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Supplementary Figure 1
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Supplementary Fig. 1. Differentiation of LFS iPSCs into NPCs and astrocytes. a. LFS family tree.
€.734G>A mutation in the TP53 gene causing the G245D mutation is found in LFS patients. Arrow,
proband. b. Schematic diagram of astrocyte differentiation. The differentiation of iPSCs into astrocytes is
driven by timed maintenance in the defined culture medium supplemented with special growth factors
and inhibitors and combined with a transition from two- to three-dimensional culture. Developmental and
maturation lineage markers are utilized to monitor the differentiation progress at each differentiation stage
(iPSCs, EB, NPCs, and astrocytes). The illustration is created with BioRender.com. c. RT-qPCR for
expression of astrocyte marker genes (ALDH1L1 and SLC1A3) in the WT and LFS astrocytes at D75
(n=3 biologically independent samples). The result is representative of three independent experiments.
The data are presented as the mean = SEM; two-way ANOVA with Bonferroni’s multiple comparison test.

***p < 0.001. Source data and exact p values are provided in the Source Data file.
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Supplementary Fig. 2. YTHDF2-mediated m®A degradation is modulated by mutant p53. a. Mass
spectrometry analysis of mA/A ratio in WT and LFS astrocytes (n=4 biologically independent samples).
b. Mass spectrometry analysis of m°A/A ratio in p53-depleted WT and LFS astrocytes (n=4 biologically
independent samples). c. m®A methylation dot blotting indicates p53 knockdown does not influence méA
methylation in WT astrocytes. Dot blot analysis is performed to identify polyadenylated mRNA isolated
from shCtrl and shp53 transduced WT astrocytes and immunoblotted with anti-m°®A antibodies (top blot).
Methylene blue staining of total MRNA is used as a loading control (bottom blot). Dot density is measured
by ImageJ. The blotting images represent the results of at least three independent experiments, while
the bar charts depict technical replicates within a single experiment. d. Immunoblotting indicates no
significant differences of METTL3, METTL14, WTAP, FTO, and ALKBH5 expression between WT and
LFS astrocytes. e. m®A methylation dot blot confirms the role of YTHDF2 in degrading m®A-marked
transcripts. Dot blots identify polyadenylated mRNA isolated from shCtrl and shYTHDF2 transduced

HEK?293T cells as well as WT and LFS astrocytes following immunoblotting with anti-m°®A antibodies (top



blot). Methylene blue staining of total mMRNA is used as a loading control (bottom blot). Dot density is
measured by ImageJ. The blotting images represent the results of at least three independent
experiments, while the bar charts depict technical replicates within a single experiment. f. Mass
spectrometry analysis of m®A/A ratio in YTHDF2-depleted HEK-293, LNZ308, and LFS astrocytes (n=4
biologically independent samples). g. Immunoblotting indicates p53(R175H) upregulates YTHDF2
protein in LNZ308 cells (n=3 biologically independent samples). h. Expression of distinct mutant p53s
(R175H, G245D, R248W, R273H, and R280T) increases YTHDF2 mRNA in WT astrocytes (n=4
biologically independent samples). The results are representative of at least three independent
experiments (c-e, g). The data are presented as the mean + SEM; one-way ANOVA with Tukey’s multiple
comparison test (a, h); two-way ANOVA with Bonferroni’s multiple comparison test (b, f); unpaired two-
tailed Student’s t test (g). **p < 0.01, ***p < 0.001, ns, not significant. Source data and exact p values are

provided in the Source Data file.



Supplementary Figure 3
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Supplementary Fig. 3. LFS astrocytes and cerebral organoids show oncogenic properties. a.
Cerebral organoid culture demonstrates the markedly increased size of LFS organoids. Representative
WT and LFS organoids (n=19 biologically independent samples) at day 4 (D4) and day 40 (D40) are
shown in the upper panels. The average diameters of WT and LFS organoids are quantified in the lower
panels. Scale bar, 500pum. Box edges delineate lower and upper quartiles, the center line represents the
median, and whiskers extend to 1.5 times the interquartile range. b. Fluorescence-based competition
assay indicates higher proliferation ability of LFS astrocytes compared to WT astrocytes at day 120 (n=3
biologically independent samples). c. AlG assay for in vitro tumorigenicity demonstrates that LFS but not
WT astrocytes are capable of growth in soft agar. Colonies are counted and measured at day 30 (D30)
and day 60 (D60) (n=3 biologically independent samples). LFS astrocytes demonstrate increased total
colony numbers during culture. Scale bar, 50um. d. Immunofluorescence staining of cerebral organoids.
One-month-old cerebral organoids of WT/shCitrl, LFS/shCtrl, and LFS/shYTHDF2 present similar



patterns of forebrain identities based on SOX2* and PAX6" staining (n=19 biologically independent
samples). Scale bar, 50um. e. lllustration of the experimental procedure for cerebral organoid generation
and transplantation on mouse brains. The illustration is created with BioRender.com. f-g. Dot and box
plots of YTHDF2 mRNA expression profiles (log2) of glioma specimens in Gravendeel, The Cancer
Genome Atlas (TCGA) GBM/LGG, and Rembrandt datasets show high YTHDF2 expression in tumor
specimens compared to normal tissues (f) and increasing YTHDF2 expression in the higher grade of
gliomas (g). Box edges delineate lower and upper quartiles, the center line represents the median, and
whiskers extend to 1.5 times the interquartile range. The data are presented as the mean £ SEM; one-
way ANOVA with Tukey’s multiple comparison test (a, ¢, d); unpaired two-tailed Student’s t test (b, f, g).

*p < 0.05, **p < 0.001, Source data and exact p values are provided in the Source Data file.
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Supplementary Fig. 4. Genome-wide binding of p53 and mutant p53 in WT and LFS astrocytes a.

Venn diagram shows the overlap between p53 and mutant p53 genome binding peaks in WT and LFS

astrocytes, respectively. b. Pie charts report the genomic distribution annotation of p53-specific, mutant



p53-specific, and shared genome binding peaks in WT and LFS astrocytes. c. MEME motif analyses
discover the top-scoring binding motif for p53-specific, mutant p53-specific, and shared genome binding
peaks in WT and LFS astrocytes. d. Gene Ontology Molecular Function (GO_MF) analysis of p53 and
mutant p53 interacting proteins. SVIL is a mutant p53-specific interacting protein involved in histone
methyltransferase binding. e. p53(G245D) but not p53 interacts with SVIL exogenously. Co-IP is
performed by pulling down GFP-tagged SVIL in lysates of HEK-293T cells co-transfected with GFP-
tagged SVIL and V5-tagged p53(G245D) or p53. f. Both p53(R175H) and p53(G245D) physically
associate with SVIL. Co-IP is performed by pulling down V5-tagged p53(R175H) or p53(G245D) in
lysates of HEK-293T cells cotransfected with GFP-tagged SVIL and p53(R175H) or p53(G245D). g. The
DNA binding domain (DBD) of mutant p53 interacts with SVIL. Co-IP maps the essential domains (N-
terminal (1-90 aa), DBD (91-292 aa), and C-terminal (293-393 aa)) of mutant p53 (p53(R175H) and
p53(G245d)) interacting with SVIL. Co-IP is performed by pulling down Flag-tagged p53 domains in
lysates of HEK-293T cells co-transfected with GFP-tagged SVIL and Flag-tagged p53, p53(DBD),
p53(N/DBD), or p53(DBD/C). h. Immunoblotting indicates that SVIL depletion leads to downregulated
YTHDF2 protein expression in both LFS astrocytes and LNZ308-p53(G245D) cells. i. RT-gPCR analysis
shows decreased YTHDF2 mRNA expression upon SVIL knockdown in LNZ308-p53(G245D) but not
LNZ308-Vector cells (n=3 biologically independent samples). j. Fluorescence-based competition assay
indicates reduced growth of SVIL-depleted LFS astrocytes compared with co-cultured LFS astrocytes.
LFS astrocytes are transduced with lentiviruses carrying control shRNA (shCtrl) or SVIL shRNA (shSVIL
with GFP marker). The mixed LFS/shCtrl and LFS/shSVIL astrocytes are co-cultured and cell populations
examined by flow cytometry (n=5 biologically independent samples). k. SVIL knockdown more
significantly inhibits colony-forming ability in LNZ308-p53(G245D) cells than LNZ308-Vector cells (n=3
biologically independent samples). Colony numbers are calculated by ImageJ. The results are
representative of at least three independent experiments (e-h). The data are presented as the
mean £ SEM; two-way ANOVA with Bonferroni’'s multiple comparison test (I, k); unpaired two-tailed
Student’s t test (j). *p < 0.01, ***p < 0.001, ns, not significant. Source data and exact p values are

provided in the Source Data file.
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Supplementary Fig. 5. Inhibition of MLL1 function selectively impairs LFS cerebral organoid
proliferation. a. lllustration of the experimental design for the 3D competition assay using WT/LFS
cerebral organoids. b. Calculations of WT (mCherry*) and LFS (GFP™) cell percentages in WT/LFS
cerebral organoids by light sheet fluorescence microscopy (n=3 biologically independent samples). The
data are presented as the mean + SEM; unpaired two-tailed Student’s t test. **p < 0.01. Source data and

exact p values are provided in the Source Data file.
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Supplementary Figure 6
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Supplementary Fig. 6. YTHDF2 eCLIP-seq and upregulation of CDKN2B and SPOCK2 transcripts
upon YTHDF2 knockdown. a. Metagene plot of YTHDF2 eCLIP-seq indicates enrichment of YTHDF2-

interacting MRNA peaks in the 3’'UTR centered around stop codons in a replicate experiment (Rep2). b.

Motif analysis demonstrates YTHDF2 binding motifs in a replicate experiment (Rep2). c. Immunostaining

confirms higher YTHDF2 in engrafted LFS cerebral organoids (upper panel) and decreased YTHDF2 in

YTHDF2-depleted engrafted LFS cerebral organoids (lower panel). Scale bar, 100um. d. Immunostaining

demonstrates lower SPOCK2 in engrafted LFS cerebral organoids (upper panel) and increased SPOCK2



in YTHDF2-depleted engrafted LFS cerebral organoids (lower panel). Scale bar, 100um. e. m°A MeRIP-
PCR indicates that depletion of YTHDF2 leads to an increase of méA-modified CDKN2B and SPOCK?2
MRNAs (n=3 biologically independent samples). The results are representative of at least three
independent experiments (c-d). The data are presented as the mean + SEM; two-way ANOVA with
Bonferroni’s multiple comparison test. ***p < 0.001. Source data and exact p values are provided in the

Source Data file.



Supplementary Figure 7
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Supplementary Fig. 7. LFS astrocytes acquire oncogenic properties. a. Venn diagram indicates the
number of significantly (fold change >1.5; p<0.01) differentially upregulated or downregulated genes
between LFS or H1-p53(WT/G245D) astrocytes compared with WT and H1-WT astrocyte controls and
the overlap between each set of genes. b. GO_BP analysis of enriched genes in LFS and H1-
p53(WT/G245D) astrocytes (orange columns) or WT and H1-WT astrocytes (blue columns). ¢c. KEGG
pathway analysis of enriched genes identified in either p53 wild-type or p53-mutant astrocytes. Upper
panel, hierarchical clustering of transcriptome Z-score computed for all genes that are differentially
expressed (more than two-fold, p-value <0.01) between all pairwise comparisons of WT and LFS
astrocytes or H1-WT and H1-p53(WT/G245D) astrocytes. Lower panel, Enrichr analysis reveals KEGG
pathways enriched in WT and H1-WT astrocytes (blue columns) or LFS and H1-p53(WT/G245D)

astrocytes (orange columns).



Supplementary Figure 8
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Supplementary Fig. 8. Clinical correlation studies in human tumor specimens. a. Clinical correlation
between mutant p53 and YTHDF2 in LGG, GBM, BRCA, and READ tumors. Box plots of TCGA RNA
expression profiles (log2) in TCGA tumors with p53 wild-type or p53 missense mutation genotypes in
LGG, GBM, BRCA, and READ specimens. Correlation analysis of p21, PUMA, and YTHDF2 mRNA
levels in p53 wild-type or p53 missense mutations in LGG, GBM, BRCA, and READ tumors demonstrates
elevated YTHDF2 mRNA expression but decreased p21 and PUMA mRNA expression in tumors with
p53 missense mutations. Box edges delineate lower and upper quartiles, the center line represents the
median, and whiskers extend to 1.5 times the interquartile range. Two-sided Mann Whitney Wilcoxon test
is performed to compute significance. b. Clinical correlation analysis of SOX2 mRNA levels in LGG and
GBM tumors with p53 wild-type or p53 missense mutation genotypes demonstrate elevated SOX2 mRNA
expression in tumors with p53 missense mutations. Box edges delineate lower and upper quartiles, the
center line represents the median, and whiskers extend to 1.5 times the interquartile range. Two-sided
Mann Whitney Wilcoxon test is performed to compute significance. c-d. High YTHDF2 expression is
correlated with low CDKN2B (c) and SPOCK2 (d) expression in pediatric brain tumor datasets (Pediatric
STUM_2016, Pediatric Northcott_2011, Pediatric Robison, and Pediatric Henriquez). Pearson's product-
moment correlation is performed to compute significance. The error bands indicate the range of the upper
and lower bound of the confidence interval for the predicted values.



