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Supplementary Text 
 
Results 
 
Heterogeneity of signals at genome-wide significant loci and sensitivity analyses 
 
Of the 42 genome-wide significant loci, we observed nominally significant between-study heterogeneity for 11 

loci (p-overall heterogeneity <0.05, 2.1 loci expected) in the overall endometriosis meta-analysis, six of which 

were explained by case ascertainment and two by ancestry. For lead SNPs at these 11 loci, we used meta-

regression to partition overall heterogeneity into components due to ancestry, case ascertainment and 

residual (reflecting other differences in study design). Heterogeneity at six loci was explained by case 

ascertainment (surgical/medical records vs. mixed self-report and medically confirmed vs. self-reported only) 

and at two loci by ancestry (European vs. East Asian) (Supplementary Tables 4 and 5; Supplementary Figs. 3 

and 4). For the remaining three loci, the heterogeneity could not be explained by ancestry or case 

ascertainment. Between-study heterogeneity also impacted the two previously reported loci 1 that did not 

attain genome-wide significance in the overall endometriosis meta-analysis: one mapping to IL1A/2p13 

(rs3783521, p=6.38x10-8) and one in FN1/2q35 (rs1250242, p=3.25x10-4) (Supplementary Table 6, 

Supplementary Fig. 5). For these two loci, heterogeneity was explained by case ascertainment (Supplementary 

Table 4); the effect sizes of both loci were largest for stage III/IV disease, consistent with Sapkota et al (2017)1.  

 
Sensitivity analyses were conducted to test the impact of small datasets (9/24 with <300 cases) and the 

inclusion of male controls in sex-combined autosomal analysis (4/24 datasets; Supplementary Table 1). Meta-

analysis restricted to 15 studies with >300 cases (59,101 cases/686,278 controls) retained genome-wide 

significant associations for 40 of 42 loci, with the remaining two signals still showing similar effect sizes and 

borderline significant associations (Supplementary Table 7, Extended Data Fig. 1e).  We also observed no 

significant heterogeneity (p>1.19x10-3) in effect sizes for the 42 lead SNPs between studies including female 

only controls vs. sex-combined controls (Extended Data Fig. 3).  

 

 

 



 
Enrichment of gene expression across tissues and pathways 

We sought to characterise the regulatory role of associated non-coding variants across tissues and pathways. 

First, all genes (n=415) within ±200kb of each of the 49 index SNPs were tested for enrichment in expression 

across tissues available in Human Protein Atlas (HPA) and GTEx RNA-seq datasets (See Methods). Across 35 

human tissues available in the HPA dataset, endometrium and smooth muscle were most highly enriched for 

expression of genes signposted by endometriosis risk loci (Extended Data Fig. 4a and b). Similarly, across 29 

tissues in the GTEx dataset, uterus (endometrium and myometrium combined) was most highly enriched 

(Extended Data Fig. 4c and d). These enrichment analyses based on genes in close proximity to endometriosis 

risk variants highlighted tissues most relevant to endometriosis. 

 

Genetic analyses of endometriosis vs. adenomyosis 

We tested for differences in effect sizes between endometriosis and adenomyosis (the growth of 

endometrium into the myometrium) for each of the 42 endometriosis lead SNPs using two independent 

GWAS analyses in the UKBB (see Supplementary Text: Methods): 1) 1,764 adenomyosis cases (without 

evidence of endometriosis) and 2) 2,729 endometriosis cases (without evidence of adenomyosis) vs. 

independent control sets. No significant differences in effect sizes were observed (p<1.19x10-3, 

Supplementary Table 22). We then compared the effects of the 42 SNPs between adenomyosis (3,531 cases 

from UKBB and FinnGen; see Methods, Supplementary Table 22) and endometriosis rASRM and surgical 

subtypes. The strongest correlation was observed between adenomyosis and rASRM stage I/II (r=0.52), 

followed by superficial lesions (r=0.40) and deep lesions (r=0.31) (Extended Data Fig. 8). Low correlations were 

observed with rASRM stage III/IV (r=0.02) and endometrioma (r2=0.18). Of the 42 endometriosis lead SNPs, 6 

(rs71575922 in SYNE1/6q25.1, rs17053711 in KCTD9/8p21.2, rs10090060 in GDAP1/8q21.11, rs507666 in 

ABO/9q34.2, rs3858429 in FSHB/11p14.1, rs13441059 in TEX11/Xq13.1) were significantly associated with 

adenomyosis (p<1.19x10-3; Supplementary Table 21, Extended Data Fig. 8). These results suggest shared 

genetic susceptibility between adenomyosis and stage I/II and superficial peritoneal endometriosis, or 

associated symptoms. 



Genetic regulation of expression and methylation at endometriosis risk loci 

To identify specific genes regulated by the 49 distinct endometriosis association signals, we analysed four 

expression quantitative trait loci (eQTL) datasets: 1) a gene expression microarray study of 229 endometrial 

samples 2; 2) a novel meta-analysis of RNAseq-based eQTL datasets including 368 endometrial samples (3 and 

unpublished data; see Methods); 3) RNAseq expression data from 129  uterus tissue samples from GTEx4; and 

4) data from 31,684 blood samples from the eQTLGen Consortium 5. 

 

Summary data-based Mendelian Randomisation (SMR)6 was used to identify genes whose expression levels 

are associated with endometriosis due to the effects of a common genetic variant (either by direct causal or 

pleiotropic effects) rather than due to linkage disequilibrium (LD). Table 1 summarises the significant 

eQTL/mQTL SMR results across endometriosis GWAS loci, together with evidence from chromatin 

interactions.  

 

Analysis using the smallest and most heterogeneous ‘uterus tissue’ eQTL data from GTEx identified only a 

single gene (HCG4P7 in ID4/6p22.3 locus) but the results did not pass the HEIDI test of heterogeneity 

(Supplementary Table 14). Using the endometrium datasets, we identified significant associations between 

endometriosis risk variants and expression of five genes (SRP14 (SRP14-AS1/15q15.1), LNC-LBCS (ID4/6p22.3), 

TRA2A (7p15.2), VEZT (VEZT/12q22), HOXB9 (SKAP1/17q21.32)), with a sixth (LINC00339) not passing the 

heterogeneity test (Table 1, Supplementary Table 15). In the blood SMR analysis, seven genes were 

significantly associated with endometriosis risk passing both SMR and HEIDI tests (Table 1, Supplementary 

Table 16).  

 

We also associated SNPs in the endometriosis risk regions with DNA methylation of nearby CpG sites in 

endometrium and blood using previously published mQTL datasets (Supplementary Table 17).7,8  In 

endometrium and blood, numerous methylation probes related to GREB1 passed the SMR and HEIDI tests for 

association with risk variants, consistent with previous reports (Mortlock et al. 2019). In blood, an additional 

18 probes passed the SMR and HEIDI tests (Supplementary Table 18) close to 8 gene (clusters) of interest 



including ARL14EP/FSHB (FSHB/11p14.1), BMF/SRP14-AS1 (SRP14-AS1/15q15.1), ESR1/SYNE1 (SYNE1/6q25.1), 

GDAP1 (GDAP1/8q21.11), MLLT10 (MLLT10/10p12.31), WNT4 (WNT4/1p36.12), CD109 (CD109/6q13), and 

HOXC-AS2 (HOXC10/12p13.13) (Table 1), with 10 regulated by SNPs in the 99% credible set.  

 

Results showing that endometriosis risk variants on chromosomes 2p25.1 and 12q22 may function through 

changes in expression of GREB1, and VEZT and/or FGD6, respectively, have been reported previously 2,3,9. 

Many of the other potentially causal genes are novel and have strong biological support. Notable was the 

signal for GDAP1 (GDAP1/8q21.11), previously associated with dysmenorrhea severity and neuronal 

development (Fig. 2) 10,11. In the GDAP1/8q21.11 region, the rs4567029 variant, which regulates methylation 

of probes near GDAP1, is in perfect LD with rs10283076 that was identified as the variant regulating GDAP1 

expression in blood tissue (Fig. 2). The SRP14-AS1/15q15.1 locus harboured multiple distinct association 

signals in endometrium and blood, and had a chromatin interaction at this locus with BMF (Bcl2 modifying 

factor) (Fig. 3; Supplementary Table 15,16 and 18). BMF encodes for a glycoprotein associated with sex 

hormone binding globulin and regulating bioavailability of oestrogen and testosterone12. SRP14 is a 

constituent of the signal recognition particle (SRP) with functions including targeting secretory proteins to the 

rough endoplasmic reticulum membrane. SRP14 variants may affect endometriosis-associated pain genesis 

and maintenance. Association of variants at this locus with DHEA-sulfate (DHEA-S) levels has been reported 13. 

DHEA-S is a neurosteroid functioning as a neurotropin, that can bind and activate nerve growth factor (NGF) 

and brain-derived neurotrophic factor (BDNF) 14,15. BDNF has been shown to regulate the maintenance of 

chronic pain in various chronic disorders 16, and its expression appears increased in the eutopic endometrium 

of women with endometriosis compared to controls 17,18. The expression of NGF, one of our other GWAS loci, 

has been suggested to partly mediate local nerve density around endometriosis lesions, associated with 

dyspareunia 19. 

 

SMR analysis in endometrium also showed evidence that the endometriosis risk variant at SKAP1/17q21.32 

likely impacts the expression of HOXB9, further supported by chromatin interactions of the endometriosis risk 

variant with this gene (Extended Data Fig. 5). HOXB9 is a proangiogenic transcription factor 20, upregulated in 



various cancers including breast and endometrial cancers 21,22. And additional gene of interest from blood 

eQTL analyses was ABO (Table 1). ABO encodes for histo-blood group antigens. Lead variant rs507666, 

intronic to ABO, has been associated with a wide range of other traits and conditions 23 but in particular with 

soluble Intercellular Adhesion Molecule 1 (sICAM-1) concentrations in women, suggesting a potential 

regulatory role of inflammatory adhesion processes24. We tested the association between sICAM-1 levels in 

serum from 136 endometriosis cases (85 rASRM stage I/II, 51 rASRM stage III/IV) and 54 endometriosis-free 

controls (see Supplementary Note: Methods). We did not find a significant association with disease status or 

stage (mean log-sICAM1 in cases=2.40, mean log-sICAM1 in controls=2.44, p=0.16; Extended Data Fig. 6, 

Supplementary Table 19), however, further investigation in a larger sample size is warranted.   

 

Genome-wide significant loci shared between endometriosis and 11 traits/conditions 
 
We investigated if endometriosis-associated variants in the 99% credible sets for each distinct endometriosis 

signal were associated with any of the genetically correlated traits and conditions at genome-wide 

significance, using Phenoscanner and GWAS Catalog. This revealed 10 genome-wide significant variants 

shared with 11 different traits and conditions (Supplementary Table 29). Three variants were shared with pain 

traits: two with multi-site chronic pain (rs1352889 at BSN/3p21.31 and rs10828249 at MLLT10/10p12.31), and 

one with migraine and dysmenorrhea (rs12030576 at NGF/1p13.2). Loci shared with other reproductive traits 

and conditions included three with uterine fibroids (rs10917151 at WNT4/1p36.12, rs2510770 at 

PDLIM5/4q22.3, rs71575922 at SYNE1/6q25.1); two with menstrual cycle length (rs17053711 at 

KCTD9/8p21.2, rs3858429 at FSHB/11p14.1); one with age at menarche (rs1352889 at BSN/3p21.31) and one 

with age at menopause (rs3858429 at FSHB/11p14.1). Loci shared with metabolic traits included two with BMI 

(rs1352889 at BSN/3p21.31; rs108282249 at MLLT10/10p12.31), and one with type 2 diabetes (rs507666 at 

ABO/9q34.2). One genome-wide significant locus, rs2967684 at ACTL9 at 19p13.2 was shared with asthma. 

 
 
 
 
 
 
 



Supplementary Methods 
 
sICAM-1 analysis 

Soluble intercellular Adhesion Molecule-1 (sICAM-1) levels were measured in serum samples of 190 women 

from ENDOX study at Nuffield Department of Women’s & Reproductive Health, John Radcliffe Hospital, 

University of Oxford. Of these 190 women, 136 were laparoscopically diagnosed endometriosis case (85 

rASRM stage I/II, 51 rASRM stage III/IV) and 54 were laparoscopically confirmed endometriosis free female 

controls. Participants were not on any hormones for the past 3 months and had no previous endometriosis 

diagnosis. s-ICAM1 levels were measured using Quantikine ELISA kit (R&D systems) that is human sICAM-

1/CD54 allele-specific in serum samples located prior to their laparoscopic surgery. Each serum sample was 

analysed in duplicates and samples were randomised across 4 plates of 96 wells. The mean of the duplicate 

samples was used as the raw sICAM-1 level. The sICAM-1 levels were log-transform to achieve a normal 

distribution (Shapiro normality p=0.52). There was not significant difference between age, BMI, menstrual 

phase, smoking status, alcohol use, education level, work status, marital status, ethnicity and blood-group 

between the cases and controls (p>0.05). Logistic regression analysis was conducted to test for difference log-

sICAM1 levels between endometriosis cases vs. controls in both an adjusted model and also a model where 

BMI, education, work-status and blood-group was included as covariates. The logistic regression analysis was 

also conducted comparing log-sICAM1 levels in rASRM stage I/II vs. controls and rASRM stage III/IV vs. 

controls. 

 

Sub-phenotype analysis 

Sub-phenotype definitions. Endometriosis definitions within each population contributing to these sub-

phenotype analyses remained consistent with those described above that were utilized for the overall 

endometriosis discovery.  Those included in these sub-phenotype analyses are described again in brief below. 

Surgical sub-phenotypes were defined as presence of: a) superficial peritoneal lesions (shallow lesions found 

on peritoneal surface of the pelvic cavity), b) deep peritoneal lesions (lesions with >5mm depth that can 

infiltrate bowel, ureters, bladder, etc., including rectovaginal lesions), c) endometrioma (cystic lesions 

implanted on the surface or infiltrating one or both ovaries). 



Symptom sub-phenotypes were defined as report of: a) dysmenorrhea (pelvic pain / pelvic cramping occurring 

during menstruation; dysmenorrhea was categorized as ever having experienced dysmenorrhea and also by 

reported dysmenorrhea-specific pain severity experienced within the last three months), b) dyspareunia 

(pelvic pain during or within 24 hours after sexual intercourse; dyspareunia was categorized as ever having 

experienced dyspareunia and also reported worst ever dyspareunia-specific pain severity), c) acyclic pelvic 

pain (chronic recurrent pelvic pain experienced at any time throughout the menstrual cycle; acyclic pelvic pain 

was categorized as ever having experienced acyclic pelvic pain and also reported current acyclic pelvic pain 

severity), d) gastrointestinal pain/irritable bowel syndrome symptoms (present at any time), e) bladder pain 

(present at any time). Severity for dysmenorrhea, dyspareunia, and acyclic pelvic pain symptoms was 

determined using the numerical rating scale with range 0-10 – with 0 reflecting no pain, and 7-10 defined as 

severe pain25.  

Common morbidity sub-phenotype included adenomyosis, endometriosis of the uterus, where endometrium 

infiltrates myometrium. Adenomyosis is commonly observed in endometriosis patients, where prevalence of 

adenomyosis in endometriosis has been estimated as high as 91%26. 

 

Data sources. Nine studies, consisting of 18,867 endometriosis cases and 301,088 controls, contributed to the 

sub-phenotype analyses (Supplementary Table 21). Surgical and symptom sub-phenotype data were 

compliant with the World Endometriosis Research Foundations’ Endometriosis Phenome and Biobanking 

Harmonization Project (WERF-EPHect)27-29.  As defined for each contributing cohort above, cases were 

confirmed via surgery for five clinic populations (A2A, Oxford-P1&P2, Leuven, UCSF) and via self-report, 

medical records, or claims databases for four national populations (FinnGen, NHSII, EGCUT, UKBB). Controls 

from all nine cohorts were restricted to those who had never been diagnosed with or suspected of having 

endometriosis. Three studies (Oxford-P1&P2, Leuven) further restricted controls to those with surgery during 

which endometriosis was not visualized. Harmonized genomic data for each site underwent standardized 

preparation and quality control. For adenomyosis, two datasets, namely UKBB and FinnGen (3,531 cases, 

258,562 controls) were utilised that define adenomyosis from medical records (ICD10 code: N800). Quality 

control included removing duplicates, removing samples and SNPs with low call rates, removing subjects with 



extreme heterozygosity, removing SNPs showing extreme deviations from Hardy-Weinberg equilibrium, 

removing samples showing a mis-match between self-reported and genetic sex, removal of close relative pairs 

per site-specific cut-offs. GWAS scaffold was mapped to the human reference genome assembly build 37, and 

genotypes phased and imputed up to Haplotype Reference Consortium (HRC r1.1 2016), 1000 Genomes 

(1000G P3v5), or population-specific whole genome sequence data30. 

 

Statistical analyses. Sites contributing to the sub-phenotype analyses conducted association statistical 

analyses per the standardized protocol provided to them. Phenotype measurement was operationalized as a 

combination of counts, presence/absence, or numerical rating pain scales as described above (Supplementary 

Table 20). Study sites conducted case-control association tests using regression methods implemented in 

SNPTEST software31, EPACTS software32, or other equivalent software. Selection of co-variates was site-

specific based on variables deemed most relevant in each setting. A log-additive model was assumed, and 

each site independently conducted the identical statistical analyses in-house and provided summary statistics 

for their respective study with descriptive quality control data via FTP to a cloud-based server for meta-

analysis. Summary results from study sites underwent quality control; thresholds for data removal had been 

defined previously by the analysis plan and conducted by study sites. All summary statistics provided were 

again quality checked, and files cleaned including variable renaming for meta-analysis. 

 
Independent GWAS analysis of endometriosis and adenomyosis in UK Biobank 

The largest dataset where we had adenomyosis diagnosis in our case/control groups is UK Biobank. In UK 

Biobank, adenomyosis cases are coded in the ICD10 and ICD 9 codes of N800 and 1670. We have identified a 

set of 1764 adenomyosis cases that did not report endometriosis diagnosis in either medical record data or 

self-reported data. We have also identified 2729 endometriosis cases that did not have an adenomyosis 

diagnosis. For this we have restricted the endometriosis cases to only the ones with ICD9/10 codes as for self-

reported endometriosis cases there are insufficient self-reported adenomyosis diagnosis reported. We also 

partitioned the female endometriosis and adenomyosis free controls into two equal groups randomly. In total, 

adenomyosis only GWAS was conducted in 1,764 cases and 106,763 controls and endometriosis only GWAS 



was conducted in 2,729 cases vs. 106,979 controls using lmm model in BOLT33. From both GWAS results, we 

extracted the 42 endometriosis associated lead SNPs, converted the lmm-beta and standard error to the log-

odds scale.  The z-score and p-value were then calculated to test whether there is statistical difference 

between two odds ratio estimates to determine if any of the 42 lead SNP associations has statistically 

different effects in endometriosis GWAS vs. adenomyosis GWAS. 

Calculation of the z-score and p-value: 

(1) Take the absolute value of the difference between the two log odds ratios (δ). 

(2) Calculate the standard error for δ, SE(δ), using the formula: 

             √ (SE1^2+SE2^2) 

(3) Calculate the Z score for the test:  

z=δ/SE(δ) 

(4) Calculate the p-value from the z score in R:  

            P-value=2*(1-pnorm(Z)) 
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Supplementary Figures 
Supplementary Figure 1. Regional association plots for 11 previously established genome-wide significant 
loci: loci: (i) WNT4/1p36.12, (ii) GREB1/2p25.1, (iii) ETAA1/2p14, (iv) KDR/4q12, (v) ID4/6p22.3, (vi) 
SYNE1/6q25.1, (vii) 7p15.2/7p15.2, (viii) 7p12.3/7p12.3, (ix) CDKN2-BAS1/9p21.3, (x) FSHB/11p14.1 (xi) 
VEZT/12q22 for (a) endometriosis, (b) rASRM stage III/IV endometriosis, (c) rASRM stage I/II endometriosis, 
(d) endometriosis associated infertility. The association results are shown on the y-axis as –log10(P-value) and 
on the x-axis is the genomic location (hg 19). The top associated SNP is coloured purple and the other SNPs 
are coloured according to the strength of LD with the top SNP by r2 in the European 1000 Genomes dataset. 
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Supplementary Figure 2. Regional association plots for 31 novel genome-wide significant loci: (i) NGF/1p13.2, 
(ii) SLC19A2/1q24.2, (iii) DNM3/1q24.3, (iv) BMPR2/2q33.1, (v) BSN/3p21.31, (vi) PDLIM5/4q22.3, (vii) 
EBF1/5q33.3, (viii) CD109/6q13, (ix) HEY2/6q22.31, (x) FAM120B/6q27, (xi) HOXA10/7p15.2, (xii) 
KCTD9/8p21.2, (xiii) GDAP1/8q22.2, (xiv) VPS13B/8q22.2, (xv) ASTN2/9q33.1, (xvi) ABO/9q34.2, (xvii) 
MLLT10/10p12.31, (xviii) RNLS/10q23.31, (xix) WT1/11p14.1, (xx) PTPRO/12p12.3, (xxi) HOXC10/12p13.13, 
(xxii) IGF1/12q23.2, (xxiii) DLEU1/13q14.2, (xxiv) RIN3/14q32.12, (xxv) SRP14-AS1/14q32.12, (xxvi) 
SKAP1/17q21.32, (xxvii) CEP112/17q24.1, (xxviii) ACTL9/19p13.2, (xxix) TEX11/Xq13.1, (xxx) FRMD7/Xq26.2, 
(xxxi) LINC00629/Xq26.3 for (a) endometriosis, (b) rASRM stage I/II endometriosis, (c) rASRM stage III/IV 
endometriosis, (d) endometriosis associated infertility. The association results are shown on the y-axis as –
log10(P-value) and on the x-axis is the genomic location (hg 19). The top associated SNP is coloured purple and 
the other SNPs are coloured according to the strength of LD with the top SNP by r2 in the European 1000 
Genomes dataset.  
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Supplementary Figure 3. Forest-plots for the lead SNPs of 11 previously established genome-wide significant 
endometriosis loci: a. WNT4/1p36.12, b. GREB1/2p25.1, c. ETAA1/2p14, d. KDR/4q12, e. ID4/6p22.3, f. 
SYNE1/6q25.1, g. 7p15.2/7p15.2, h. 7p12.3/7p12.3, i. CDKN2-BAS1/9p21.3, j. FSHB/11p14.1 k. VEZT/12q22. 
The rsid and the effective allele along with effective allele frequency are given under each plot. The x-axis 
displays the association log odds-ratio scale, and meta-analysis results by three different case ascertainment 
categories including medical, missed and self-reported and two different ancestries including European and 
Japanese ancestry results. 
a. 

 
 
b. 

 
 
c. 

 
 



d. 

 
 
e. 

 
 
f. 

 
 
 
 
 
 
 
 
 
 



g. 

 
 
 
h. 

 
 
 
 
i. 

 
 
 
 
 
 
 



j. 

 
 
k. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 4.  Forest-plots for the lead SNPs of 31 novel genome-wide significant endometriosis 
loci: a. NGF/1p13.2, b. SLC19A2/1q24.2, c. DNM3/1q24.3, d. BMPR2/2q33.1, e. BSN/3p21.31, f. 
PDLIM5/4q22.3, g. EBF1/5q33.3, h. CD109/6q13, i. HEY2/6q22.31, j. FAM120B/6q27, k. HOXA10/7p15.2, l. 
KCTD9/8p21.2, m. GDAP1/8q22.2, n. VPS13B/8q22.2, o. ASTN2/9q33.1, p. ABO/9q34.2, q. MLLT10/10p12.31, 
r. RNLS/10q23.31, s. WT1/11p14.1, t. PTPRO/12p12.3, u. HOXC10/12p13.13, w. IGF1/12q23.2, v. 
DLEU1/13q14.2, x. RIN3/14q32.12, y. SRP14-AS1/14q32.12, z. SKAP1/17q21.32, a2. CEP112/17q24.1, b2. 
ACTL9/19p13.2, c2. TEX11/Xq13.1, d2. FRMD7/Xq26.2, e2. LINC00629/Xq26.3. The rsid and the effective allele 
along with effective allele frequency are given under each plot. The x-axis displays the association log odds-
ratio scale, and meta-analysis results by three different case ascertainment categories including medical, 
missed and self-reported and two different ancestries including European and Japanese ancestry results. 
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Supplementary Figure 5. Regional association plots and forest plots for (a) IL1A/2q13 and (b) FN1/2q35. The 
regional association plots include results for (i) endometriosis, (ii) rASRM stage I/II endometriosis, (iii) rASRM 
stage III/IV endometriosis, (iv) endometriosis-associated infertility. The association results are shown on the y-
axis as –log10(P-value) and on the x-axis is the genomic location (hg 19). The top associated SNP is coloured 
purple and the other SNPs are coloured according to the strength of LD with the top SNP by r2 in the European 
1000 Genomes dataset. In the forest plots the rsid and the effective allele along with effective allele 
frequency are given under each plot. The x-axis displays the association log odds-ratio scale, and meta-
analysis results by three different case ascertainment categories including medical, missed and self-reported 
and two different ancestries including European and Japanese ancestry results. 
 
(i) IL1A/2q13  

 

 
 
 
 
 
 



(ii) FN1/2q35 

 
 

 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 6. Regional association plots for 4 endometriosis risk loci with multiple independent 
signals: (a) GREB1/2p25.1, (b) SYNE1/6q25.1, (c) CDKN2B-AS1/9p21.3, (d) IGF1/12q23.2. The association results 
are shown on the y-axis as –log10(P-value) and the x-axis displays the genomic location (hg 19). The top 
associated SNP is coloured purple and the other SNPs are coloured according to the strength of LD (r2) with the 
top SNP in the European 1000 Genomes dataset.  
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Supplementary Figure 7. Forest plots for the 42 lead SNPs showing the sub-phenotype analysis results: (i) 
NGF/1p13.2, (ii) WNT4/1p36.12 rs10917151, (iii) SLC19A2/1q24.2, (iv) DNM3/1q24.3, (v)GREB1/2p25.1, (vi) 
BMPR2/2q33.1 rs6435157, (vii) ETAA1/2p14 rs1430787, (viii) BSN/3p21.31, (ix) PDLIM5/4q22.3, (x) KDR/4q12 
rs1903068, (xi) EBF1/5q33.3 rs2946160, (xii) FAM120B/6q27 rs11756073, (xiii) SYNE1/6q25.1 rs71575922, 
(xiv) ID4/6p22.3 rs6456259, (xv) CD109/6q13, (xvi) HEY2/6q22.31, (xvii) HOXA10/7p15.2, (xviii) 
7p15.2/7p15.2, (ixx) 7p12.3/7p12.3,(xx) VPS13B/8q22.2 rs12549438, (xxi) KCTD9/8p21.2, (xxii) GDAP1/8q22.2, 
(xxiii) CDKN2-BAS1/9p21.3, (xxiv) ABO/9q34.2, (xxv) ASTN2/9q33.1 rs10983311,(xxvi) MLLT10/10p12.31 
rs10828249, (xxvii) RNLS/10q23.31,(xxviii) WT1/11p14.1 rs7924571, (xxix) FSHB/11p14.1 rs3858429, (xxx) 
VEZT/12q22 rs12320196, (xxxi) PTPRO/12p12.3, (xxxii) HOXC10/12p13.13, (xxxiii) IGF1/12q23.2, (xxxiv) 
DLEU1/13q14.2 rs7334326, (xxxv) RIN3/14q32.12, (xxxvi) SRP14-AS1/15q15.1 rs12441483, (xxxvii) 
SKAP1/17q21.32, (xxxviii) CEP112/17q24.1, (xxxix) ACTL9/19p13.2, (xxxx) TEX11/Xq13.1, (xxxxi) 
FRMD7/Xq26.2,(xxxxii) LINC00629/Xq26.3 rs73241342. 
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Supplementary Figure 8. Correlation between the effect sizes of 42 endometriosis associated loci between 
having surgical sub-types and experiencing pain symptomatology: a.  rASRM stage I/II vs. 5 main pain 
symptomatology i. Dysmenorrhea, ii. dyspareunia, iii. non-cylic pain, iv. bladder pain, v. GI pain; b.  rASRM 
stage III/IV vs. 5 main pain symptomatology i. Dysmenorrhea, ii. dyspareunia, iii. non-cylic pain, iv. bladder 
pain, v. GI pain; c. Deep lesions vs. 5 main pain symptomatology i. Dysmenorrhea, ii. dyspareunia, iii. non-cylic 
pain, iv. bladder pain, v. GI pain. Minor allele frequency for each of the 42 variants is given by shade of the red 
to yellow: Darker shade of red is smaller MAF, lighter shade of yellow is larger MAF. Nominal associations 
(p<0.05) are annotated with locus name and larger circles. Solid black line represents the linear regression line 
and dotted black line is the x=y with a slope of 1 for reference of change in ORs.  The grey error band 
represents the 95% confidence interval. Test statistics including p-values for all the associations are provided 
in Supplementary Table 21. 
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