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Supplementary Figure 1. Overview of snRNA-seq, snATAC-seq, and bulk omics data.

a, Genomic and clinical features for 25 ccRCC patients used in this study. b, Dot plot showing scaled
snRNA-seq expression of ccRCC and proximal tubule cell markers across cell types. Overall, the identified
tumor cells showed high expression levels of ccRCC tumor-cell markers. ¢, UMAP showing somatic
mutations mapped to snRNA-seq data. Each dot represents a cell, colored by whether it’s mapped with

a mutated allele, whether the mutation is in significantly mutated genes (SMGs) or not, and whether

it’s mapped with a reference allele for the mutation. This UMAP shows the variant alleles, especially
variants in genes known to be significantly mutated in ccRCC, are mostly mapped to tumor cell clusters
shown in Fig. 1b, with reference alleles being well detected in the non-tumor cell clusters. d, Ridge plot
showing the distribution of copy number ration for VHL gene in different cell types. The majority of

the identified tumor cells show one copy loss in the VHL gene on chromosome 3p, a characteristic copy
number alteration in ccRCCs, while the majority of the non-tumor cells showed no copy number alteration
in VHL. e, Top: Scatter plot showing that tumor cell percentages estimated by the snRNA-seq (x-axis)
were significantly correlated with the tumor purity estimates by ESTIMATE using bulk RNA data (y-axis)
among 25 ccRCC tumors. Bottom: Scatter plot showing that cell type content estimated by snRNA-seq
(x-axis) is significantly correlated with cell type content estimated by snATAC-seq (y-axis; n = 224;
P-value = 7.2e-46). Statistical evaluation was performed using two-sided Student’s t-tests. f, Bar plot
showing the numbers of peaks, divided and colored by peak type, across the snATAC samples.
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Supplementary Figure 2. CP expression is associated with higher tumor grades.

a, Schematic showing the tumor-cell discovery pipeline. Created with BioRender.com. b, Violin plots
showing the tumor-cell expression of CP and PCSK6 for low-grade (G1/2) and high-grade (G3/4) tumors
(by cell). ¢, Violin plots showing the bulk RNA expression of the aforementioned genes for tumors with
different grades. d, Violin plots showing the bulk protein abundance of the aforementioned genes for
tumors with different grades. In b, ¢, and d, the box bounds the interquartile range divided by the median,
with the whiskers extending to a maximum of 1.5 times the interquartile range beyond the box. Outliers are
shown as dots. Student’s T-tests; P-values are two-sided. Horizontal connecting segments indicate levels
of statistically significant differences between grades (* = 0.05, ** = 0.01, *** = (0.001, **** =(.0001,
“ns” = not significant). e, Kaplan-Meier survival analysis showing overall survival after initial pathological
diagnosis. Patients with a high tumor-cell expression of CP (n = 10, top 35% percentile) displayed a
significantly lower chance of overall survival compared to patients with low tumor-cell expression of

CP (n =9, bottom 35% percentile) using snRNA-seq data (left plot). This result is validated by a similar
analysis using bulk gene expression of CP in the larger CPTAC ccRCC discovery cohort (n = 66). f,
Kaplan-Meier survival analysis showing overall survival after initial pathological diagnosis, separated by
PCSKG6 expression levels. In e and f, the ticks overlapping the lines represent censored data. The P-values
were calculated by a two-sided log-rank test. g, Spatial transcriptomes of two ccRCC patient tumors
showing OSM expression.
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Supplementary Figure 3. Pairwise correlation between tumor cells and other normal nephron
epithelial cell types, and bulk ATAC-seq validation of ccRCC-specific TF motifs.

a, Left: Heatmap showing the pairwise correlation between tumor cells and other normal nephron epithelial
cell types using snATAC-based TF motif scores. Right: Heatmap showing the pairwise correlation between
tumor cells and other normal nephron epithelial cell types using snRNA-seq-based gene expression. b,
Volcano plot showing the snATAC-based ccRCC-specific TF motifs validated by the TCGA bulk ATAC-
seq data (enriched in ccRCC compared to other cancer types, highlighted in red dots). Those that are not
validated are in blue dots. ¢, Volcano plot showing the snATAC-based PT-specific TF motifs in the TCGA
bulk ATAC-seq data. Red dots denote those that are significantly enriched in ccRCC compared to other
cancer types. Those that are not enriched in ccRCC are in blue dots. d, Representative Western blot image
showing MXI1 and beta-tubulin protein abundance in RCC4 MXI1 knockdown cells and scrambled
control. e, Bar plot showing the Western blot densitometry values for MXI1 level in RCC4 MXI1-
knockdown cells and scrambled control. The error bar represents the standard deviation of the mean from
three independent experiments performed. Student’s T-tests; P-values are two-sided.
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Supplementary Figure 4. Differential copy number status among tumor subclusters.

a, Bubble plot showing copy number status for tumor subclusters. b, Bar plot showing normalized
expression of LILRBI across cell types and schematic showing the interaction between B2M and
LILRBI. ¢, Kaplan-Meier survival analysis showing overall survival after initial pathological diagnosis.
The P-values were calculated by a two-sided log-rank test. Patients with high tumor-cell-intrinsic apical
junction score (n = 26, top 25% percentile) displayed a significantly lower chance of survival compared
to patients with low apical junction score (n = 26, bottom 25% percentile) using bulk RNA-seq data. We
identified a similar association between TNF-a signaling via NF-xB score and overall survival. The ticks
overlapping the lines represent censored data.
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Supplementary Figure 5. Meta-cluster analysis.

a, Box plot showing the number of unique markers for meta-clusters generated by varying resolution
parameters. The box bounds the interquartile range divided by the median, with the whiskers extending
to a maximum of 1.5 times the interquartile range beyond the box. Outliers are shown as red dots. b,
UMAP visualization of the integrated tumor-cell snRNA-seq data, colored by the meta-cluster number. ¢,
Bar plot showing the % of cells in each cluster compared to all the tumor cells. d, Bar plot showing the
% cells contributed by each tumor sample in each cluster, colored by sample. e, Left: Heatmap showing
correlation coefficients of meta-clusters in terms of signature scores shown on the right. Right: Heatmap
showing scaled signature scores of meta-clusters. The red rectangle border denotes the max z-score for a
given meta-cluster across gene sets. * denotes the max z-score(s) for a given gene set across meta-clusters.
f, Scatter plots showing: the glycolysis and OXPHOS signature scores (left panel), glycolysis and EMT
signature scores (middle panel), and EMT and OXPHOS signature scores (right panel) across meta-
clusters. Texts near the dots denote the meta-cluster number. Correlation coefficients and P-values were
derived from two-sided Pearson correlation tests.
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Supplementary Figure 6. Overview of the snATAC-seq samples and BAPI/PBRM1-associated
chromatin accessibility changes.

a, Heatmap showing the mutation status, gene expression, and protein levels of the BAP1, PBRM1,
KDMS5C, and SETD2 among the snATAC-seq samples. b, Circos plot showing the distribution of ATAC-
peaks associated with B4P1 mutation. The outermost circles show the genomic location of individual
ATAC-peaks associated with B4P [ mutation, with red dots denoting more accessible peaks and blue dots
denoting more closed peaks. The middle circle shows the density of more closed B4AP-associated peaks
across the genome. The innermost circle shows the density of more BAP-associated peaks across the
genome. ¢, Scatter plot showing the positive correlation of chromatin accessibility and transcriptional
changes associated with PBRM 1 mutation. The fold change (log2) of the snRNA-seq expression for each
gene (MRNA) is plotted against the fold change (log2) in the relative snATAC-seq peaks (for all the genes/
peaks with significant fold change in over 50% of the comparisons for individual PBRM [-mutated tumor
vs. tumors not mutated in either BAPI or PBRM1). Each dot represents a gene-peak pair. Dots are colored
by whether the peak overlaps the gene promoter or is a potential enhancer (co-accessible with the promoter
peak). d, Genomic region near CES3. The plots show the normalized accessibility signal by snATAC-seq
around these regions in tumor cells of B4P/-mutant tumor (purple), tumor cells of PBRM [-mutant tumor
(orange), tumor cells of non-BAP1/PBRM I-mutant tumors (pink), and proximal tubule cells (green) from
NAT samples from representative tumor samples.
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Supplementary Figure 7. Somatic mutations mapped to snRNA-seq data of tumor-cell clusters.
UMAPs showing the tumor-cell clusters in individual tumor samples. Each dot denotes a cell and the red
dot denotes a cell mapped with a somatic mutation in known significantly mutated genes detected in bulk
WES data. Texts highlighted denote the genes in which the mutations were detected.
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Supplementary Figure 8. Representative FACS plots portraying the gating strategy to isolate nuclei
(P4 population).

Nuclei were stained with DRAQS5 and detected using the 640 nm laser for excitation and 670/30 dichroic
filter for detection. Nuclei sequenced for ATAC were stained with 7-AAD and detected using the 488 nm
or 561nm laser for excitation and 610/20 dichroic filter for detection. The P4 population was selected based
on physical parameters forward scatter and side scatter (FSC-Area and SSC-Area), and doublet exclusion
using the FSC-width and SSC-width).
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Supplementary Figure 9. Single-nucleus versus bulk RNA-seq data fold changes.

a, Scatter plot showing the Log2 fold changes for snRNA-based tumor-cell-markers calculated by bulk
RNA-seq (x-axis) and snRNA-seq data (y-axis). Each dot represents one marker gene. Red and blue

dots denote markers with higher and lower fold changes by snRNA-seq compared to bulk RNA-seq,
respectively (|log,(fold change of sn data) - log,(fold change of bulk data)| > 1). Grey dots denote markers
with similar fold changes by snRNA-seq and bulk RNA-seq (|log,(fold change of sn data) - log,(fold
change of bulk data)| <= 1). Gene labels highlight the prioritized markers shown in the main figure. b-c,
Scatter plot showing the Log2 fold changes for snRNA-based tumor-cell-markers calculated by bulk RNA-
seq (x-axis) and scRNA-seq data (y-axis) published by Young et al. and Zhang et al. Each dot represents
one marker gene. Black, red, and blue dots denote markers with higher expression in tumor cells than non-
tumor cells (log,(fold change) > 0) using snRNA-seq data. Additionally, markers represented by red and
blue dots showed higher and lower fold changes by scRNA-seq compared to bulk RNA-seq, respectively
(|log,(fold change of sn data) - log,(fold change of bulk data)| > 1). Black dots denote markers with similar
fold changes by scRNA-seq and bulk RNA-seq (|log,(fold change of sn data) - log,(fold change of bulk
data)| <= 1). Grey dots denote markers with lower and same fold changes in tumor cells than non-tumor
cells (log,(fold change) < 0) using snRNA-seq data. Gene labels highlight the prioritized markers shown in
the main figure. d, Dot plot showing the log2 fold changes of expression of tumor-cell markers in ccRCC
(capped at 10). Red dots denote fold changes by bulk RNA-seq data. Green and light blue dots denote

fold changes by Young et al. and Zhang et al. scRNA-seq data. Purple dots denote the fold changes by the
snRNA-seq data in this study.



Supplementary Note 1. Meta-cluster analysis. We performed a meta-cluster analysis to observe shared
variations in the tumor-cell transcriptome across patients. We observed the tumor cells across patients
aggregated into 18 meta-clusters (MCs). Specifically, we sub-clustered all tumor cells in our dataset and
aligned sets of tumor cells derived from different samples to identify shared variations in cellular programs
across the cohort. To determine the number of tumor-cell clusters, we ran the FindClusters function from
the Seurat package, which identifies clusters of cells by a shared nearest neighbor (SNN) modularity
optimization-based clustering algorithm. We tested six different clustering resolution parameters (ranging
from 0.1 to 4) and counted the number of unique markers for each cluster. In order to obtain at least 20
unique markers for each cluster while producing the highest number of clusters, we chose the clustering
resolution of 1 (Supplementary Fig. 5a). We obtained 18 meta-clusters (Supplementary Fig. 5b), and the
percentages of tumor cells in each meta-cluster decreased from MC1 to MC18 (Supplementary Fig. 5c).
Moreover, most of the clusters were derived from all samples except MC11, MC16, MC17, and MC18,
which were more sample-specific (Supplementary Fig. 5d).

To identify the cellular programs underlying their transcriptional differences, we scored the tumor cells for
the expression of the Hallmark gene signatures from MSigDB (Supplementary Fig. Se) using VISION',
the same tool used by the Bi et al. study®. These gene sets were selected based on significant local
consistency of the signature scores (C>0.1 and FDR<0.05). Several groups of meta-clusters showed high
pairwise correlations and enriched signature scores in metabolism, immune signaling, proliferation, and
DNA damage-related pathways. For example, MC6, MC9, MC10, and MC14 demonstrated high pairwise
correlations and high activities in immune-related pathways, such as the interferon-gamma pathway

and the inflammatory response pathway. MC12 and MC15 were also highly correlated and showed high
signature scores in cell cycle-related pathways. In addition, MC3 and MC18 displayed high signature
scores for oxidative phosphorylation (OXPHOS), fatty acid and bile acid metabolism, and adipogenesis.
Moreover, MC1, MC4, MCS8, and MC13 have the highest relative activities in down-regulated genes in
response to ultraviolet (UV) radiation and scored relatively low in all the other pathways. We also observed
four meta-clusters with activation across multiple types of gene sets, namely MC11, MC16, MC17, and
MCI18. All four meta-clusters seem to be more sample-specific (Supplementary Fig. Se). Three out of the
four meta-clusters showed the highest EMT scores, namely MC11, MC16, and MC17 (Supplementary Fig.
5f). They mainly were derived from 4 patients with stage III/IV disease, suggesting they may be precursors
of the metastatic tumor cells.

Gene expression of various metabolic pathways is one of the differentiating features across meta-clusters.
Several meta-clusters exhibit the most extreme activity in metabolic pathways. MC3 and MC18 (10.67%
and 0.06% of all tumor cells, respectively) showed the highest OXPHOS scores and median glycolysis
scores. In contrast, MC11, MC16, and MC17 (2.01%, 0.39%, and 0.24% of tumor cells, respectively)
showed the highest glycolysis scores and lowest OXPHOS scores (Supplementary Fig. 5f). We observe a
weak negative association between glycolysis and OXPHOS gene signatures. This association is expected,
as cells under hypoxia conditions enhance glycolysis to compensate for weakened OXPHOS activity?.
ccRCC cells were generally found to display activated glycolysis and inhibited mitochondrial OXPHOS*>.
Our results demonstrate the advantage of snRNA-seq in revealing tumor subpopulations with differential
glycolysis and OXPHOS gene activities and may provide valuable information for studying glycolysis-
targeting drugs in ccRCC®. Interestingly, we observed a significant positive correlation between glycolysis
and EMT gene signature (R = 0.85, P < 0.001). In particular, MC11, MC16, and MC17 scored highest

in glycolysis and EMT gene signatures. This result suggests that a subset of ccRCC primary tumor cells
may up-regulate glycolysis activity to meet the increased energy demands of transitioning to a more
mesenchymal state, a phenomenon that has been reported in other cancers’.

Previously, Bi and colleagues?® had found a tumor population (TP2) exhibiting both up-regulated glycolysis
and OXPHOS gene signatures relative to tumor population TP1. However, in our analysis, we did not
observe any meta-cluster with the highest glycolysis signature and also with the highest OXPHOS



signature. We believe there are several possible explanations for these inconsistent observations. Firstly,
the samples used by BI et al. consist mostly of metastatic and stage III/TV ccRCC, while our samples
consist only of primary ccRCCs, ranging from stage I to stage IV. Compared to the primary tumor site,
ccRCC cells at the metastatic site may exhibit differential metabolic activity to meet the demands of
different cellular conditions and tumor microenvironments®. Secondly, our analysis used a considerably
larger set of tumors (n = 30) compared to the Bi et al. study (n = 8). So we may be able to capture rarer
and more diverse tumor subpopulations that were not captured by BI et al. Thirdly, the gene signatures
are relative within the tumor cells. Assuming we only captured three meta clusters, e.g., MC10, MC15,
and MC16 (they are selected as all three showing high EMT signature and mainly derived from stage II1/
IV patients), we would have observed that both MC15 and MC16 showed higher glycolysis and OXPHOS
gene signature compared to MC10, which is similar to the difference between TP2 and TP1 in terms of
these two pathways reported by Bi et al.

Supplementary Note 2. Comparison with bulk RNA-seq data and published ccRCC single-cell data.
Of the 21 prioritized tumor markers, 12 markers showed lower snRNA-based fold changes compared

to bulk RNA-seq, which satisfy log (fold change of bulk data) - log (fold change of sn data) > 1. Three
marker showed higher fold change, which satisfy log,(fold change of sn data) - log,(fold change of bulk
data) > 1. And six markers showed similar fold changes, which satisfy [log,(fold change of sn data) -

log (fold change of bulk data)| <= 1.

To see if snRNA-based fold changes for tumor-cell markers are generally smaller compared to bulk RNA-
seq, we looked through 324 tumor-cell markers discovered by snRNA-seq (that are also detected in bulk
RNA-seq) and found that overall a majority of tumor markers (90%) showed higher or similar fold changes
by snRNA-seq compared to bulk RNA-seq (Supplementary Fig. 9a). Of note, we derived the bulk RNA-
seq fold changes by comparing expression in tumors (mostly tumor cells, stroma, and immune cells) vs.
expression in NATs (mostly normal epithelial cells, stroma, and immune cells). To make the fold changes
more comparable, for snRNA-seq data we compared the expression in tumor cells (in tumor tissue) vs. all
cells in the NATs. 40.5% showed higher fold change (e.g. UBE2D2), 49.5% showed similar fold change
(e.g. ENPP3), and 10.0% showed lower fold change by snRNA-seq compared to bulk RNA-seq (e.g.
CAD9). Genes that showed lower fold change by snRNA-seq compared to bulk RNA-seq may underlie

the difference between the two technologies: snRNA-seq mostly measures nuclear transcripts, while bulk
RNA-seq measures both cytoplasmic and nuclear transcripts.

We also analyzed scRNA-seq data for ccRCC samples published by Young et al.®® and Zhang et al.%¢.
Overall, 83.6% and 68.8% of the snRNA-based tumor-cell markers (n = 305; only used genes detected in
all three studies) showed higher expression in tumor cells compared to non-tumor cells in the Young et al.
and Zhang et al. sScRNA-seq data, respectively, supporting most of these markers could help distinguish
tumor cells from non-tumor cells. These include almost all of the prioritized snRNA-based markers
(Supplementary Fig. 9b-c; except for EPHAG).

Assuming some tumor-cell markers may be more cell-enriched rather than nucleus-enriched, their fold
change measured by snRNA-seq might be lower, but their fold change by scRNA-seq might be similar

or higher compared to that measured by bulk RNA-seq. Of those markers that showed lower fold change
in snRNA-seq compared to bulk RNA-seq, 46.7% (e.g. CA9 and CP) showed higher or similar fold
change in Young et al. scRNA-seq data compared to bulk RNA-seq (Supplementary Fig. 9b), suggesting
transcripts for these genes potentially are more cell-enriched in the corresponding experimental condition.
However, none of the snRNA-based markers with smaller fold change than bulk RNA-seq showed higher
fold change calculated by the Zhang et al. sScRNA-seq data compared to bulk RNA-seq (Supplementary
Fig. 9¢), suggesting the relative expression in tumor cells vs. non-tumor cells may vary by experimental
condition. Different studies used different experimental protocols. For example, cells in the Young et al.
study underwent FACS sorting and enrichment of immune cells by CD45 expression, while Zhang et al.



did not mention such procedures. There are still many genes that showed lower fold changes in both sn
and scRNa-seq compared to bulk RNA-seq, such as SLC643 and COL23A41 (Supplementary Fig. 9d),
which might underlie the difference between sn/scRNA-seq and bulk RNA-seq experimental processing.
The different methodological protocols may result in different cell/nucleus states, which may affect post-
transcriptional modification/stability and the measurement of the final transcript abundance.
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