Wt)}, if b = 0, . . . , B � 1

{c | c 2 [maxk ĉ
(T,a,s,t)
k ,1)} if b = B

(S.18)

where Wt =
1
B

⇣
maxk ĉ

(T,a,s,t)
k �mink ĉ

(T,a,s,t)
k

⌘
is the width of a single bin in the histogram, and

where the number of bins is a user-defined parameter. Then, the histograms of combination

values of members in a set are given by,

p̂(T,↵,s,t)b =
1

N (T,↵,s,t)

N(T,↵,s,t)�1X

k=0

I
⇣
ĉ(T,↵,s,t)k 2 B(T,s,t)

b

⌘
, (S.19)
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for ↵ 2 {a, p, s}, where I(·) is the indicator function. Figure SI 5b depicts the three 1D

histograms of the combination ĝT,!t , when evaluated on the di↵erent sets. In blue, the histogram

of authentic data, in green, the naive shu✏ed data, and in orange, the histogram of player-

shu✏ed data, the outcome of the policy ⇧ manifested in (S.15).

To block the biologically non-plausible pairs from entering the set of the ‘plausible shu✏ed

pairs’ we designed the policy ⇧ of the shu✏e player to minimize
PB�1

b=0 |p̂(T,p,s,t)b � p̂(T,a,s,t)b |,
thus creating the ‘plausible shu✏e set’ such that the distribution of the combination values

of its members resembles the distribution of combination values of members in the ‘authentic

set’. The implementation of (S.15) is performed by by stochastically blocking a fraction of

the members in the naive shu✏e set from entering the player-shu✏ed set. This is done by

estimating the fraction per each bin in the histogram.

For each combination value c, denote by �(c) the index of the bin in which c resides. For

each member in the naive shu✏e set, the shu✏e player draws a Bernoulli distributed random

variable such that,

P
⇣
z(T,n,s,t)k 2 ⌦(T,p,s)

t

⌘
= q(T,s)

�(ĉT,n,s,t
k )

(S.20)

where

q(T,s)b =
q̃(T,s)b

maxb q̃
(T,s)
b

, (S.21)

and

q̃(T,s)b =

8
>>>><

>>>>:

0, if b = �1
p̂
(T,a,s,t)
b

p̂
(T,n,s,t)
b

, if b = 0, . . . , B � 1

0, if b = B.

(S.22)

Consider bin B5 in figure SI 5b. This bin has the highest ratio between authentic data (blue)

and naive shu✏ed data (green) and thus it serves to normalize the Bernoulli parameters of all

bins, (S.21). All members of the naive shu✏e set that reside in bin B5 are transformed to

the player-shu✏ed set since its corresponding Bernoulli parameter is qT,s5 = 1. The Bernoulli

parameters for all other bins is calculated by evaluating the ratio (S.22), between the blue

and green histograms and normalizing by (S.21). We note that since ⌦(T,n,s) � ⌦(T,a,s) it is

guaranteed that q̃(T,s)b is well defined.

SI4 Implementation details

ĝT,!(·). The function ĝT,! implemented as a feed-forward artificial neural network. The input,h
z(T,... )k

i
or

h
z(T,... )k ✓

i
when a parameter vector is estimated as well, is connected to all 32

neurons of the input layer which are themselves connected to a hidden layers having 16 neurons.

The output layer has a single neuron which outputs the value of the regulated signal ĉ(T,... )k that

13



corresponds the input. The activation function of all neurons is Leaky-ReLU except for the

output neuron whose activation function is the Sigmoid function.

⇥�(·). The function ⇥� implemented as a feed-forward artificial neural network. The

input consists of 100 time samples, z100i:100(i+1) for i = 0, . . . , b N
100c � 1, is connected to all

128 neurons of the input layer which are themselves connected to two sequential hidden layers

having 128 and 64 neurons each. The output layer has l neurons (where l is the user-defined

number of parameters) which outputs the value ✓i. The estimated parameters are given by

✓ = 1
b N
100 c�1

Pb N
100 c�1

i=0 ✓i. The activation function of all neurons is Leaky-ReLU except for the

output neurons which have no activation function.

We simultaneously train the networks as described in Algorithm 1 for a pre-defined fixed

number of epochs (500) using the Stochastic-Gradient-descent optimizer with a momentum

value of 0.9 and a learning rate of 0.01. See [Zhang et al., 2020] for a detailed explanation of

feed-forward neural networks, activation functions and optimizers.

SI5 Algorithm snapshots

Figure SI 6 is complementary to Figure 4 and displays the combination function and the

sampling probability by the shu✏e player in di↵erent iterations of the algorithm.

SI6 Validation

SI6.1 Steady states of the kinetic model

At steady state, Ṁ, Ṗ , Ṡ equal zero. Solving the equations gives the steady state

Mss =
�P�S
B1

K

F +B2

Pss =
kP�S
B1

K

F +B2

Sss =
kS�P
B1

K

F +B2

Pss + Sss =
K

F +B2

(S.23)

where B1 = kP�S + kS�P and B2 =
�M�P�S

B1
. For F � B2, Pss+Sss is robust to perturbations

in the parameters while the steady states of the three proteins are sensitive to perturbations.
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Figure SI 6: Iterations of the two-player algorithm for the example in Figure 4. The iterations
shows a graduate identification of the data region followed by the identification of the control
objective, within the region of the data.
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SI6.2 High and low perturbations in �M give rise to The di↵erent

output combinations

The most conserved combination in the kinetic model depends on the values of the parameters

and the perturbations in them. We will consider the cases of low and high perturbations in �M

relative to the other parameters (F and K are constant). In the first case, the combination

obtained incorporates the e↵ect of M . In the second case, we get a behavior that is qualita-

tively similar to disabling the controller and a combination that reflects the resultant positive

correlation between S and P . The qualitatively di↵erent combinations obtained for high and

low perturbations in �M reflect the two ends of the spectrum of conserved combinations.

Low perturbations in �M

At steady state, and for a single parameter set, Ṁ = K � F (P + S) � �MM = 0. Thus,

F (Pss + Sss) � �MMss = K. For small perturbations in �M , a conserved combination that

incorporates M is obtained,

g(M,S, P ) = F (P + S)� �MM ⇡ K (S.24)

where �M is the mean of �M across all realizations. Figure SI 7A (left panel) shows that this

combination is indeed conserved for low perturbations in �M . Running the algorithm for 30

realization of the model with low perturbations in �M gives rise to the combination in (S.24).

The output of the algorithm g(M,S, P ) overlaps with the combination in (S.24) (Fig. SI 7A

right panel) with a Pearson correlation of 0.97 ± 0.008. Moreover, fitting the output of the

network to a linear function of M , S and P using multivariate linear regression, yields the

combination g(M,S, P ) = S + P + 0.15M . Interestingly, the coe�cient of M in the linear

combination is a very close approximation of the ratio �M/F = 0.16.

High perturbations in �M

High perturbations in �M , relative to the other parameters, drives the change in M dom-

inantly and in turn a↵ects considerably Ṡ and Ṗ . This results in a high positive correlation

between S and P since they both follow similar first order kinetics and are both a↵ected by the

same source M (Figure SI 7 B left panel). Thus, we expect the output of the algorithm to re-

flect this positive correlation.Indeed, the output of the algorithm for 30 realization of the model

follows the combination S � P (Figure SI 7 B right panel).The Pearson correlation between

both combinations is 0.79±0.09. Fitting the output of the network to a linear function of M , S

and P using multivariate linear regression, yields the combination g(M,S, P ) = S�P�0.06M .

In fact, this case resembles the case of disabling the controller where M induces the production

of S and P without receiving a feedback of their sum.
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Figure SI 7: High and low perturbations in �M give rise to di↵erent output combinations. (A)
Low perturbations in �M relative to the other parameters. Left Panel: The trajectories of the
three proteins and the combination P+S��M

F M over time. The perturbations in the parameters
�M , �S, �P , kP , and KS were created as described in Figure 5B, where �M = 320 ± 5,�S, �P =
70±15,kS, kP = 150±30. Right Panel: A zoom-in for the combination P+S� �M

F M within the
purple box along with the output of the algorithm. (B) High perturbations in �M relative to
the other parameters. Left Panel: The trajectories of the three proteins and the combination
S � P over time, where �M = 320 ± 100, �S, �P = 70 ± 1,kS, kP = 150 ± 1. Right Panel:
A zoom-in for the combination S � P within the purple box along with the output of the
algorithm.F = 2000, K = 300.
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Figure SI 8: Normalized mean-square-errors of stimuli estimation values along a complete trial
sequence. The stimuli estimation is obtained from the analytical expression of the feedback loop
the algorithm detected. The estimation errors decrease monotonously up to T = 5 implying an
e↵ective time-scale of 5 trials.

SI6.3 Relational dynamics in perception

The estimation errors along a complete trial sequence for various values of T are depicted in

figure SI 8. The corresponding mean estimation errors over all trials were depicted in Figure

6.
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