SUPPLEMENTARY INFORMATION

Mechanism of antibody-specific deglycosylation and immune evasion by *Streptococcal* IgG-specific endoglycosidases

Trastoy et al.

PDB ID8A64Data collectionMicroscopeTitan KriosVoltage (kV)300DetectorK2 SummitData collection softwareEPU software (FEI)
Data collectionMicroscopeTitan KriosVoltage (kV)300DetectorK2 SummitData collection softwareEPU software (FEI)
MicroscopeTitan KriosVoltage (kV)300DetectorK2 SummitData collection softwareEPU software (FEI)
Voltage (kV)300DetectorK2 SummitData collection softwareEPU software (FEI)
DetectorK2 SummitData collection softwareEPU software (FEI)
Data collection software EPU software (FEI)
Energy Filter GIF Quantum
Magnification 130,000
Electron dose (e^{-}/A^2) 59.37
Pixel size (Å) 1.052
Defocus range (µm) -1.3 to -2.5
Frames 60
Movie number 5546
Data processing
Processing software Relion 3.1.2/cryoSPARC v3.2.0
Number of extracted particles 339309
EMDB code 15205
Map resolution (Å) at:
FSC=0.143 (unmasked/masked) 5.2/4.54
Map sharpening B factor (Å) -330.0
Refinement
Software PHENIX v1.18.2
Models used (PDB code) 6EN3 & 1H3X
Atoms (Non-H) 6737
Protein residues 1354
Ligands 3
Bonds (r.m.s.d.)
Length (Å) 0.008
Angles (°) 0.848
Mean B-factor
Protein 196.14
Ligand 135.89
MolProbity score 2.20
Clashscore 20.41
Rotamer outliers (%) 0.0
Ramachandran plot
Favored (%) 94.2
Allowed (%) 5.8
CC (volume) 0.76
Mean CC for ligands 0.59
CC (mask) 0.78

Supplementary Table 1. CryoEM data collection, refinement and validation statistics

Data collection parameters	EndoS _{E235A} -	EndoS2 _{E186L-} Fc	EndoS	EndoS2	Fc	
Instrument	B21 (DLS)	B21 (DLS)	B21 (DLS)	B21 (DLS)	B21 (DLS)	
Wavelength (Å)	0.99	0.99	0.99	0.99	0.99	
S range (Å ⁻¹)	0.002-0.420	0.002-0.420	0.002-0.420	0.002-0.420	0.002-0.420	
Exposure time (s per frame)	0.56	0.56	0.56	0.56	0.56	
Concentration range (μM)	55	55	55	55	55	
Temperature (K)	298	298	298	298	298	
Structure parameters		•	•		•	
<i>I</i> (0) (a.u.) ¹ (from <i>P(r)</i>)	0.004	0.007	0.009	0.005	0.003	
<i>Rg</i> (Å) (from <i>P(r)</i>)	53.7	52.2	43.0	38.7	26.8	
<i>l</i> (0) (a.u.) ¹ (from Guinier)	0.004	0.007	0.009	0.005	0.003	
Rg (Å) (from Guinier)	53.6	52.2	42.9	38.7	26.8	
D _{max} (Å)	182	176	148	125	80	
Porod volume estimate (Å ³)	298375	324331	185228	168964	111242	
Dry volume calculated from sequence (Å ³) ²	187759	170507	127075	109823	60706	
Molecular mass determination ³						
Molecular weight (kDa)	211.3	234.1	111.9	87.0	52.6	
Calculated MW from sequence (kDa)/ Discrepancy (%):						
Monomeric proteins	-	-	105.0/6.5	90.7/4.1	50.1/4.9	
Enzyme:substrate (1:1)	155.1/36.7	140.8/40	-	-	-	
Enzyme:substrate (2:1)	260.1/26.5	231.5/1.1	-	-	-	
OLIGOMER:						
χ^2 value	1.18	1.09	-	-	-	
% of enzyme:substrate (1:1)	29	- 34		-	-	
% of enzyme:substrate (2:1)	67	49	-	-	-	
χ^2 value MONSA	2.4	0.9	1.8	1.9	1.6	
Software employed						
Primary data reduction	SCÅTTER	SCÅTTER	SCÅTTER	SCÅTTER	SCÅTTER	
Data processing	PRIMUS/ SCÅTTER	PRIMUS/ SCÅTTER	PRIMUS/ SCÅTTER	PRIMUS/SC ÅTTER	PRIMUS/S CÅTTER	

Supplementary Table 2. SAXS data collection and refinement parameters.

¹ arbitrary unit ² Dry volume determined using the server: http://biotools.nubic.northwestern.edu/proteincalc.html ³ Molecular weight determination by SAXSMoW2

EndoS	Primers
H236A_F	GGATGTTGAAgcaGATAGTATTCCAAAAGTTGAC
H236A_R	ACATCTAAGCCATCAAGG
W314A_F	GAAAGGTGGTgcaGAGCCTGTTTC
W314A_R	TCTCCTTGTGAACCATAG
E315A_F	AGGTGGTTGGgcaCCTGTTTCTAATC
E315A_R	TTCTCTCCTTGTGAACCATAG
N319A_F	GCCTGTTTCTgcaCGACCTGAAAAAAC
N319A_R	TCCCAACCACCTTTCTCTC
K323A_F	TCGACCTGAAgcaACAATGGAAGAAC
K323A_R	TTAGAAACAGGCTCCCAAC
E354A_F	AAATGCTCAAgcaGGGAATCTTTG
E354A_R	TCCTCATAGAAAGAAAAACC
W803A_F	CTCTTTAGGAgcaGATTCTAAGCAAAGTATTATATTTAAATTG
W803A_R	ATATTATCAGTCTCACTGC
Y909A_F	AGGAGATAGAgcaAGTTCGCCAGTAGTC
Y909A_R	TTAGTATCAAAGACAACTCG
Strings for EndoS	Fragment
alanine scan	
	GGTGTCAAACCGCCCGGAGAAGACCATGGAAGAGCGTTGGCAGGGCTAC TCGAAATACATCCGCCCGGAGCAGCATGGAAGAGCGTTGGCAGGGCTAC AGAGAACGCGCAGGAAGGCAACCTGTGGTACGACATCAACTCACGTAAA GATGAAGATAAGGCCAACGGCATCAATACCGATATTACCGGCACTCGCG CGGAGCGCTACGCCCGCTGGCAGCCGAAAACTGGCGGCGTGAAAGGTGG AATCTTTAGCTATGCCATCGATCGCCGACGAGTTGCCGATTTTCCATAGCG ACTACTCAGTGTCGAAAGCCCTGAAAACTGTGATGCTGAAGGACAAATC ATACGACCTCATCGACGAAAAGGACTTTCCTGACAAAGCCCTTCGCGAGG CCGTTATGGCTCAAGTGGGGACGCGCAAAAGCGCACCTGGAGGCGCTTTAA CGGTACGCTGCGCCTGGACAACCCGGCTATCCAGAGCCCTTGAGGGACTGA ACAAGTTCAAGAAGCTGGCGCAGCTGGATCTGATCGGTCTTAGCCGTATC ACCAAACTGGATCGCTCAGTCCTGCCTGCCAACATGAAACCGGGGAAGG ACACGCTCGAGACTGTGCTGGAGACATACAAGAAAACCGGGGAAGG ACACGCTCGAGACTGTGCTGGAGACATACAAGAAAACCGGGGAAAGG CCGGCGGCGACCATTCCGCCGGTGAGTCTGAAAGACAATAAAGAGAA TCAAGGAGCTGGACCTTTCTGGCTTCGATCGCGAGACCATGGCAGGACC GACGCGGCGACATTAACTTCATTGGAGAAAGTCTCGGGGTTGACAGGAC TCAAGGAGCTGGCCGGGTACCGGAGAACCGCCAGATCTGGCAGGGCACG GCTGGACCATTCCCACCACGTCGGACACCGCAGACCAGGCAGACG CCTATACGAACCACTTCCAACCACGGCAAACCGCCAGATCTTCGACAGGAC TCAAGGACCTTGCGCCGGGTACGGAGAACCGCCAGATCTTCGACAGGAC CTCATACGACCATTTCCAACCACGGGTCACTATCCCGACACATACGGAAAGAC CTCATTACGTTTGCCGGTGCCAACCAGGAAAGGTAGACCTGCAGTCAAGT TCGATAAACAGAAGCCTACGGGTCACTATCCCGACACATACGGAAAGAC CTCATTACGTTTGCCGGTTGCCAACCAGGAGAAGGTAGACCTGCAGTCACAAT TGCTGTTCGGCACCGTAACCAACCACAGGACAGCGCCGGACGATTCGGCACGTCACAAT TGCTGTTCGGCACCGTAACCAACCACAGGTCAGCTACGAAAATTAACAGTGGACC GATTACAAAGCATATCAGAACCACAAGATCGCCGGTCGCAGTTTCGTGGA CTCGAATTACCACTATACAACCACAACAAGATCGCCGGTCACGAAAATTACACAG TGAAGGTTACCACTATACAACTTCAAGGTCAGCTACGCAGAAAATTACACAG
K70A/Q73A/E74 A/Q76A/K77A ²	GAAGTGCCATTCCGCCTGACCTGCGCGCCATATGGAAGAAAAGACAGTG CAAGTTCAAAAGGGGCTCCCGTCCATTGACTCATTACACTACCTCCCGA AAACAGTAAGAAGGAGTTCAAGGAAGAGTTGAGCGCCGCCGGCGCCGCT

Supplementary Table 3. Sequence of primers used to generate EndoS, EndoS2 and Fc mutants.

	TCGGCGGCCGTAAAGGAAATTCTTGCGAAGGCCCAACAAGCCGACAAGC
	AGGCGCAGGAGTTGGCAAAGATGAAGATCCCCGAAAAGATCCCCATGAA
	GCCACTGCACGGCCCACTGTATGGCGGCTATTTCCGTACCTGGCACGATA
	AGACCAGTGACCCGACGGAGAAGGATAAGGTCAATAGTATGGGTGAATT
	ACCGAAAGAGGTTGACCTGGCGTTCATCTTTCATGACTGGACTAAGGACT
	ACTCGTTATTCTGGAAGGAGCTGGCAACTAAGCACGTTCCGAAACTGAAT
	AAACAGGGTACGCGCGTTATCCGCACGATCCCGTGGCGCTTTCTGGCAGG
	TGGCGACAATTCGGGGATCGCGGAAGACACAAGCAAGTATCCCAACACC
W 514A/E515A/N5	
19A/K323A	
	GTGAGTGCACGCCCTGAGGCCACTATGGAAGAGCGTTGGCAGGGCTACT
	CTAAATACATCCGCCCCGAGCAGTATATGATCGGCTTCAGTTTCTACGAA
	GAGAACGCCCAAGAGGGTAACCTGTGGTACGACATCAACTCGCGTAAAG
	ATGAAGATAAGGCGAACGGCATCAATACCGATATCACCGGTACCCGCGC
	AGAGCGCTACGCGCGCTGGCAGCCCAAAACGGGCGGCGTCAAAGGCGGA
	ATTTTCAGTTATGCCATCGATCGCGACGGAGTTGCGCACCAGCCCAAGAA
	GTACGCAAAGCAAAAGGAATTCAAAGATGCGACCGACAATATTTTCCAT
	AGCGACTACAGCGTGTCTAAAGCTCTGAAAACCGTAATGCTTAAGGACA
	TTAACGGTACCTTGCGCCTGGACAACCCCGCCATCCAGTCACTCGAGGGC
	CTGAACAAGTTCAAGAAGCTGGCACAGCTGGATCTTATCGGTTTGTCACG
	TATCACCAAATTGGATCGCAGTGTACTTCCAGCGAACATGAAACCCGGTA
	AGGACACGCTTGAGACTGTGCTGGAGACGTACAAGAAAGA
	GGAGCCAGCGACCATTCCGCCGGTGTCCCTGAAAGTGAGCGGCCTCACG
	GGCCTTAAAGAGTTGGACCTTAGCGGCTTCGATCGCGAGACTCTCGCAGG
	CTTAGACGCGGCAACCCTGACCAGTTTGGAGAAGGTAGACATCAGCGGA
	AATAAGCTGGACCTGGCCCCGGGTACTGAGAACCGTCAGATCTTCGACAC
	GATGTTGTCTACCATTTCGAACCACGTGGGCAGTAACGAGCAGACGGTAA
	AGTTCGATAAACAGAAGCCTACCGGTCACTATCCGGACACGTACGGAAA
	GACATCGCTTCGTTTGCCCGTCGCCAACGAGAAGGTCGACCTGCAGTCCC
	GGACAGCAATTACCACTATAACAATTTCAAGGTGAGTTACGAAAATTACA
	CTGTCAAGGTTACCGACTCGACTCTGGGCACTACGACCGATAAGACGCTA
	GCAGCGCGCAGGCTAGGTGGAGGCTCAGTG
E354A/K414A/K41	GAAGTGCCATTCCGCCTGACCTGCGCGCGGAGCTCCTTACATCAACTTGC
$8A^1$	TGTTGGTTCAAGTATACGGAAGCCAGGGTGAAAAGGGCCGGCTGGGAACC
	CGTGAGCAACCGTCCAGAGAAGACGATGGAAGAGCGCTGGCAGGGCTAC
	TCGAAATACATCCGCCCGGAGCAGTATATGATCGGGTTCTCATTTTACGA
	AGAGAACGCGCAGGCGGGTAACCTGTGGTACGACATCAACTCGCGTAAA
	GATGAAGATAAGGCGAACGGCATCAATACAGATATTACGGGCACACGCG
	GATCTTTAGTTATGCCATCGATCGCGACGGAGTCGCGCACCAGCCGCGA
	AAGTTACGACTTGATCGACGAAAAGGACTTTCCGGACAAAGCCCTGCGC
	GAGGCCGTTATGGCACAAGTGGGTACGCGCAAGGGCGACTTAGAGCGCT
	TTAACGGTACTCTGCGCCTGGACAACCCCGCAATCCAGTCTCTTGAGGGA
	CTGAACAAGTTCAAGAAGCTGGCCCAGCTGGATCTCATCGGTTTGTCCCG
	TATCACGAAACTGGATCGCTCGGTGCTTCCGGCCAACATGAAACCGGGTA
	AGGACACTCTCGAGACCGTCTTAGAGACATACAAGAAAGA
	AGAGCCAGCAACAATTCCGCCGGTGAGTCTGAAAGTAAGCGGCCTGACC
	GGCTTAAAGGAGTTGGACCTCTCGGGGGTTCGATCGTGAGACACTGGCGGG
	CCTGGACGCGGCCACGCTGACCAGCTTGGAGAAGGTAGACATCAGCGGT
	AATAAGTTGGACTTAGCCCCGGGGACCGAGAACCGTCAGATCTTCGACAC
	AATGCTCTCGACCATTTCGAACCACGTGGGGCTCGAACGAGCAGACGGTAA
	ΑGTTCGATAAACAGAAGCCGACCCGGTCACTATCCCGCACACTTACCCCCAA
1	

	AACTGCTGTTCGGTACGGTTACGAACCAGGGTACGCTTATTAACTCGGAA
	GCGGATTACAAAGCCTATCAGAACCACAAGATCGCCGGTCGCAGTTTCGT
	GGACAGCAATTACCACTATAACAATTTCAAGGTCTCGTACGAAAATTACA
	CGGTAAAGGTCACGGACAGCACGTTAGGGACGACCACGGATAAGACGCT
	AGCAGCGCGCAGGCTAGGTGGAGGCTCAGTG
$V/16\Lambda/O/10\Lambda/K/$	GA AGTGCC ATTCCGCCTGACCTGCGCGCGCGAGCTCCTTACATCAACCTGC
1410A/Q419A/K4	
20A/E421A/F422A	
/K423A	
	AGAGAACGCGCAGGAAGGCAACTTGTGGTACGACATCAACAGCCGTAAA
	GATGAAGATAAGGCGAACGGCATCAATACCGATATTACGGGTACTCGCG
	CAGAGCGCTACGCGCGCTGGCAGCCGAAAACCGGCGGCGTTAAAGGCGG
	AATCTTTAGTTATGCCATCGATCGCGACGGCGTCGCCCACCAGCCTAAGA
	AGGCCGCAAAGGCTGCCGCCGCCGCCGATGCTACCGACAATATCTTTCAT
	TCCGACTACTCCGTTTCTAAAGCGCTCAAAACGGTGATGCTGAAGGACAA
	AAGCTACGACTTGATCGACGAAAAGGACTTTCCGGACAAAGCCTTACGTG
	AGGCGGTAATGGCCCAAGTCGGCACTCGTAAGGGCGACCTCGAGCGCTTT
	AACGGTACTCTGCGCCTGGACAACCCTGCCATCCAGTCATTGGAAGGCTT
	AAACAAGTTCAAGAAGTTGGCCCAGTTGGATCTTATCGGGTTGTCCCGTA
	TCACCAAACTGGATCGCTCGGTACTGCCAGCAAACATGAAACCCGGTAA
	GGACACTCTGGAGACGGTGCTGGAGACTTACAAGAAAGACAATAAAGAG
	GAGCCGGCCACCATTCCGCCGGTTAGTCTTAAAGTGTCAGGACTGACCGG
	GCGGGATTACAAAGCGTATCAGAACCACAAGATCGCAGGCCGCTCATTCGT
	GGACICCAATTACCACTATAACAATTICAAGGTATCCTACGAAAATTACA
	AGCAGCGCGCAGGCTAGGTGGAGGCTCAGTG
Y541A/K543A/D5	GAAGTGCCATTCCGCCTGACCTGCGCGCGGAGCTCCTTACATCAACCTGC
44A/N545A/K546	TTCTTGTTCAAGTGTACGGCAGCCAGGGCGAAAAGGGCGGGTGGGAACC
A	AGTAAGTAACCGCCCGGAGAAGACGATGGAAGAGCGTTGGCAGGGCTAC
	TCCAAATACATCCGCCCGGAGCAGTATATGATCGGCTTCTCCTTTTACGA
	AGAGAACGCCCAAGAGGGTAACCTCTGGTACGACATCAACAGCCGTAAA
	GATGAAGATAAGGCCAACGGGATCAATACGGATATTACCGGCACCCGCG
	CAGAGCGTTACGCGCGCTGGCAGCCGAAAACTGGCGGTGTCAAAGGCGG
	AATCTTTAGCTATGCGATCGATCGCGACGGCGTGGCGCACCAGCCAAAGA
	AGTACGCCAAGCAAAAGGAATTCAAAGATGCCACCGACAATATCTTTCAT
	AGCGACTACTCCGTGAGTAAAGCTCTGAAAACCGTGATGCTGAAGGACA
	AAAGTTACGACCTTATCGACGAAAAGGACTTTCCGGACAAAGCCTTACGC
	GAGGCCGTTATGGCCCAAGTAGGTACGCGTAAGGGCGACCTGGAGCGCT
	TTAACGGGACCCTGCGCCTTGACAACCCGGCCATCCAGTCGCTTGAGGGG
	CTGAACAAGTTCAAGAAGCTGGCACAGCTTGATCTGATC
	TATCACCAAACTGGATCGCTCCGTGCTGCCGGCAAACATGAAACCGGGTA
	AGGACACTCTGGAGACTGTGTGTTAGAGACGGCCAAGGCCGCCGCAGCGGA
	AGAGCCCGCCACGATTCCGCCGGTGAGCCTGAAAGTGAGTG
	GGCTTGAAGGAGCTGGACTTAAGCGGCTTCGATCGCGAGACGCTGGCGG
	GGTTGGACGCGGCCACCCTGACTAGTCTTGAGAAGGCGGACATCACCCCT
	GGCCGATTACAAAGCGTATCAGAACCACAAGATCGCAGGGCGCTCATTC
	GTGGACTCTAATTACCACTATAACAATTTCAAGGTCTCGTACGAAAATTA

	CACGGTGAAGGTGACCGACAGCACCCTGGGCACTACCACCGATAAGACG
1	CTAGCAGCGCGCAGGCTAGGTGGAGGCTCAGTG
$\Delta \text{Loop } 314-323^{1}$	GAAGTGCCATTCCGCCTGACCTGCGCGCGCGGAGCTCCTTACATCAACCTGC
	CGACATCAACAGCCGTAAAGATGAAGATAAGGCGAACGGCATCAATACC
	GATATTACAGGGACTCGCGCGGGAGCGTTACGCGCGTTGGCAGCCTAAAA
	CTGGTGGAGTCAAAGGCGGAATCTTTAGCTATGCAATCGATCG
	GTCGCGCACCAGCCGAAGAAGTACGCGAAGCAAAAGGAATTCAAAGATG
	CCACCGACAATATCTTTCATTCGGACTACTCAGTGAGCAAAGCGCTGAAA
	ACGGTGATGCTGAAGGACAAATCATACGACTTGATCGACGAAAAGGACT
	TTCCGGACAAAGCGTTACGCGAGGCCGTAATGGCACAAGTAGGTACACG
	TACAAGAAAGACAATAAGGAAGAGCCCGCAACCATTCCGCCGGTTAGCC
	TCAAAGTGAGTGGACTGACGGGGTTGAAGGAGCTGGACCTGAGTGGATT
	CGATCGCGAGACGCTGGCCGGCCTGGACGCGGCGACTCTTACTTCACTGG
	AGAAGGTGGACATCTCGGGGAATAAGCTGGACCTCGCCCCGGGTACCGA
	GAACCGCCAGATCTTCGACACCATGTTGAGCACCATTTCTAACCACGTGG
	GTTCGAACGAGCAGACCGTAAAGTTCGATAAACAGAAGCCGACCGGACA
	CTATCCGGACACGTACGGTAAGACCAGCCTTCGTCTGCCGGTAGCCAACG
	AGAAGGTCGACCTGCAGTCTCAACTGCTTTTCGGCACCGTCACGAACCAG
	GACTACCACGGATAAGACGCTAGCAGCGCGCGGCGGCTAGGTGGAGGCTCA
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCGCACGCTAGCAACCGACAAAGAG
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCCCAAAGTGTTCGACGCCCACCTTCGCTCCCAAAACCCAACATTAGC
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGCG
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGACGAGAAGTACTGGATCACCGTGGACACA
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAAGGGGAACGCGCGACCGCCTTTAGCAACACCTTGAACAA
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGAACGCGCGCGCGCGCCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCAAGGGTGACCGTT
ΔLoop 828-836 ³	GIG GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGCGCGTGCTTCGACAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCACAAGGGTGACCGTT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCCTGCCG
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGCGCGCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGCGCGAGATCCTTGGGTACCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC
ΔLoop 828-836 ³	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGCGCGCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCAAGGGTGACCGTT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGCACCGCTCAAAATGTTAGACGAACTGAAGATCAA
ΔLoop 828-836 ³	GIG GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGCGCGCCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCAAGGGTGACCGTT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGAACAATGTTAGACGAACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACG
ΔLoop 828-836 ³	GIG GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGCGCGCCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCAAGGGTGACCGTT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGAAAATGTTAGACGAACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACG GCGATCAACGCCAACGCGGGTGTGCTGAAGGACTGCATCGAAAAGCGTC AACTCCTGAAGAAGGGATCCGGCGCGCGCGCAGGCTACGATCGAAAAGCGTC
ΔLoop 828-836 ³	GIG GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGACCGCCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCAAGGGTGACCGTT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGACTGCAGATCACGAACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACCA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACCA GCGATCAACGCCAACGCGGGTGTGCTGAAGGACTGCATCGAAAAGCGTC AACTCCTGAAGAAGGGATCCGGCGCGCGCGCGCAGGCTAGGTGGAGGCTCAGT G
ΔLoop 828-836 ³	GIG GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGACCGCCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGGTGCTCGACACCAAGGGTGACCGTT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGAACGCTGCAGAACTGTAGAAAATCTTCGACGTTACC GGAAATGCGCAAGGCGAGCCGCGTGGTGTTCGAACAACTGAAGATCAA GGAAATGCGCAACGCCGGGTGTGCTGAAGAACTGCAACGCTTACG GCGATCAACGCCAACGCGGGTGTGCTGAAGGACTGCATCGAAAAACGGTC AACTCCTGAAGAAGGACCCGGCGCGCGCGCGCAGGCTACGATCGAAAAGCGTC AACTCCTGAACGCCAACGCGGGTGTGCTGAAGGACTGCATCGAAAAGCGTC AACTCCTGAAGGAGACCAGCCGGCGCGCGCGCGCAGGCTACGAACGGCTCAGT G Primers
ΔLoop 828-836 ³ Fc region R292A_F	GIG GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGCGCGCGCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCAAGGGTGACCGTT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGAAAATGTTAGACGAACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACG GCGATCAACGCCAACGCGGGTGTGCTGAAGACCGACGACGACCGTT ACTCCTGAAGAACGCGGGGTGTGCTGAAGAACTGCACGAACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACC AGCAAGGCACAAGGGATCCGGCGCGCGCAGGCTAGGTGGAGGCTCAGT G Primers GACCAAGCCTgctGAGGAACAGTACAAC
ΔLoop 828-836 ³ Fc region R292A_F R292A_R	GAAGTGCCATTCCGCCTGACCTGCGCGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGACCGCCTTTAGCAACACCTGGTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCAAGGGGGACCGTT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGAAAATGTTAGACGAACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACG GCGATCAACGCCAACGCGGGGTGTGCTGAAGGACTGCATCGAAAAAGCGTC AACTCCTGAAGAAGGATCCGGCGCGCGCGCGCGCGCAGGCTAGGTGGAGGCTCAGT G C C C C C C C C C C C C C C C C C C
ΔLoop 828-836 ³ Fc region R292A_F R292A_F E293A_F	GAAGTGCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACCAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGCGCGCGCCTTTAGCAACACCTTGGACACA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCAAGGGTGACCGTT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGAACAGTCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGAAAATGTTAGACGAACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACCA GCATCAACGCCAACGCGGGTGTGTGCAAGACTGCAGACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACC ACTCCTGAAGAACGCGGGGTGTGCTGAAGGACTGCATCGAAAAGCGTC AACTCCTGAAGAAGGGATCCGGCGCGCGCGCGCAGGCTAGGTGGAGGCTCAGT G Primers GACCAAGCCTgctGAGGACCGCGCAGGCTAGGTGGAGGCTCAGT G CAAGCCTAGAgctGAACAGTACAACAGC
ΔLoop 828-836 ³ Fc region R292A_F R292A_F R292A_F E293A_F E293A_R	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCAAGGCGGT GCACACCGCAAAGTGATATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAAGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGACCGCCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGGCGGCGACCGCCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGGGGGTGTTCGACACCAAGGGTGACCGT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGAAAATGTTAGACGAACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACG GCGATCAACGCCAACGCGGGTGTGCTGAAGGACTGCATCGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACG GCGATCAACGCCAACGCGGGGTGTGCTGAAGGACTGCATCGAAAAACCTT G Primers GACCAAGGCACAAGCCGGCGCGCGCGCGCGCGCGCGCGAGGCTCAGT G CAAGCCTAGAGCGCTGGAACAGTACAACAGC CAAGCCTAGAgetGAACAGTACAACAGC GCCATCAACGCCAACGCGGGTTGTGCGCACTTCC
ΔLoop 828-836 ³ Fc region R292A_F R292A_F E293A_F E293A_F E293A_F E293A_F E294A_F	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAACCGACAAAGGCGGT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAAGGGCCACCGTGATTGGCGCCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGCTTGA GAACCCGAACAAGTTCGACGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGCGCCGCTTTAGCAACACCTTGAACAA CATCACCTCAAAGTACTGGCGCGTGGTGTTCGACACCAAGGGTGACCGTT ACTCGTCACCGGTTGTGCCCGAGCTGCAGATCCTTGGGTACCCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGACAATGTTAGCAACACTGAAGATCAA GGAAATGCGCATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGTCGC AGCAGAAGGACAAATTCTCGCAGACAATAGTAGACGAACTGAAGATCAA GGAAATGCGCATACAATTATGAAGACCGTTACCACAGCCAAGGAACTGAAGATCAA GGCATCAACGCCAACGCGGGGTGGTGTCGAAGACTGCAACGACTGAAGATCAA GGCATCAACGCCAACGCGGGGTGGTGTGAAGGACTGCATCGAAAAACCTT G Primers GACCAAGCCTAGCGGGGGCGCGCGCGCAGGCTAGGTGGAGGCTCAGT G CAAGCCTAGAGAAGGCATCCGGCGCGCAGGCTAGGTGGAGGCTCAGT G CAAGCCTAGAGCAGCTGGAACAGTACAACAGC GTCTTGGCGTTGTGCACTTCC CAAGCCTAGAgctGAACAGTACAACAGC GTCTTGGCGTTGTGCACT
ΔLoop 828-836 ³ Fc region R292A_F R292A_F R292A_F E293A_F E293A_F E293A_F E294A_F E294A_R	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAACCGACAAAGCGAGGCGGAT GCACACCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGAAC CTCGCGGAAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGGCG TCACTGCAGATCTTCAACATTAAGGACTACAACCTGGATCACAGTGGACACA AACCCGAACAAGTTCGACGACGAGGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGCGCGCGCTTTAGCAACACCTTGAACAAC CATCACCTCAAAGTACTGGCCGGAGCGGCGCGCGCTTTAGCAACACCTTGAACAAC CATCACCTCAAAGTACTGGCCGAGCTGCAGATCCTTGGGTACCCCCTGCCG AATGCGGATACAATTATGAAGACCGTTACCACAGCCAAGGGTGACCGGT ACTCGTCACCGGTTGTGCCCGAGACCGTCGAAACTGTAGC AGCAGAAGGACAAATTCTCGCAGAACAGTACAAGCAACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACG GCGATCAACGCCAACGCGGGGTGTGCTGAAGGACTGCATCGAAAAAGCGTC AACTCCTGAAGAAGGGATCCGGCGGCGCGCGCGCAGGCTAGGTGGAAGACTAA GGACAAAGGACAAATTCTCGCAGACCGCCGCAAGGAACTGAAGATCAA GGAAATGGCGCTGGAGACCAGCCTGAATAGCAAAATCTTCGACGTTACG GCGATCAACGCCAACGCGGGGTGTGCTGAAGGACTGCATCGAAAAAGCGTC AACTCCTGAAGAAGGGATCCGGCGCGCGCGCAGGCTAGGTGGAAGGCTCAGT G CAACCCAAGCCTgctGAGGAACAGTACAACAGT CAAGCCTAGAGAAGGGATCCGGCGCGCAGGCTAGGTGGAGGCTCAGT G CCAAGCCTAGAGAGgctGAACAGTACAACAGC GTCTTGGCGTTGTGCACTT GCCTAGAGAAGgctCAGTCTGGCG CCAAGCCTAGAGAGgctCAGTACAACAGC TTGGTCTTGGCGTTGTGCACT
ΔLoop 828-836 ³ Fc region R292A_F R292A_R E293A_F E293A_R E294A_F E294A_F E294A_F E294A_F E294A_F	GAAGTGCCATTCCGCCTGACCTGCGCGCACGCTAGCAACCGACAAAGAG GAAACTTACAAAGTCGATTTCTTCAGTCCTGCGGACAAAACCGACAAGGCGGT GCACCCGCAAAGGTAATCGTAGGCGATGAGAAGACAATGATGGTGGAAC CTCGCGGAAGGGGCCACCGTGATTGGCGGCAGCGCCGATCCAGTCAACG CCCGCAAAGTGTTCGACGGCCAGCTTGGGTCCGAAACCGACAACATTAGC CTTGGCTGGGACAGCAAACAGTCCATCATTTTCAAGCTGAAAGAGGACG GTCTGATCAAACACTGGCGCTTCTTTAACGACAAGCCGATCCAAGAGGGG CACTGCAGATCTTCAACATTAAGGACTACAACCTCGACAACCTGGTTGA GAACCCGAACAAGTTCGACGACGAGAAGTACTGGATCACCGTGGACACA TATTCCGCGCAAGGGGAACGCGCGGCGCG

Y296A_F	AGAGGAACAGgctAACAGCACCTACAGAG			
Y296A_R	CTAGGCTTGGTCTTGGCG			
S298A_F	ACAGTACAACgetACCTACAGAGTGGTG			
S298A_R	TCCTCTCTAGGCTTGGTC			
S298A/Y296A/E29	agetaacact&CCT&C&G>GGTGTCC			
4A/R292A_F	ggelaadgelAceTACAGAGTGGTGTCC			
S298A/Y296A/E29 4A/R292A_R	tgagcctcagcAGGCTTGGTCTTGGCGTT			
Y296F_F	AGAGGAACAGttcAACAGCACCTAC			
Y296F_R	CTAGGCTTGGTCTTGGCG			
Y300F_F	CAACAGCACCttcAGAGTGGTGT			
Y300F_R	TACTGTTCCTCTCTAGGC			
Y296_Y300F_F	cacetteAGAGTGGTGTCCGTGCTG			
Y296_Y300F_R	ctgttgaaCTGTTCCTCTCTAGGCTTGG			
I253A_F	CACCCTGATGgctAGCAGAACCC			
I253A_R	TCCTTAGGCTTTGGAGGA			
H310A_F	GACCGTGCTGgetCAGGATTGGCTG			
H310A_R	AGCACGGACACCACTCTG			
H310A/L314A_F	ttgggctAACGGCAAAGAGTACAAGTGC			
H310A/L314A_R	tcctgageCAGCACGGTCAGCACGGA			
Q311A/N315A_F	gctggctGGCAAAGAGTACAAGTGCAAGG			
Q311A/N315A R	caatcagcGTGCAGCACGGTCAGCAC			
E430A/H435A F	cacaacgctTACACCCAGAAAAGCCTGTC			
 E430A/H435A_R	cagggcagcGTGCATCACGCTGCAGCT			
H268A/E269A/D27	tcccgctGTGAAGTTCAATTGGTACGTG			
0A/E272A_F				
H268A/E269A/D27	gcagcagcGGACACATCCACCACCAC			
P329A F	CAAGGCCCTGgccGCTCCTATCG			
P329A R	TTGGACACCTTGCACTTGTAC			
A330G F	GGCCCTGCCTggcCCTATCGAGA			
A330G R	TTGTTGGACACCTTGCAC			
A 330W F	GGCCCTGCCTtooCCTATCGAGA			
A 330W R	TTGTTGGACACCTTGCAC			
P329A/A330G F	CAAGGCCCTGgccggcCCTATCGAGAAAAC			
P329A/A330G_R	TTGGACACCTTGCACTTG			
D220A/A220W_E				
P329A/A330W_F				
P329A/A330W_K	IIGGACACCIIGCACIIG			
331(NKALPAP	cggaggggtATCGAGAAAACCATCAGC			
>GGGSGGGF				
Loop325-				
331(NKALPAP >GGGSGGG) R	gaacegecaceGGACACCTTGCACTTGTAC			
Loop325-				
331(NKALPAP	ccctgctgggATCGAGAAAACCATCAGC			
>GGGGPAG)_F				

Loop325- 331(NKALPAP	ccaccgccaccGGACAC	CTTGCACTTGTAC
>GGGGPAG)_R		
¹ Restriction site for clo	ning: SacI and NheI	

² Restriction site for cloning: SacI and Nhel ² Restriction site for cloning: NdeI and HindIII ³ Restriction site for cloning: NheI and BamH

Supplementary Table 4. Precursors and quantities used for the preparation of $[U^{15}N, {}^{2}H]$ MIL ${}^{proS}V^{proS}$ [${}^{13}C, {}^{1}H_{3}$]-methyl labeled endoglycosidases. A systematic review on precursors required for optimal methyl group isotope labelling in *E. coli* can be found somewhere else¹.

Labeled amino acid	Precursor	Quantity (mg/L)
Met-ɛ	L-Methionine (6- ¹³ C) ^a	250
Ile-δ1	2-ketobutyric acid $(4-{}^{13}C;3,3-D_2)$	60
Leu- $\delta 2$, Val- $\gamma 2$ pro-(S)	2-hydroxy-2-(¹³ C)methyl-3-oxobutanoate (4-D ₃) ^b	120

Obtained from ^aAldrich, ^bNMR-Bio. 2-ketobutyric acid (4-¹³C;3,3-D₂) was synthesized in-house.

Supplementary Table 5. List of NMR experiments and experimental details used for the assignment of CT, CTn-1 and HM *N*-glycans. Experiments were acquired at 310 K.

Experiment	Pulse program from	NS	TD	SW	Carrier	Observations
	Bruker library			(ppm)	F2/F1	
					(ppm)	
¹ H	zgesgp	64	32768	11.65	4.7	Water suppression with Squa100.1000 shaped pulse, 8 ms length to minimise suppression of anomeric signals ² .
[¹ H, ¹³ C]- Edited-HSQC	hsqcedetgpsisp2.2	32	2048x256	12.5x146	4.7/86	$J_{\rm CH} = 145 \ { m Hz}$
[¹ H, ¹ H]- NOESY	noesygpphpp	16	2048x256	10x10	4.7/4.7	700 ms mixing time
[¹ H, ¹ H]- TOCSY	mlevgpph19	16	2048x256	10x10	4.7/4.7	13 ms or 200 ms mixing times. Distance between nulls = 5.2 ppm
[¹ H, ¹³ C]- HMBC	hmbcgplpndqf	128	2048x240	12x92	4.7/66	Long range $J_{\rm CH} = 6$ Hz
[¹ H, ¹³ C]- HMQC- COSY	h2bcetgpl3	328	2048x302	12x92	4.7/66	$J_{\rm CH} \min - \max = 129 - 190 {\rm Hz}$

Recovery delay was set to 1.5 - 2.3 s in all experiments.

Residue with residue number	C1/	C2/	C3/	C4/	C5/	C6/	Acetvl-CH ₂	Ca/	CB/
	H1	H2	H3	H4	H5	H6a:H6b		Ηα	HBa·HBb
СТ								110.	11pu,11pu
Asn	-	-	-	-	-	-	-	53.8/	38.0/
								3.98	2.94:2.86
GlcNAc 1	80.9/	56.4/	75.6/	81.6/	79.0/	62.8/	24.9/	-	-
	5.08	3.87	3.78	3.66	3.60	3.84;3.66	2.02		
GlcNAc 2	104.0/	57.8/	74.7/	82.2/	77.3/	62.8/	25.0/	-	-
	4.66	3.79	3.80	3.74	3.63	3.89;3.76	2.09		
Man 3	103.1/	72.9/	83.3/	68.5/	77.3/	68.7/	-	-	-
	4.78	4.25	3.79	3.79	3.62	3.97;3.81			
Man 4	102.3/	79.3/	72.2/	70.1/	75.8/	64.4/	-	-	-
	5.14	4.20	3.91	3.51	3.63	3.92;3.64			
Man 4 '	99.8/	79.2/	72.2/	70.1/	75.8/	64.4/	-	-	-
	4.94	4.12	3.91	3.51	3.63	3.92;3.64			
GlcNAc 5/5'	102.3/	57.6/	74.9/	81.5/	77.5/	62.8/	25.1/	-	-
	4.60	3.75	3.75	3.74	3.59	3.99;3.86	2.06		
Gal 6/6'	105.7/	73.7/	75.4/	71.3/	76.3/	63.7/	-	-	-
	4.48	3.56	3.68	3.95	3.76	3.77;3.77			
CT _{n-1}	T	1	1	1	1		n	1	1
α -GlcNAc 2	93.2/	56.4/	72.5/	82.7/	77.1/	62.1/	24.6/	-	-
	5.21	3.90	3.93	3.91	3.62	3.73;3.73	2.06		
β -GlcNAc 2	97.7/	58.9/	72.5/	82.7/	77.1/	62.8/	24.8/	-	-
	4.72	3.71	3.93	3.91	3.62	3.79;3.77	2.06		
Man 3	103.2/	73.0/	83.2/	68.2/	77.1/	68.6/	-	-	-
	4.77	4.24	3.77	3.79	3.62	3.96;3.79			
Man 4	102.2/	79.3/	72.2/	70.1/	76.3/	64.4/	-	-	-
	5.12	4.19	3.90	3.50	3.75	3.91;3.62			
Man 4	99.8/	/9.2/	2.2/	/0.1/	/5.6/	04.4/ 2.01·2.62	-	-	-
GloNA o 5/5'	4.92	4.11 57.6/	7/ 0/	9.30 81.4/	3./1 77.//	5.91,5.02 62.8/	25.1/		
GIEINAE 5/5	4 58	3 74	3 72	3 72	3 57	$3.98 \cdot 3.84$	2.05	-	-
Gal 6/6 '	105.7/	73.8/	75 3/	71.3/	78.1/	63 7/	-	-	_
Gui oro	4.47	3.54	3.66	3.93	3.72	3.75:3.75			
НМ							I.		•
Asn	-	-	-	-	-	-	-	53.8/	38.0/
								3.99	2.93;2.88
GlcNAc 1	80.8/	56.3/	75.0/	81.5/	79.1/	62.8/	24.9/	-	-
	5.09	3.87	3.79	3.66	3.61	3.85;3.66	2.03		
GlcNAc 2	104.0/	57.8/	75.0/	81.9/	77.2/	62.8/	25.0/	-	-
	4.63	3.79	3.79	3.74	3.61	3.89;3.74	2.08		
Man 3	103.0/	73.1/	84.0/	68.3/	77.2/	68.11/	-	-	-
	4.78	4.23	3.74	3.91	3.61	4.03;3.75			
Man 4	103.5/	81.3/	72.8/	69.7/	76.1/	63.8/	-	-	-
	5.34	4.12	4.01	3.77	3.82	3.90;3.77			
Man 4'	102.4/	81.6/	81.5/	67.8/	74.2/	68.7/	-	-	-
	4.88	3.90	3.90	3.88	3.85	3.95;3.80			
Man 5	103.3/	81.3/	72.8/	69.7/	76.1/	63.8/	-	-	-
	5.31	4.12	4.01	3.71	3.82	3.90;3.77			
Man 5'	103.3/	81.3/	72.9/	69.7/	76.1/	63.8/	-	-	-
	5.41	4.12	3.96	3./1	3.82	3.90;3.77			
Man 5''	100.9/	81.3/	72.9/	69.7/	75.5/	63.8/	-	-	-
Man 6/62/622	3.14	4.03	3.90	3./1	3./1	5.90;5.77			
IVIAII 0/0 /0	5.07	12.8/	3.86	3.67	70.0/ 3.78	3 00.2 77	-	-	-
	/	· · · · / 7		/					

Supplementary Table 6. Glycan ${}^{1}\text{H}/{}^{13}\text{C}$ chemical shifts of CT, CT_{n-1} and HM *N*-glycans (referenced to TSP). Experiments were acquired at 310 K.

Supplementary Table 7. Example of shell script for NMR data processing with NMRPipe

```
#!/bin/csh
foreach spec (1 3 5 7 9 11 12 13 14 15)
cd spec/$spec
bruk2pipe -in ./ser \setminus
  -bad 0.0 -ext -aswap -AMX -decim 8330.666666666667 -dspfvs 20
-grpdly 67.9856719970703 \
  -xN
                    512 -yN
                                            256
                                                 \backslash
  -xT
                    256 -yT
                                            128
                                                 \
                    DQD -yMODE
  -xMODE
                                    States-TPPI
                                                 -xSW
               2400.768 -ySW
                                       3320.053
                                                 /
                600.230 -yOBS
                                        150.931
  -xOBS
                                                 \setminus
                 0.8578 -yCAR
                                        19.7253
  -xCAR
  -xLAB
                         -yLAB
                                                 1H
                                            13C
  -ndim
                      2
                                           TPPI
                                                 -aq2D
  -out ./test.fid -verb -ov
nmrPipe -in test.fid \
| nmrPipe -fn EM -lb 1.0 -c 1.0
                                                        | nmrPipe -fn ZF -auto
| nmrPipe -fn FT -auto
| nmrPipe -fn PS -p0 62 -p1 0 -di -verb
                                                        \
\
| nmrPipe -fn BASE -nw 5 -nl 0% 2% 98% 100%
| nmrPipe -fn CS -rs OHz -sw
                                                        \
\
\
\
\
| nmrPipe -fn EXT -x1 -0.3ppm -xn 2.4ppm -sw
| nmrPipe -fn TP
| nmrPipe -fn EM -lb 1.0 -c 1.0
| nmrPipe -fn ZF -auto
| nmrPipe -fn FT -auto
| nmrPipe -fn PS -p0 0 -p1 0 -di -verb
                                                        \
| nmrPipe -fn BASE -nw 2 -nl 0% 2% 98% 100%
| nmrPipe -fn CS -rs OHz -sw
   -ov -out ../test-$spec.ft2
rm test.fid
cd ..
cd ..
end
```

Supplementary Table 8. Dissociation constants K_D , on- and off-rate constants k_{on} and k_{off} for CT, Rituximab-Fc, HM and Ca²⁺ binding to EndoS2_{E186L} and EndoBT_{D312A/E314L} in the presence of constant additives from fitting a two-state binding model to methyl-TROSY titration data using TITAN algorithm.

N°	Enzyme	Ligand	Additives ¹	K_D (μ M)	$k_{off}(s^{-1})$	$k_{on} (M^{-1}s^{-1})$
1	EndoS2 _{E186L}	СТ	CaCl ₂	111.2 ± 9.7	11.7 ± 1.9	$1.1 x 10^5 \pm 2.0 x 10^4$
2		Fc	CaCl ₂	3.8 ± 1.0	4.5 ± 1.8	$1.2 x 10^6 \pm 5.7 x 10^5$
3		CaCl ₂	СТ	4100 ± 300	-	-
4		CaCl ₂	Fc	-	-	-
5	EndoBT _{D312A/E314L}	HM	CaCl ₂	0.4 ± 0.3	2.4 ± 1.1	$5.5 x 10^6 \pm 4.8 x 10^5$
6	EndoBT _{D312A/E314L}	СТ	-	>755 (if present)	-	-

¹Samples containing additives were prepared at saturating concentrations and diluted a maximum of 10% during the course of the titrations. Final additive concentrations were: 20 mM CaCl₂, 830 μ M CT, 56 μ M Fc or 72 μ M Fc aglycan in samples containing EndoS2_{E186L}, and 291mM CaCl₂ in samples containing EndoBT_{D312A/E314L}.

Supplementary Note 1

Structural analysis of EndoS and EndoS2 in complex with the Fc region of Rituximab in solution by small angle X-ray scattering

To study the overall structure of EndoS and EndoS2 in complex with the Fc region of IgG1 in solution, we first performed in-line size-exclusion chromatography small-angle X-ray scattering (SEC-SAXS) (Supplementary Figs. 1 and 6; Supplementary Table 2). We purified the catalytically inactive EndoS_{E235A} and EndoS2_{E186L} variants and the Fc region of Rituximab, a chimeric IgG1 used to treat B cell lymphoma, by papain digestion. We mixed the EndoS_{E235A} or EndoS2_{E186L} with the Fc region substrate in a 1:5 ratio and we isolated the enzyme-substrate complexes (EndoS_{E235A}-Fc and EndoS2_{E186L}-Fc) from the free enzymes and substrate by SEC chromatography and conducted SAXS analyses of the individual proteins and the complexes (Supplementary Fig. 6). Comparison of the R_g shows an increase when EndoS_{E235A}-Fc (R_g = 53.6 Å) and EndoS2_{E186L}-Fc ($R_g = 52.2$ Å) complexes are formed compared to the unliganded EndoS_{E235A} ($R_g = 42.9$ Å) and EndoS2_{E186L} ($R_g = 38.7$ Å) (Supplementary Table 2). In addition, examination of the P(r)-distribution shows that the maximum dimension, Dmax, also increases when the enzyme-substrate is formed, from 148 Å to 181 Å in the case of EndoS and from 125 Å to 176 Å in the case of EndoS2. The resulting P(r) function profile of both enzyme-substrate complexes exhibit a unimodal distribution of real-spaces distances that is characteristic of a globular protein, while the P(r) function profiles of the unbound EndoS and EndoS2 are bimodal consistent with the overall "V" shape of the crystal structures of both enzymes (Supplementary Fig. 6). Thus, the change from a bimodal to a monomodal distribution in the enzyme-substrate complexes strongly suggests that the Fc might bind to the cleft of the EndoS or EndoS2, promoting a more compact, globular state. The experimental determination of the $EndoS_{E235A}\mbox{-}Fc$ complex MW^3 (Supplementary Table 2) shows a 36.7% and a 26.5 % discrepancy to the calculated MW of the enzyme-substrate complex with 1:1 and 2:1

stoichiometries, respectively. In the case of EndoS2_{E186L}-Fc complex, the experimental determination of the MW from the SAXS data shows a 40 % and 1.1 % discrepancy to the calculated MW of the enzyme-substrate complex with 1:1 and 2:1 stoichiometries (Supplementary Table 2). These results, together with the fact that the R_g values are decreasing across the SEC peak of the enzyme-substrate complexes (Supplementary Fig. 6) indicate that a mixture of complexes with different stoichiometries might be present in that SEC peak. Therefore, we used OLIGOMER⁴ to calculate the volume fractions of the complexes with different stoichiometry contributing to the scattering profile. In the case of the mixture EndoS_{E235A}-Fc, the results showed that the enzyme-substrate 2:1 and 1:1 complexes contributed 67% and 29% volume fractions, respectively, to the scattering. Similar ratio of volume fractions was found for the EndoS_{E186L}-Fc mixture (Supplementary Table 2).

Supplementary Note 2

Extended NMR results

To shine more light on the interaction of endo- β -*N*-acetylglucosaminidases (ENGases) with their natural ligands, we have employed NMR-based chemical shift perturbation (CSP) experiments⁵. CSPs are usually extracted from uniformly ²H, ¹⁵N-labeled proteins applying ¹H,¹⁵N Transverse Relaxation Optimized Spectroscopy (TROSY) Heteronuclear Single Quantum Coherence (HSQC) spectroscopy. However, at a molecular weight of 97 kDa ¹H, ¹⁵N HSQC-TROSY spectra of EndoS2 suffered from incomplete deuterium-hydrogen back exchange of backbone H^N. The difficulty becomes evident when comparing ¹H, ¹⁵N HSQC-TROSY spectra of EndoS2 with those acquired from EndoBT-3987 glycosidase^{6,7}, the latter having a molecular weight of "only" 47 kDa (Supplementary Fig. 16a,b). We have previously shown that deuterium-hydrogen back exchange is crucial to extract reliable information from ¹H, ¹⁵N HSQC-TROSY spectra⁸. Yet, all attempts to develop an efficient unfolding-refolding protocol for complete deuterium-hydrogen back exchange of backbone H^N in ENGases failed. Therefore, we turned to specific ¹³C side chain methyl group labeling strategies^{1,9,10}, which enabled the acquisition of ¹H, ¹³C Heteronuclear Multiple Quantum Correlation (HMQC) spectra, also known as methyl-TROSY¹¹. Such approach grants the extraction of precise CSPs upon, e.g., ligand binding and provides experimental access to binding thermodynamics and kinetics^{1,5}. Knowledge of the corresponding on- and off-rate constants would provide a link to the conformational changes associated with substrate binding as observed by cryoEM and H/D exchange,² assisting the mechanistic understanding of ENGases.

NMR lineshape analysis has been used in numerous instances for the evaluation of chemical shift titration experiments, yielding quantitative descriptions of chemical exchange processes such as conformational equilibria or binding of ligands to receptor proteins¹². A novel approach for analyzing CSP titration data from HSQC- and HMQC-type 2D NMR

spectra engages direct quantum mechanical simulation of a given pulse sequence, as it is implemented in the TITAN (TITration ANalysis) software package¹³. Here, we have used TITAN to analyze the kinetics of binding of EndoS2 to its substrate CT, Rituximab-Fc, the reaction product CT_{n-1} and Ca^{2+} ions. The interaction of the related EndoBT-3987 with HM was also studied and used as comparison.

The isotope labeling scheme selected for this study was $[U^{-15}N, {}^{2}H]$ MIL^{proS}V^{proS} [$^{13}C, {}^{1}H_{3}$]-methyl labelling (or simply MILV). Isotopically labeled ENGases were the catalytically inactive EndoS2_{E186L} and EndoBT_{D312A/E314L}, and their corresponding wildtype EndoS2 and EndoBT species^{2,6}. This labeling scheme rendered methyl-TROSY spectra with little to no signal overlapping and excellent signal-to-noise (Supplementary Fig. 16c,d). In addition, the selected methyl probes are uniformly distributed around the putative glycan binding pockets in both enzymes, granting the extraction of CSPs upon ligand titration (Fig. 6a; Supplementary Fig. 17a). ${}^{1}H, {}^{15}N$ -TRACT experiments 14 were used to estimate rotational correlation times τ_c , affording values of 45.0 ns and 21.8 ns for EndoS2_{E186L} and EndoBT_{D312A/E314}, respectively, in good agreement with their corresponding molecular weights (Supplementary Fig. 22). Taken together with the good signal dispersion observed in NMR spectra, τ_c values evidence the presence of folded protein in solution enabling protein-ligand interaction studies.

At the present time no resonance assignment is available for ENGases. Therefore, we avoided any attempt to use CSPs for epitope mapping. Instead, we focused our efforts on the quantification of the overall thermodynamic and kinetic binding parameters for the interaction with selected ligands. For such goal it is enough to identify a subset NMR signals reporting for the binding event of interest. Here, methyl signals associated with methyl groups in the vicinity of the glycan binding site were identified according to the following two-step exclusion criteria: a) Signals must show CSPs between the wild-type species and the corresponding enzymatically

inactive mutants (*i.e.* EndoS2 vs EndoS2_{E186L} and EndoBT-3987 vs EndoBT-3987_{D312A/E314L}). Such mutations were designed to render inactive enzymes while retaining the protein folding and protein dynamics associated with ligand recognition, as previously disclosed by crystallographic and H/D exchange MS studies^{2,6}. Therefore, observed CSPs can be linked to changes localized in the vicinity of the carbohydrate binding pockets, even in the event of longrange effects^{15,16}. b) Signals must exhibit CSPs after saturation with CT, CT_{n-1} and Rituximab-Fc (for EndoS2_{E186L}), or after saturation with HM (for EndoBT-3987_{D312A/E314L}). A visual description of ligands used in this study can be found in Fig. 6C, Supplementary Figs. 17a and 20). Fulfilling these criteria grants the selection of CSPs associated to ligand recognition, irrespective of whether they originate from the presence of a ligand in the vicinity, or from long-range effects. Only such methyl signals were selected for lineshape analysis with TITAN. Detailed examples from EndoS2_{E186L} and EndoBT_{D312A/E314L} can be scrutinized in Fig. 6B and in Supplementary Figs. 17c, respectively. Following this methodology, we could safely identify 10 methyl signals reporting for the binding of EndoS2_{E186L} to CT, CT_{n-1} and Rituximab-Fc, and another 10 signals reporting for the interaction of EndoBT_{D312A/E314L} with HM (signals 1-10 in Supplementary Fig. 23 and signals 11-20 in Supplementary Fig. 24, respectively). EndoS2 also possesses a calcium-binding pocket located in the β -sandwich (BS) domain (Fig. 6a). Signals exhibiting CSPs greater than 2 standard deviations upon titration with calcium chloride were selected as reporters for calcium binding.

Extraction of kinetic and thermodynamic parameters from methyl-TROSY spectra

Titration of catalytically dead ENGases with carbohydrates CT, CT_{n-1} or Rituximab-Fc produced CSPs in the slow-exchange regime in the NMR time-scale, leading to varying peak intensities during titration (Supplementary Figs. 25-30). On the other hand, titration of EndoS2 with CaCl₂ produced CSPs in the fast-exchange regime, which translates into shifts in peak

positions (Supplementary Fig. 31). Methyl-TROSY based titrations in slow exchange were subjected to lineshape analysis with TITAN software package. For each titration point, the corresponding methyl-TROSY spectrum was imported into MATLAB and then analyzed with the TITAN algorithm, applying a two-state ligand binding model. Quantitative lineshape analysis yielded dissociation constants K_D and on- and off-rate constants k_{on} and k_{off} . A representative example of lineshape fitting can be found in Fig. 6D.

In the main text, we have described the kinetics of binding of EndoS2 to its substrate CT, Rituximab-Fc and the reaction product CT_{n-1} . Here, we focus on the effect of calcium in the interaction of EndoS2 with CT and Rituximab-Fc. Calcium binding produced similar CSPs in EndoS2 and EndoS2_{E186L} species with virtually identical dissociation constants K_D , suggesting no influence of the mutation E186L on calcium recognition (Table 1, entries 6,7, Supplementary Fig. 32). It is worth noting however, that some signals showed significant CSPs during the titration of EndoS2_{E186L} with CT, CT_{n-1}, Rituximab-Fc and CaCl₂. Such promiscuity in CSPs suggests the presence of alternative calcium-binding sites or a cross-talking mechanism between the GH and BS domains, as it has already been proposed from functional studies with chimeric ENGases.² Here, we did not attempt any further analysis on such signals. Instead, they will be the subject of a future study, whenever a spectrum assignment is available for EndoS2. Titrations of CT and Rituximab-Fc were repeated in the presence of saturating concentrations of CaCl₂, producing almost identical results as in its absence. Similarly, no significant differences were observed for the titration of CaCl₂ in the presence of saturating concentrations of CT. No interaction between EndoS2_{D186L} and CaCl₂ was observed when the enzyme was pre-saturated with Rituximab-Fc. This observation is in good agreement with the cryoEM structure reported in this study, where no calcium ion is bound to EndoS2 in the complex EndoS2-Fc (Supplementary Table 8). It appears that calcium is not directly involved in the recognition of IgGs by EndoS2, although its exact role remains yet to be identified.

At this point, it is instructive to compare dissociation constants, on- and off-rate constants from ENGases with diverse specificities. EndoBT-3987 is a globular ENGase secreted by the gram-negative symbiont *Bacteroides thetaiotaomicron*, which displays high specificity for mammalian HM-type *N*-glycans. Titrations of EndoBT_{D312A/E314L} with HM in the absence and presence of CaCl₂ afforded dissociation constant, on- and off-rate constants in the same order of magnitude as those previously disclosed for EndoS2_{E186L} binding Rituximab-Fc. As expected, no affinity was observed for CT glycan, even at ~750 μ M glycan concentrations. (Table 1, entry 6, lineshape fittings for the titration of HM can be scrutinized in Supplementary Figs. 33 and 34).

Our study was complemented with the extraction of the catalytic rate k_{cat} and the Michaelis-Menten constant $K_{\rm M}$ from the catalytic cleavage of complex-type carbohydrates from Rituximab-Fc by EndoS2. Kinetic parameters were approximated using the Michaelis-Menten equation (5) (steady-state kinetics), hypothesizing a nearly constant concentration of enzyme-substrate complex during the reaction course. This assumption was based on the two orders of magnitude K_D difference observed for the binding of EndoS2 to Fc as compared to the reaction product CT_{n-1} ($K_D = 3.1 \mu M vs K_D = 150.7 \mu M$, respectively). Concentration of enzymatically released carbohydrates was measured from ¹H spectra. Background signals were readily suppressed by a perfect CPMG T_2 -filter, which is a relaxation filter that avoids Jmodulation¹⁷ (Supplementary Fig. 18). Cleaved carbohydrate was quantified from the integral of the composite signal at 2.08–2.10 ppm, which reports for N-acetylglucosamine and Nacetylneuraminic acid moieties (Supplementary Fig. 19a). Reaction time-courses were measured to close-to-reaction completion for five Rituximab-Fc initial concentrations (Supplementary Fig. 19b). The reaction rate was calculated from the fitting of initial velocity rates (v_0) to the equation of Michaelis-Menten (5) (Fig. 6e). Under these conditions, a catalytic rate k_{cat} of 5.9 s⁻¹ and a Michaelis-Menten constant $K_{\rm M}$ of 26.7 μ M were observed. It is

important to remark that $K_{\rm M}$ resembles $K_{\rm D}$ only when $k_{off} >> k_{cat}$, according to Eq. 6. In this study this condition is not met ($k_{off} = 4.0 \text{ s}^{-1} \approx k_{cat} = 5.9 \text{ s}^{-1}$), indicating that the system is not in rapid equilibrium. Nevertheless, care has to be taken when combining results obtained from different EndoS2 species (wt and E186L), because non-identical protein-carbohydrate interactions can result in slightly different kinetic parameters. In conclusion, this study shows for the first time an overview of enzyme kinetics followed by EndoS2. We hope this information will be key for the future development of ENGases with improved activity and selectivity.

Supplementary Figure 1 | Purification of the cross-linked EndoS_{E235A}-Fc complex. a SDS-PAGE analysis and **b** protein absorbance of fractions obtained by GraFix centrifugation. **c** SDS-PAGE showing the fractions of the EndoS_{E235A}-Fc complex concentrated from GraFix centrifugation and the enzyme and substrate components. **d** Superdex 200 Increase 10/300 GL profile showing the purified cross-linked EndoS_{E235A}-Fc complex. This experiment was repeated six times independently with similar results.

Supplementary Figure 2 | The EndoS_{E235A}-Fc complex by NS. a Superdex 200 Increase 10/300 GL profile showing the purified cross-linked EndoS_{E235A}-Fc complex. b Micrograph detail. c Representative 2D classes (scale bar, 100 Å). d 3D model reconstruction of EndoS_{E235A}-Fc complex. The EndoS_{E235A} (PDB code 6EN3) and Fc (PDB code 1H3X) X-ray crystal structures are fitted into the model using Chimera. This experiment was repeated three times independently with similar results.

Supplementary Figure 3 | The EndoS_{E235A}-Fc complex structure by cryoEM. a Micrograph detail (scale bar, 100 Å). b Representative 2D classes. c Overall view of the single-particle reconstructions of EndoS_{E235A}-Fc complex using Cryosparc. d FSC, e direction distribution and f posterior precision plots of the EndoS_{E235A}-Fc complex.

Supplementary Figure 3 | **continued. g** Flow chart for cyoEM data processing of EndoS_{E235A}-Fc. The data processing was performed using RELION unless stated otherwise.

Supplementary Figure 4 | Stereo views of the $EndoS_{E235A}$ -Fc complex models and cryosparc map.

Supplementary Figure 5 | Structural comparison of unliganded EndoS and EndoS_{E235A}-Fc complex structures. cryoEM structure of EndoS_{E235A}-Fc complex (PDB code 8A64) (a) and X-ray crystal structures of EndoS_{D233A/E235L}-CT (PDB code 6EN3) (b), Δ N-3HB-EndoS (PDB code 4NUY) (c) and Δ N-3HB-EndoS_{D233Q} (PDB code 4NUZ) (d). The red cylinders represent the axes passing through the mass center of the glycoside hydrolase and leucine rich repeat domains of EndoS (residues 111-605) and the hybrid Ig, the β -sandwich and C-3HB

domains of EndoS (residues 606-987). **e** Structural superposition of the X-ray crystal structures of EndoS_{D233A/E235L}-CT (PDB code 6EN3) and the Fc region of IgG1 (PDB code 1H3X) and the cryoEM structure of EndoS_{E235A}-Fc complex (PDB code 8A64).

Supplementary Figure 6 | SAXS analysis of the EndoS_{E235A}-Fc and EndoS_{E186L}-Fc complexes. a In-line SEC-SAXS profile of EndoS_{E235A}, IgG1(Fc) and EndoS_{E235A}-Fc complex. The frames used for data analysis of the complex are highlighted with a red square. b SEC-SAXS profile of EndoS_{E186L}, IgG1(Fc) and EndoS_{E186L}-Fc complex. The frames used for data analysis of the complex are highlighted with a red square. c SAXS scattering curve of EndoS_{E235A}, IgG1(Fc) and EndoS_{E235A}-Fc complex. The frames used for data analysis of the complex are highlighted with a red square. c SAXS scattering curve of EndoS_{E235A}, IgG1(Fc) and EndoS_{E235A}-Fc. d P(r) functions distributions of EndoS_{E235A}, IgG1(Fc) and EndoS_{E235A}-Fc complex. e Normalized Kratky plot EndoS_{E235A}, IgG1(Fc) and EndoS_{E235A}-Fc complex. f SAXS scattering curve of EndoS_{E186E}, IgG1(Fc) and EndoS_{E235A}-Fc complex.

Fc. **g** P(r) functions distributions of EndoS2_{E186E}, IgG1(Fc) and EndoS2_{E186A}-Fc complex. **h** Normalized Kratky plot EndoS2_{E186A}, IgG1(Fc) and EndoS2_{E186A}-Fc complex. **i** *Ab initio* modelling with MONSA of the envelope of EndoS_{E235A}-FC and superimposition of EndoS (yellow) and Fc region of IgGa (blue) X-ray crystal structures. **j** *Ab initio* modelling with MONSA of the envelope of EndoS2_{E186A}-FC and superimposition of EndoS2 (orange) and Fc region of IgGa (blue) X-ray crystal structures.

Supplementary Figure 7 | Comparison of EndoS and EndoS2. a Cartoon representation of EndoS (colored by domains, PDB code 6EN3) and EndoS2 (grey, PDB code 6MDS) X-ray crystal structures. **b** Structure-based amino acid sequence alignment of EndoS and EndoS2. The catalytic residues and the residues that interact with the Fc region are highlighted in red and green, respectively.

Supplementary Figure 8 | Electron density map of the Fc binding site of EndoS. (a,b) Two views of the electron density map interaction interface between the GH domain of EndoS and Fc region. Three residues of the CT *N*-glycan of N297 of IgG1 (ManGlcNAc₂) are modelled in one of the possible conformations found in the binding site of EndoS. (c) View of C γ 2-C γ 3 joint region of the Fc region interacting with the β -sandwich domain of EndoS.

Supplementary Figure 9 | Kinetic traces for the single hydrolytic activity assays of the EndoS and Fc region mutants.

Supplementary Figure 9 | continued.

Supplementary Figure 10 | Interaction interface between the EndoS and the Fc region of IgG1. Close up panels showing the interface between (i) the N-3HB of EndoS and the FcP2 domain, (ii) the GH of EndoS and (iii) the FcP1 domains and the β -sandwich of EndoS and the FcP1 domains.

Supplementary Figure 11 | Average structure derived from 1 μ s MD simulations of the different complexes simulated in this work. Only C α atoms of the proteins are considered for these calculations. The EndoS protein is shown as a purple surface and the Fc as white and orange surfaces and the sugar in green.

Supplementary Figure 12 | Average distances derived from 1µs MD simulations between different residues of EndoS and Fc for the simulated complexes. Box-and-whisker plots, showing the minimum, maximum, median, 1st quartile, and 3rd quartile bars, as well as the interquartile range, based on n = 250 evenly distributed values obtained from the MD

trajectories. For aromatic residues and Pro, the center of the aromatic ring and the center of the ring are considered, respectively, for these calculations. For L314, S298 and E354 residues, the C δ , the OH group, and the oxygens of the carboxylate are considered, respectively, for the calculations. Cut-off distance: 5.5 Å $-\pi$ - π stating and CH- π –, and 3.5 Å –hydrogen bond–. Errors are given as SD. The numbers in red and in parentheses are the experimental values found in the cryo-EM structure. The dashed lines represent the distance values found in the cryo-EM structure of EndoS-Fc.

Supplementary Figure 13 | Average distances derived from 1µs MD simulations for two salt-bridge interactions between EndoS and Fc for the simulated complexes. Box-and-whisker plots, showing the minimum, maximum, median, 1st quartile, and 3rd quartile bars, as well as the interquartile range, based on n = 250 evenly distributed values obtained from the MD trajectories. The side chain nitrogen of Lys and the carbon atom of the guanidino group of Arg, together with the oxygens of the carboxylate of Glu residues are considered for these calculations (cut-off distance 4.5 Å). Errors are given as SD. The numbers in red and in parentheses are the experimental values found in the cryoEM structure. The dashed lines represent the distance values found in the cryoEM structure of EndoS-Fc.

Supplementary Figure 14 | Root-mean-square deviation (r.m.s.d.) value (\pm SD) of the peptide backbone of loops 1, 6 and 7 derived from 1 μ s MD simulations for the simulated complexes is shown. Box-and-whisker plots, showing the minimum, maximum, median, 1st quartile, and 3rd quartile bars, as well as the interquartile range, based on n = 250 evenly distributed values obtained from the MD trajectories.

EndoS-Fc_{E293A}

Supplementary Figure 15 | r.m.s.d. value (\pm SD) of the peptide backbone of the different domains derived from 1 µs MD simulations for the simulated complexes is shown. Box-and-whisker plots, showing the minimum, maximum, median, 1st quartile, and 3rd quartile bars, as well as the interquartile range, based on n = 250 evenly distributed values obtained.

Supplementary Figure 16 | Quality of NMR spectra of EndoS2_{E186L} and EndoBT_{D312A/E314L} samples. ¹H, ¹⁵N HSQC-TROSY spectra of [U-¹⁵N, ²H] MILV-[¹³C, ¹H₃]-methyl labeled sample of (a) EndoS2_{E186L} (97 kDa) at 71.5 μ M protein concentration, and (b) EndoBT_{D312A/E314L} (47 kDa) at 74.4 μ M protein concentration. Methyl-TROSY spectra of (c) EndoS2_{E186L} and (d) EndoBT_{D312A/E314L} at 51.5 μ M and 100 μ M protein concentrations are shown as comparison. All experiments were acquired at 298 K and 600 MHz.

Supplementary Figure 17 | **NMR titration of EndoBT-3987**_{D312A/E314} with high mannosetype *N*-glycan HM. a Crystal structure of EndoBT-3987_{D312A/E314} bound to HM glycan (PDB 6TCV). Mutated amino acids D312A and D314L are colored in purple, and HM glycan is shown as green sticks. Isotopically labeled methyl groups are indicated as black spheres. b Cartoon representation of HM. c Superimposition of selected regions of methyl-TROSY spectra showing the CSPs upon mutagenesis or at saturation concentrations of HM. Signals from EndoBT-3987 are shown in violet, and from EndoBT-3987_{D312A/E314L} in the absence (black) and in the presence of saturating concentrations of HM (red). Arrows indicate the extent of CSPs observed between the different protein states. All experiments were acquired at 600 MHz and 298 K.

Supplementary Figure 18 | Scheme showing the perfect CPMG building block. The initial 90° pulse in the standard Bruker pulse sequence zgesgp was substituted by the sequence shown above. Echo time echo time τ was set to 0.3 ms and N = 33. Phase cycling during this block was as follows: $\Phi_1 = x$; $\Phi_2 = y$.

Supplementary Figure 19 | Enzyme kinetics of EndoS2 and IgG1 Fc. a The composite signal at 2.08-2.11 ppm was used to monitor the enzymatic cleavage of IgG1 Fc complex *N*-glycans as a function of time. Spectra corresponds to 40 μ M Fc concentration. b Time courses of *N*-glycan cleaved from IgG1 Fc after the addition of EndoS2 at different IgG1 Fc starting concentrations. Note that two glycans are released per IgG1 Fc unit. Data at times longer than 3.5×10^4 s were also included in the fit but are not shown for clarity. All experiments were acquired at 600 MHz and 298 K.

Supplementary Figure 20 | **Carbohydrates used for NMR titrations.** Cartoon representation of (**a**) complex-type *N*-glycan CT and its reaction product after treatment with EndoS2 CT_{n-1} , and of (**b**) high mannose-type *N*-glycan HM. Their corresponding chemical structures are shown in (**c**) for CT and CT_{n-1} , and in (**d**) for HM. Abbreviations in the legend correspond to: Gal = galactose, GalNAc = *N*-acetylgalactosamine, Man = mannose and Asn = asparagine.

Supplementary Figure 21 | ¹H and ¹³C assignments of *N*-glycans used for NMR titrations. Sections of ¹H, ¹³C-HSQC spectra showing the assignment of (a) CT, (b) CT_{n-1} and (C) HM. Spectra were acquired at 600 MHz and 310 K.

Supplementary Figure 22 | ¹H,¹⁵N TRACT¹⁴ was used to estimate protein rotational correlation times τ_c , which indicates whether the protein sample is folded or unfolded in solution. Shown are the to ¹⁵N R_{α} (black) and R_{β} (grey) decay curves observed for (a) 71.5 μ M of EndoS2_{E186L} and (b) 74.4 μ M of EndoBT_{D312A/E314L} endoglycosidase mutants. Experiments were acquired at 600 MHz and 298 K.

Supplementary Figure 23 | CSPs observed for EndoS2 and EndoS2_{E186L}. Superimposition of methyl-TROSY spectra corresponding to MILV-labeled (a) EndoS2_{E186L} (black) and EndoS2 (violet), (b) EndoS2_{E186L} in the absence (black) and in the presence of saturating concentrations of CT (red), (c) EndoS2_{E186L} in the absence (black) and in the presence of close-to-saturation concentrations of CT_{n-1} (orange) and (d) EndoS2_{E186L} in the absence (black) and in the presence (black) and in the presence of saturating concentrations of Rituximab Fc (blue). Resonances highlighted in circles were used for lineshape analysis with TITAN. Spectra were acquired at 298 K and 600 MHz.

Supplementary Figure 23 | **continued.** e Superimposition of methyl-TROSY spectra corresponding to MILV-labeled EndoS2_{E186L} in the absence (black) and in the presence of 72 μ M of Rituximab-Fc aglycan (green). Spectra were acquired at 298 K and 600 MHz.

Supplementary Figure 24 | CSPs observed for EndoBT-3987 and EndoBT-3987_{D312A/E314}. a Superimposition of methyl-TROSY spectra of MILV-labeled EndoBT-3987 (purple) and EndoBT-3987_{D312A/E314L} (black). b Superimposition of methyl-TROSY spectra of MILVlabeled and EndoBT-3987_{D312A/E314L} in the absence (black) and in the presence (red) of saturating concentrations of HM. c Similar to (b) but under saturation concentrations of CaCl₂. Orange indicates no HM and blue saturation concentrations of HM. Resonances highlighted in circles were used for lineshape analysis with TITAN. Spectra were acquired at 298 K and 600 MHz.

Supplementary Figure 25 | Complete set of cross peaks used for the TITAN analysis of CT binding to MILV-labeled EndoS2_{E186L}. The left panel shows the sections from the methyl-TROSY experiment as measured. The right panel shows the simulated cross peaks using a simple two-states binding model.

Supplementary Figure 26 | 2D lineshape analysis of methyl-TROSY spectra of a MILV-labeled sample of EndoS2_{E186L} at increasing CT concentrations. Global lineshape analysis of a series of concentration dependent methyl-TROSY spectra using TITAN¹³ yielded a fitted set of 10 signals. It should be noted that in principle this analysis does not depend on any assignments. Experimental and fitted cross peak are shown in grey and magenta, respectively, reflecting the good quality of the fit. TITAN analysis results in a dissociation constant K_D of 106.9 ± 6.7 µM and a dissociation rate constant k_{off} of 11.4 ± 1.5 s⁻¹.

Supplementary Figure 26 | continued.

Supplementary Figure 27 | Complete set of cross peaks used for the TITAN analysis of CT_{n-1} binding to MILV-labeled EndoS2_{E186L}. The left panel shows the sections from the methyl-TROSY experiment as measured. The right panel shows the simulated cross peaks using a simple two-states binding model.

Supplementary Figure 28 | 2D lineshape analysis of methyl-TROSY spectra of a MILV-labeled sample of EndoS2_{E186L} at increasing CT_{n-1} concentrations. Global lineshape analysis of a series of concentration dependent methyl-TROSY spectra using TITAN¹³ yielded a fitted set of 10 signals. It should be noted that in principle this analysis does not depend on any assignments. Experimental and fitted cross peak are shown in grey and magenta, respectively, reflecting the good quality of the fit. TITAN analysis results in a dissociation constant K_D of 150.7 ± 18.0 µM and a dissociation rate constant k_{off} of 9.4 ± 3.7 s⁻¹.

Supplementary Figure 28 | continued.

Supplementary Figure 29 | Complete set of cross peaks used for the TITAN analysis of Rituximab-Fc binding to MILV-labeled $EndoS2_{E186L}$. The left panel shows the sections from the methyl-TROSY experiment as measured. The right panel shows the simulated cross peaks using a simple two-states binding model.

Supplementary Figure 30 | 2D lineshape analysis of methyl-TROSY spectra of a MILV-labeled sample of EndoS2_{E186L} at increasing Rituximab-Fc concentrations. Global lineshape analysis of a series of concentration dependent methyl-TROSY spectra using TITAN¹³ yielded a fitted set of 10 signals. It should be noted that in principle this analysis does not depend on any assignments. Experimental and fitted cross peak are shown in grey and magenta, respectively, reflecting the good quality of the fit. TITAN analysis results in a dissociation constant K_D of $3.1 \pm 0.6 \mu$ M and a dissociation rate constant k_{off} of $4.0 \pm 1.5 \text{ s}^{-1}$.

Supplementary Figure 30 | continued.

Supplementary Figure 30 | continued.

Supplementary Figure 30 | continued.

Supplementary Figure 31 | Titration of EndoS2 and EndoS2_{E186L} with CaCl₂. Superimposition of methyl-TROSY spectra corresponding to the titration of MILV-labeled EndoS2_{E186L} with CaCl₂(**a**) in the absence and (**b**) in the presence of saturating concentrations of CT. Spectra acquired in the absence and in the presence of saturating concentrations of Ca²⁺ are colored in (**a**) black and orange in, and (**b**) in red and blue, respectively. Resonances highlighted in circles were used to extract dissociation constants from CSPs. Exchange between calcium-free and calcium-bound protein forms are in fast exchange in the NMR time-scale, as can be seen for selected resonances in (**c**) the absence and (**d**) in the presence of saturating of CSPs to the law of mass action. Binding isotherms corresponding to the titration of calcium (**e**) in the absence and (**f**) under saturation concentrations of CT. Spectra were acquired at 298 K and 600 MHz.

Supplementary Figure 32 | Similar CSPs were observed for the binding of Ca^{2+} to EndoS2_{E186L} and to EndoS2. Superimposition of methyl-TROSY spectra corresponding to MILV-labeled (a) EndoS2_{E186L} in the absence (black) and in the presence of saturating concentrations of CaCl₂ (yellow), (b) and of EndoS2 in the absence (violet) and in the presence of saturating concentrations of CaCl₂ (yellow). Resonances highlighted in circles shift upon titration with CaCl₂. Spectra were acquired at 298 K and 600 MHz.

Supplementary Figure 33 | Complete set of cross peaks used for the TITAN analysis of HM binding to MILV-labeled EndoBT_{D312A/E314L} in the absence of CaCl₂. The left panel shows the sections from the methyl-TROSY experiment as measured. The right panel shows the simulated cross peaks using a simple two-states binding model.

Supplementary Figure 34 | 2D lineshape analysis of methyl-TROSY spectra of a MILV-labeled sample of EndoBT_{D312A/E314L} at increasing HM concentrations in the absence of CaCl₂. Global lineshape analysis of a series of concentration dependent methyl TROSY spectra using TITAN¹³ yielded a fitted set of 10 signals. It should be noted that in principle this analysis does not depend on any assignments. Experimental and fitted cross peak are shown in grey and magenta, respectively, reflecting the good quality of the fit. TITAN analysis results in a dissociation constant K_D of $1.7 \pm 0.9 \,\mu$ M and a dissociation rate constant k_{off} of $5.5 \pm 1.4 \, \text{s}^{-1}$.

Supplementary Figure 34 | continued.

b а GlcNAc Man Man GlcNAc (-7) (-6) Gal (-6) (-7) (-8) Gal (-8) Man Man (-2) Gal (-2) (-5) Gal (-5) GlcNAc (-1) Man GlcNAc GlcNAc GlcNAc Man (-4) (-3) (-3) (-1) (-4) d С Man (-9) Gal Man (-8) (-6) GlcNAc Man Man (-7) (-7) (-8) Man Man (-2) (-2) Man GlcNAc (-6) (-4) Man Gal (-3) GlcNAc (-5) GlcNAc (-1) (-1) Man Man (-3) (-4) f е Man Man (-10) Gal (-9) (-9) GlcNAc (-8) Man Man (-8) (-7 Man Man Man (-2) (-7) Man (-6) Man (-2) Man (-4) (-6) Man (-4)Man GlcNAc (-3)

Supplementary Fig. 35 | *N*-glycan conformations in the active site of ENGases. a Distinct conformation of *N*-glycans found in the crystal structures of EndoS-CT (PDB code 6EN3), b EndoS2-CT (PDB code 6MDS), c EndoF3 (PDB code 1EOM, d EndoS2-HM (PDB code 6MDV), e EndoBT-3987-HM (PDB code 6T8L), f EndoBT-3987-Hy (PDB code 7NWF).

Man

(-3)

GlcNAc

(-1)

(-1)

Man

(-5)

Supplementary Fig. 36 | **Structural comparison of the interaction interface of EndoS, Protein A, Protein G and FcRn and the Fc region of IgG1. a** cryoEM model of EndoS_{E235A} in complex with IgG1 Fc (PDB code 8A64) colored in grey. In order to have insights on the possible location of the side chain residues that could be involved in the enzyme-substrate interactions, we locally compared/superimposed the high-resolution EndoS (PDB code 6EN3; yellow) and Fc region (PDB code 2DTS; orange) crystal structures. Therefore, we visualize potential side chain interactions between residues that are within interaction distance based on flexible fitting of the superimposed crystal structures. **b** X-ray crystal structure of B-domain from Protein A in complex with IgG1 Fc IgG1(PDB code 5UAY). **c** X-ray crystal structure of the C2 fragment of Protein G in complex with IgG1 Fc (PDB code 1FCC) **d** X-ray crystal structure of the ternary complex between FcRn, serum albumin and IgG1 Fc-YTE (PDB code 4N0U).

Supplementary Fig. 37 | **Structural comparison of human (hIgG1-4) and murine (mIgG1, mIgG2a and mIgG2b) IgG subclasses.** a Structure weighted sequence alignment of the human IgG1-4 and murine IgG1, IgG2a and IgG2b subclasses. Comparison of hIgG1 Fc¹⁸ (Uniprot code, P01857; PDB code, 1H3X), hIgG2 Fc¹⁹ (Uniprot code, P01859; PDB code, 4HAF), hIgG3 Fc (Uniprot code, P01860; PDB code, 6D58), hIgG4 Fc²⁰ (Uniprot code, P01861; PDB code, 5LG1), mIgG1²¹ (Uniprot code, Q99LC4; Alphafold), mIgG2a²² (Uniprot code P01863; PDB code 5VAA) and mIgG2b²³ (Uniprot code P01867; PDB code 2RGS). b Structural comparison of human IgG1 (orange), IgG2 (yellow), IgG3 (blue) and IgG4 (pink). c Structural comparison of human IgG1 (orange) and murine IgG1 (pink), IgG2a (blue) and IgG2b (yellow).

Supplementary Fig. 38 | Model of the EndoS-Fc (2:1) complex. a,b Two views of the surface (a) and cartoon representation (b) of the EndoS-Fc (2:1) based on our experimentally determined EndoS-Fc (1.1) cryoEM structure.
Supplementary Videos.

Supplementary Video 1. Conformational motions of the EndoS_{E235A}-Fc complex. Component 1 Supplementary Video 2. Conformational motions of the EndoS_{E235A}-Fc complex. Component 2 Supplementary Video 3. Conformational motions of the EndoS_{E235A}-Fc complex. Component 3.

Supplementary References

- 1. Schütz, S. & Sprangers, R. Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. *Prog. Nucl. Magn. Reson. Spectrosc.* **116**, 56–84 (2020).
- 2. Klontz, E. H. *et al.* Molecular basis of broad spectrum N-glycan specificity and processing of therapeutic IgG monoclonal antibodies by endoglycosidase S2. *ACS Cent. Sci.* **5**, 524–538 (2019).
- 3. Piiadov, V., Ares de Araújo, E., Oliveira Neto, M., Craievich, A. F. & Polikarpov, I. SAXSMoW 2.0: Online calculator of the molecular weight of proteins in dilute solution from experimental SAXS data measured on a relative scale. *Protein Sci.* **28**, 454–463 (2019).
- 4. Konarev, P. V, Volkov, V. V, Sokolova, A. V, Koch, M. H. J. & Svergun, D. I. PRIMUS: A Windows PC-based system for small-angle scattering data analysis. *J. Appl. Crystallogr.* **36**, 1277–1282 (2003).
- 5. Williamson, M. P. Using chemical shift perturbation to characterise ligand binding. *Prog. Nucl. Magn. Reson. Spectrosc.* **73**, 1–16 (2013).
- 6. Trastoy, B. *et al.* Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides. *Nat. Commun.* **11**, 899 (2020).
- 7. Trastoy, B. *et al.* GH18 endo-β-N-acetylglucosaminidases use distinct mechanisms to process hybrid-type N-linked glycans. *J. Biol. Chem.* **297**, 101011 (2021).
- 8. Mallagaray, A. *et al.* A post-translational modification of human Norovirus capsid protein attenuates glycan binding. *Nat. Commun.* **10**, 1320 (2019).
- 9. Tugarinov, V. & Kay, L. E. An isotope labeling strategy for methyl TROSY spectroscopy. *J. Biomol. NMR* **28**, 165–172 (2004).
- 10. Tugarinov, V., Kanelis, V. & Kay, L. E. Isotope labeling strategies for the study of highmolecular-weight proteins by solution NMR spectroscopy. *Nat. Protoc.* **1**, 749–754 (2006).
- 11. Tugarinov, V., Hwang, P. M., Ollerenshaw, J. E. & Kay, L. E. Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. *J. Am. Chem. Soc.* **125**, 10420–10428 (2003).
- 12. Bain, A. D. Chemical exchange in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 43, 63–103 (2003).
- 13. Waudby, C. A., Ramos, A., Cabrita, L. D. & Christodoulou, J. Two-dimensional NMR lineshape analysis. *Sci. Rep.* **6**, 24826 (2016).
- 14. Lee, D., Hilty, C., Wider, G. & Wüthrich, K. Effective rotational correlation times of proteins from NMR relaxation interference. *J. Magn. Reson.* **178**, 72–76 (2006).
- 15. Naganathan, A. N. Modulation of allosteric coupling by mutations: from protein dynamics and packing to altered native ensembles and function. *Curr. Opin. Struct. Biol.* **54**, 1–9 (2019).
- 16. Rajasekaran, N., Suresh, S., Gopi, S., Raman, K. & Naganathan, A. N. A General Mechanism for the Propagation of Mutational Effects in Proteins. *Biochemistry* **56**, 294–305 (2017).
- 17. Parella, T. Towards perfect NMR: Spin-echo versus perfect-echo building blocks. *Magn. Reson. Chem.* **57**, 13–29 (2019).
- 18. Krapp, S., Mimura, Y., Jefferis, R., Huber, R. & Sondermann, P. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. *J. Mol. Biol.* **325**, 979–989 (2003).
- 19. Teplyakov, A., Zhao, Y., Malia, T. J., Obmolova, G. & Gilliland, G. L. IgG2 Fc structure and the dynamic features of the IgG CH2-CH3 interface. *Mol. Immunol.* **56**, 131–139 (2013).
- 20. Davies, A. M., Rispens, T., Ooijevaar-de Heer, P., Aalberse, R. C. & Sutton, B. J. Room temperature structure of human IgG4-Fc from crystals analysed in situ. *Mol. Immunol.* **81**, 85–91 (2017).
- 21. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–589 (2021).

- 22. Labrijn, A. F. *et al.* Efficient generation of bispecific murine antibodies for pre-clinical investigations in syngeneic rodent models. *Sci. Rep.* **7**, 2476 (2017).
- 23. Kolenko, P. *et al.* New insights into intra- and intermolecular interactions of immunoglobulins: crystal structure of mouse IgG2b-Fc at 2.1-A resolution. *Immunology* **126**, 378–385 (2009).