Pyrroloiminoquinone Alkaloids: Total Synthesis of Makaluvamines A and K

Jason An, Richard K. Jackson III, Joseph P. Tuccinardi and John L. Wood*

Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX, 76798

E-mail: John_L_Wood@baylor.edu

Table of Contents

I.	GENERAL INFORMATION	S4
II.	EXPERIMENTAL SECTION	
Pre	paration of Hydroquinone 14	
Pre	paration of Trimethoxy-nitrobenzene 15	
Pre	paration of Iodo-nitrobenzene 16	S8
Pre	paration of Iodoaniline 11	
Pre	paration of Alkyne 12	S10
Pre	paration of Indole 10	S11
Pre	paration of N-Methylated Indole 19	S12
Pre	paration Indoloquinone 20	
Pre	paration of Ts-Indoloquinone 21	
Pre	paration of Azidoindoloquinone 9	
Pre	paration of Vinylogous Imidate 6b	S16
Pre	paration of Makaluvamine A (1)	
Pre	paration of Secondary Vinylogous Amidine 23	
Pre	paration of Makaluvamine K (4)	
III.	SPECTRAL COMPARISONS FOR NATURAL PRODUCTS	
T A	able S1. Tabular collation of ¹ H/ ¹³ C NMR data for synthetic and natu (1)	ıral makaluvamine S22
F te	igure SI. Stacked plots of (A) literature ¹ H NMR for makaluvamine A ext, 500 MHz) and (B) synthetic makaluvamine A (1) ¹ H NMR spectra	A (see ref. 2, main a (600 MHz)S23
T K	able S2. Tabular collation of ¹ H/ ¹³ C NMR data for synthetic and nature (4)	ıral makaluvamine S24
••		S24
IV.	SPECTRAL DATA FOR NEW COMPOUNDS	

Figure S2: ¹ H NMR (400 MHz, CDCl ₃) for hydroquinone 14S26
Figure S3: ¹³ C NMR (101 MHz, CDCl ₃) for hydroquinone 14S27
Figure S4: ¹ H NMR (500 MHz, CDCl ₃) for trimethoxy arene 15S28
Figure S5: ¹³ C NMR (126 MHz, CDCl ₃) for trimethoxy arene 15S29
Figure S6: ¹ H NMR (500 MHz, CDCl ₃) for aryl iodide 16S30
Figure S7: ¹³ C NMR (126 MHz, CDCl ₃) for aryl iodide 16S31
Figure S8: ¹ H NMR (300 MHz, CDCl ₃) for iodoaniline 11S32
Figure S9: ¹³ C NMR (76 MHz, CDCl ₃) for iodoaniline 11S33
Figure S10: ¹ H NMR (500 MHz, CDCl ₃) for alkyne 12S34
Figure S11: ¹ H NMR (500 MHz, CDCl ₃) for alkyne 12 (3.75-0.5 ppm inset)S35
Figure S12: ¹³ C NMR (126 MHz, CDCl ₃) for alkyne 12S36
Figure S13: ¹ H NMR (500 MHz, CDCl ₃) for trimethoxyindole 10S37
Figure S14: ¹ H NMR (500 MHz, CDCl ₃) for trimethoxyindole 10 (4.0-0.75 ppm inset)
Figure S15: ¹³ C NMR (126 MHz, CDCl ₃) for trimethoxyindole 10S39
Figure S16: ¹ H NMR (400 MHz, CDCl ₃) for N-methylindole 19S40
Figure S17: ¹ H NMR (400 MHz, CDCl ₃) for N-methylindole 19 (4.20-0.75 ppm inset)S41
Figure S18: ¹³ C NMR (101 MHz, CDCl ₃) for N-methylindole 19S42
Figure S19: ¹ H NMR (300 MHz, CDCl ₃) for crude indoloquinone 20S43
Figure S20: ¹ H NMR (300 MHz, CDCl ₃) for tosylate 21S44
Figure S21: ¹ H NMR (300 MHz, CDCl ₃) for tosylate 21 (4.25-0.75 ppm inset)S45
Figure S22: ¹³ C NMR (126 MHz, CDCl ₃) for tosylate 21S46
Figure S23: ¹ H NMR (400 MHz, CDCl ₃) for azidoinodoloquinone 9S47
Figure S24: ¹ H NMR (400 MHz, CDCl ₃) for azidoindoloquinone 9 (4.10-0.75 ppm inset)
Figure S25: ¹³ C NMR (101 MHz, CDCl ₃) for azidoindoloquinone 9S49
Figure S26: ¹ H NMR (400 MHz, CDCl ₃) for vinylogous imidate 6bS50
Figure S27: ¹ H NMR (400 MHz, CDCl ₃) for vinylogous imidate 6b (4.25-0.75 ppm inset) S51
Figure S28: ¹³ C NMR (101 MHz_CDCL) for vinylogous imidate 6b S52
Figure S29: ¹ H NMR (600 MHz, CD ₂ OD) for vinylogous amidine 22.
Figure S30: ¹ H NMR (600 MHz, CD ₂ OD) for vinylogous amidine 22 (4 0.0 75 nnm inset)
Figure S31: ¹³ C NMR (151 MHz, CD ₃ OD) for vinylogous amidine 22S55
Figure S32: ¹ H NMR (600 MHz, DMSO-d6) for makaluvamine A trifluoroacetate (1).S56

Figure S33: ¹ H NMR (600 MHz, DMSO-d6) for makaluvamine A trifluoroacetate (1) (10.5-5.0 ppm inset)
Figure S34: ¹ H NMR (600 MHz, DMSO-d6) for makaluvamine A trifluoroacetate (1) (4.0-2.0 ppm inset)
Figure S35: ¹³ C NMR (151 MHz, DMSO-d6) for makaluvamine A trifluoroacetate (1)
Figure S36: ¹ H NMR (500 MHz, CD ₃ OD) for secondary vinylogous amidine 23S60
Figure S37: ¹ H NMR (500 MHz, CD ₃ OD) for secondary vinylogous amidine 23 (4.0- 0.75 ppm inset)
Figure S38: ¹³ C NMR (126 MHz, CD ₃ OD) for secondary vinylogous amidine 23S62
Figure S39: ¹ H NMR (500 MHz, DMSO-d6) for makaluvamine K trifluoroacetate (4) S63
Figure S40: ¹ H NMR (500 MHz, DMSO-d6) for makaluvamine K trifluoroacetate (4) (10.5-5.25 ppm inset)
Figure S41: ¹ H NMR (500 MHz, DMSO-d6) for makaluvamine K trifluoroacetate (4) (4.0-2.0 ppm inset)
Figure S42: ¹³ CNMR (125 MHz, DMSO-d6) for makaluvamine K trifluoroacetate (4)
VI. REFERENCES

I. GENERAL INFORMATION

Unless otherwise stated, all reactions were performed in flame- or oven-dried (~120 °C) glassware under a nitrogen (N₂) atmosphere, using reagents as received from the manufacturers. The 3 Å molecular sieves (MS) were activated in the following manner: MS were oven-dried (120°C) overnight. The MS were then allowed to cool to room temperature (rt, usually 23°C) under a high vacuum (<1 Torr). The MS were then heated in a microwave oven for 1 min. Again, MS were allowed to cool to rt under a high vacuum. Lastly, the MS were flame-dried under vacuum and used once they had returned to rt. Abbreviations for common solvents are as follows: EtOAc = ethyl acetate, MeCN = acetonitrile, MeOH = methanol, EtOH = ethanol, t-BuOH = tert-butyl alcohol, THF = tetrahydrofuran, $CH_2Cl_2 =$ methylene chloride Et_2O = diethyl ether. The argon (Ar) used was ultra-high purity (UHP, 99.999%) as was the oxygen (O₂, 99.993%). The reactions were monitored, and, where noted, analytical samples purified by, normal phase thin layer chromatography (TLC) using Millipore glass-backed 60 Å plates (indicator F-254, 250 µM). THF, CH₂Cl₂, MeCN, benzene, toluene, and Et₂O were dried using a solvent purification system manufactured by SG Water U.S.A., LLC. MeOH was simply dried with activated 4 Å molecular sieves (MS), degassed by sparging, and stored under Ar. Manual flash column chromatography was performed using the indicated solvent systems with Silicycle SiliaFlash P60® (230-400 mesh) silica gel as the stationary phase. All Medium Pressure Liquid Chromatography (MPLC) purifications were performed on either a Teledyne RF+ UV-Vis or a Teledyne CombiFlash NextGen 300+ RF using the indicated solvent systems and Teledyne RediSep® Rf normal phase disposable columns. ¹H and ¹³C NMR spectra were recorded on either a Bruker Avance[™] 300, Bruker Ascend[™] 400 autosampler or a Bruker Ascend[™] 600 autosampler. Chemical shifts (δ) are reported in parts per million (ppm) relative to the residual solvent resonance and coupling constants (J) are reported in hertz (Hz). NMR spectra were calibrated relative to their respective residual NMR solvent peaks; $CDCl_3 = 7.26 \text{ ppm} (^{1}\text{H NMR}) / 77.16 \text{ ppm} (^{13}\text{C NMR})$, Methanol-d4 = $3.31 \text{ ppm} (^{1}\text{H NMR}) / 49.00 \text{ ppm} (^{13}\text{C NMR}), \text{DMSO-d6} = 2.50 \text{ ppm} (^{1}\text{H NMR})$ / 39.52 ppm (¹³C NMR). NMR peak pattern abbreviations are as follows: s = singlet, br s = broad singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublets, t = triplet, dt = doublet of triplets, tt = triplet of triplets, q = quartet, m = multiplet. Infrared (IR) spectra were recorded on a Bruker Platinum-ATR IR spectrometer using a diamond window. High Resolution mass spectra (HRMS) were obtained in the Baylor University Mass Spectrometry Center on a Thermo Scientific LTQ Orbitrap Discovery spectrometer using positive electrospray ionization (+ESI) and reported for the molecular ion ([M+H]+, [M+Na]+, or both). Optical rotations were obtained on a Rudolph Research Analytical Autopol IV Automatic Polarimeter using either Fisher Chemical Chloroform (HPLC grade; approx. 0.75% Ethanol as preservative) or Fisher Chemical Methanol (Optima® LC/MS). Melting points were taken on an Electrothermal Melting point measuring instrument 1101D Mel-Temp.

II. EXPERIMENTAL SECTION

Preparation of Hydroquinone 14

5-nitrovanillin (50.0 g, 253.0 mmol, 1.0 equiv) and MeOH/H₂O (1000 mL, 1:1 mixture, 0.25 M with respect to 5-nitrovanillin) were added to a 2 L round-bottom flask. Aqueous 1M NaOH (280 mL, 280.0 mmol, 1.1 equiv) and aqueous H₂O₂(160 mL, 1,420 mmol, 5.6 equiv, 30% in H₂O, d = ~1 g/mL) were added sequentially to the reaction mixture. The solution was placed in a heating mantle and stirred for 3 h at 60 °C, at which point complete consumption of starting material was observed by TLC. The solution was cooled to rt, concentrated *in vacuo*, and the precipitate that formed was filtered, washed with ice water (3 x 200 mL), and dried under vacuum to give hydroquinone **14** (45.5 g, 96% yield) as a bright orange solid.

<u>**'H NMR:**</u> (400 MHz, CDCl₃) δ 10.46 (s, 1H), 7.10 (d, J = 2.8 Hz, 1H), 6.77 (d, J = 2.8 Hz, 1H), 5.00 (apparent s, 1H; exact chemical shift of this proton varied with concentration between 5.00-4.75), 3.93 (s, 3H).

¹³C NMR: (101 MHz, CDCl₃) δ 151.0, 147.8, 141.6, 133.3, 108.3, 99.8, 56.9.

HRMS (ESI-): calculated for C₇H₆NO₅⁻ [M-H]⁻ 184.0251, found: 184.0243

FTIR: (thin film): 3445 (br), 1542, 1450, 1397, 1341, 1277, 1225, 1199, 1169, 1134, 1059, 989, 923, 812, 774, 762, 608 cm⁻¹

<u>TLC:</u> $R_f = 0.13$ (30% EtOAc/hexanes)

Melting point: 139-141 °C

Preparation of Trimethoxy-nitrobenzene 15

Hydroquinone 14 (45.5 g, 246.0 mmol, 1.0 equiv), K_2CO_3 (101.9 g, 737.0 mmol, 3.0 equiv), and DMF (450 mL, 0.5 M with respect to 14) were added to a flame-dried 1 L roundbottom flask. MeI (46 mL, 737.0 mmol, 3.0 equiv) was added in one portion and the solution was placed in a heating mantle (60 °C) and stirred for 2 h, at which point complete consumption of starting material was observed by TLC. The solution was cooled to rt and H₂O (500 mL) was added. The solution was extracted with EtOAc (3 x 300 mL) and the combined organic extracts were washed with H₂O (5 x 200 mL), brine (200 mL), dried (MgSO₄) and concentrated *in vacuo* to give trimethoxy-nitrobenzene 15 (42.0 g, 80% yield) as a yellow solid.

¹<u>H NMR</u>: (500 MHz, CDCl₃) δ 6.81 (d, J = 2.9 Hz, 1H), 6.67 (d, J = 2.9 Hz, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 3.81 (s, 3H).

¹³C NMR: (126 MHz, CDCl₃): δ 155.6, 155.0, 144.9, 137.5, 104.8, 98.9, 62.2, 56.5, 56.1.

HRMS (ESI+): calculated for C₉H₁₁NNaO₅⁺ [M+Na]⁺ 236.0529, found: 236.0529.

FTIR (thin film): 2944, 1620, 1584, 1531, 1499, 1456, 1430, 1360, 1282, 1240, 1218, 1196, 1152, 1062, 1048, 996, 946, 921, 841, 786, 769, 623 cm⁻¹

<u>TLC:</u> $R_f = 0.21$ (20% EtOAc/hexanes)

Melting point: 79-81 °C

Preparation of Iodo-nitrobenzene 16

Trimethoxy-nitrobenzene **15** (35.0 g, 164.0 mmol, 1.0 equiv) and $CH_2Cl_2/MeCN$ (1.60 L, 1:1 mixture, 0.1 M with respect to **15**) were added to a flame dried 2 L round-bottom flask. AgNO₃ (30.7 g, 180.0 mmol, 1.1 equiv) and I₂ (45.7 g, 180.0 mmol, 1.1 equiv) were added and the mixture was stirred in the dark for 3 h (Note: The reaction should be halted immediately after observing complete consumption of the starting material by TLC as unidentified byproducts were observed when the reaction was allowed to stir for longer periods). The mixture was filtered through a short bed of celite and washed with CH_2Cl_2 until the washings were colorless. Saturated aqueous $Na_2S_2O_3$ (500 mL) was added to the filtrate and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (3 x 200 mL) and the combined organic extracts were washed with H_2O (500 mL), brine (500 mL), and concentrated *in vacuo*. The precipitate that formed was filtered and washed with hexanes (3 x 100 mL) to give iodo-nitrobenzene **16** (50.7 g, 91% yield) as a yellow solid.

¹H NMR: (400 MHz, CDCl₃) δ 6.55 (s, 1H), 3.94 (s, 3H), 3.90 (s, 3H), 3.84 (s, 3H).

¹³C NMR: (126 MHz, CDCl₃) δ 155.7, 154.5, 151.5, 135.6, 98.0, 65.7, 62.6, 57.4, 56.7.

HRMS: (ESI+): calculated for C₉H₁₀INNaO₅⁺ [M+Na]⁺ 361.9496, found: 361.9496.

<u>FTIR</u>: (thin film): 2977, 2945, 2847, 1596, 1567, 1533, 1490, 1464, 1435, 1369, 1328, 1279, 1241, 1208, 1092, 1052, 999, 919, 836, 819, 763, 745, 745, 584 cm⁻¹.

<u>**TLC:**</u> $R_f = 0.34$ (20% EtOAc/hexanes).

Melting point: 166-172 °C

Preparation of Iodoaniline 11

Iodo-nitrobenzene **16** (15.0 g, 44.2 mmol, 1.0 equiv), Fe powder (24.7 g, 442.0 mmol, 10 equiv), NH₄Cl (11.8 g, 221.0 mmol, 5.0 equiv) and THF/EtOH/H₂O (295 mL, 4:4:1 mixture, 0.15 M with respect to **16**) were added to a 1 L round-bottom flask. The mixture was placed in a heating mantle and stirred for 1h at reflux (mantle temp = 95 °C), at which point full consumption of starting material was observed by TLC. The mixture cooled to rt and filtered through a short bed of celite. The filtrate was washed with CH_2Cl_2 (3 x 200 mL), dried (Na₂SO₄), and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (hexanes/EtOAc 70:30) to give iodoaniline **11** (11.5 g, 85% yield) as a white amorphous solid. Due to the instability of this product, it was used immediately or stored in the freezer (-20 °C) under Ar.

<u>**¹H NMR**</u> (300 MHz, CDCl₃) δ 6.00 (s, 1H), 4.39 (br s, 2H), 3.86 (s, 3H), 3.83 (s, 3H), 3.77 (s, 3H).

¹³C NMR: (75 MHz, CDCl₃) δ 155.1, 153.2, 142.3, 129.9, 87.1, 65.7, 60.3, 56.7, 56.1.

HRMS: (ESI+): calculated for C₉H₁₃INO₃⁺ [M+H]⁺ 309.9935, found: 309.9932.

FTIR: (thin film): 3468, 3365, 2934, 2839, 1600, 1576, 1485, 1460, 1425, 1342, 1228, 1203, 1176, 1115, 1056, 1000, 975, 952, 773, 577, 416 cm⁻¹.

<u>TLC</u>: $R_f = 0.24$ (20% EtOAc/hexanes; stains yellow with Vanillin).

Preparation of Alkyne 12

The TBS-protected alkyne **18** was prepared according to a literature protocol.¹ TBSprotected alkyne **18** (20 g, 108.0 mmol, 1.0 equiv) and THF (120 mL, 0.9 M with respect to **18**) were added to a flame-dried 500 mL round-bottom flask under Ar. The solution was cooled to -78 °C and *n*-BuLi (48 mL, 119.0 mmol, 1.1 equiv, 2.5 M in hexanes) was added dropwise. The solution was stirred for 0.5 h at -78 °C and warmed to 0 °C. After stirring for 0.5 h at 0 °C, the solution was once again cooled to -78 °C and TESCI (15.1 mL, 119.0 mmol, 1.1 equiv) was added dropwise. The reaction stirred for an additional 0.5 h and quenched with saturated NaHCO₃ (100 mL) at -78 °C. After warming to rt, the organic and aqueous layers were separated, and the aqueous layer was further extracted with Et₂O (3 x 50 mL). The combined organic extracts were washed with brine (100 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to give the crude silylated alkyne **12** (31.6 g) as a pale-yellow liquid. This material was carried forward without further purification. For characterization purposes, the crude material could be purified by flash column chromatography on silica gel (hexanes/EtOAc/Et₃N 90:6:4).

<u>**'H NMR:**</u> (500 MHz, CDCl₃) δ 3.72 (t, *J* = 7.1 Hz, 2H), 2.46 (t, *J* = 7.1 Hz, 2H), 0.98 (t, *J* = 8.0 Hz, 9H), 0.90 (s, 9H), 0.57 (q, *J* = 7.9 Hz, 6H), 0.07 (s, 6H).

¹³C NMR: (126 MHz, CDCl₃) δ 105.4, 82.9, 62.2, 26.0, 24.5, 18.5, 7.6, 4.6, -5.1.

HRMS (ESI+): calculated for C₁₆H₃₄NaOSi₂ [M+H]⁺ 321.2040, found: 321.2041.

FTIR (thin film): 2954, 2931, 2875, 2176, 1462, 1415, 1382, 1361, 1253, 1106, 1046, 1006, 916, 835, 776, 724, 608 cm⁻¹.

<u>TLC:</u> $R_f = 0.15$ (hexanes; KMnO₄).

Preparation of Indole 10

Iodoaniline **11** (11.0 g, 35.6 mmol, 1.0 equiv), silylated alkyne **12** (15.9 g, 53.4 mmol, 1.5 equiv), and DMF (120 mL, 0.3 M with respect to **11**) were added to a flame-dried 500 mL roundbottom flask under Ar. The solution was sparged with Ar for ~10 min and Hünig's base (18.6 mL, 0.106 mol, 3.0 equiv), NBu₄Cl (9.88 g, 35.6 mmol, 1.0 equiv) and Pd(PPh₃)₄ (2.06 g, 1.78 mmol, 5 mol%) were added each in one portion. The solution was placed in a heating mantle (120 °C) and stirred for 18 h, at which point full consumption of starting material was observed by TLC. The solution was cooled to rt and diluted with Et₂O (100 mL) and saturated NH₄Cl (100 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (3 x 100 mL) and the combined organic extracts were washed with H₂O (5 x 100 mL), brine (3 x 100 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (hexanes/EtOAc 90:10) to give indole **10** (16.3 g, 95% yield) as a waxy yellow solid.

<u>**1H NMR**</u> (500 MHz, CDCl₃) δ 7.84 (s, 1H), 6.20 (s, 1H), 3.93 (s, 6H), 3.90 (s, 3H), 3.81-3.78 (m, 2H), 3.10-3.07 (m, 2H), 1.01-0.98 (m, 9H), 0.92 (s, 9H), 0.92-0.88 (m, 6H), 0.08 (s, 6H).

1³C NMR: (126 MHz, CDCl₃) δ 150.0, 147.1, 134.3, 130.2, 128.9, 122.6, 115.5, 90.2, 65.8, 61.1, 58.2, 55.5, 31.7, 26.3, 18.7, 7.6, 4.0, -5.0.

HRMS (ESI+): calculated for C₂₅H₄₅NNaO₄Si₂⁺ [M+Na]⁺ 502.2779, found: 502.2778.

FTIR: (thin film): 3485, 3357, 2953, 2933, 2875, 1626, 1594, 1525, 1464, 1417, 1338, 1233, 1204, 1135, 1089, 1041, 1002, 977, 902, 836, 777, 734 cm⁻¹.

<u>TLC</u>: $R_f = 0.19$ (10% EtOAc/hexanes; stains blue with vanillin).

Preparation of N-Methylated Indole 19

Indole 10 (1.0 g, 2.08 mmol, 1.0 equiv), MeI (0.16 mL, 2.70 mmol, 1.3 equiv), and DMF (10.4 mL, 0.2 M with respect to 10) were added to a flame-dried 100 mL round-bottom flask. The solution was cooled to 0 °C and NaH (0.10 g, 2.50 mmol, 1.2 equiv, 60% dispersion in mineral oil) was added in one portion. The cooling bath was removed and the mixture was stirred for 1 h at rt, at which point full consumption of starting material was observed by TLC. H₂O (10 mL) was added to quench the reaction. The aqueous layer was extracted with Et₂O (3 x 10 mL) and the combined organic extracts were washed with H₂O (5 x 10 mL), brine (10 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (hexanes/EtOAc 95:5) to give N-methylated indole 19 (1.03 g, quant) as a white waxy solid.

Note: Due to sodium hydride (NaH) being moisture sensitive and flammable solid, proper caution should be implemented.

<u>**H NMR**</u> (400 MHz, CDCl₃) δ 6.20 (s, 1H), 4.02 (s, 3H), 3.93 (s, 3H), 3.89 (s, 3H), 3.86 (s, 3H), 3.77-3.73 (m, 2H), 3.17-3.13 (m, 2H), 1.03-0.95 (m, 15H), 0.93 (s, 9H), 0.08 (s, 6H).

¹³C NMR: (101 MHz, CDCl₃) 150.1, 148.6, 134.4, 133.8, 130.4, 123.6, 115.9, 89.9, 66.4, 61.9, 58.2, 55.4, 35.3, 30.7, 26.2, 18.6, 7.8, 5.1, -5.0.

HRMS (ESI+): calculated for C₂₆H₄₇NNaO₄Si₂⁺ [M+Na]⁺ 516.2936, found: 516.2936.

FTIR (thin film): 2953, 2931, 2875, 1610, 1516, 1463, 1341, 1287, 1255, 1215, 1154, 1117, 1085, 1020, 1003, 982, 930, 865, 836, 776, 733, 418cm⁻¹.

<u>TLC</u>: $R_f = 0.33$ (10% EtOAc/hexanes; stains purple with vanillin).

Preparation Indoloquinone 20

N-methyl indole **19** (0.53 g, 1.08 mmol, 1.0 equiv), CAN (1.48 g, 2.70 mmol, 2.5 equiv) and MeCN/H₂O (14 mL, 9:1 mixture, 0.07 M with respect to **19**) were added to a 50 mL round-bottom flask. The mixture was stirred for 0.5 h, at which point full consumption of starting material was observed by TLC. The reaction was then quenched by the addition of H₂O (100 mL) added and the aqueous layer was extracted with CH_2Cl_2 (5 x 50 mL). The combined organic extracts were washed with H₂O (100 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo* to give indoloquinone **20**. The crude mixture was carried forward without further purification.

¹**H** NMR: (300 MHz, CDCl₃): δ 5.67 (s, 1H), 4.05 (s, 3H), 3.81 (s, 3H), 3.78 (t, J = 6.3 Hz, 2H; overlaps with s at 3.81 ppm), 3.11 (t, J = 6.4 Hz, 2H), 1.00-0.93 (m, 15).

Preparation of Ts-Indoloquinone 21

Crude indoloquinone **20** (0.47 g, 1.0 equiv, ~1.35 mmol), TsCl (0.51 g, 2.70 mmol, 2.0 equiv), DMAP (0.033 g, 0.27 mmol, 20 mol%), and DCM (4.5 mL, 0.2M with respect to **20**) were added to a flame-dried 10 mL round-bottom flask. Et₃N (0.38 mL, 2.70 mmol, 2.0 equiv) was added dropwise and the solution was stirred for 2 h. The reaction was diluted with H₂O (20 mL) and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic extracts were washed with H₂O (20 mL), brine (20 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (hexanes/EtOAc 70:30) to give indoloquinone **21** (0.342 g, 63% yield over two steps) as an orange foam.

¹**H** NMR: (300 MHz, CDCl₃) δ 7.65-7.63 (m, 2H), 7.24-7.21 (m, 2H), 5.57 (s, 1H), 4.20 (t, J = 6.7 Hz, 2H), 4.02 (s, 3H), 3.80 (s, 3H), 3.13 (t, J = 6.7 Hz, 2H), 2.38 (s, 3H), 1.00-0.89 (m, 15H).

¹³C NMR: (126 MHz, CDCl₃) δ 183.9, 171.9, 159.9, 144.5, 141.2, 133.0, 131.6, 130.4, 129.6, 128.0, 124.0, 107.3, 69.9, 56.7, 36.7, 25.7, 21.6, 7.6, 4.6.

HRMS (ESI+): calculated for C₂₅H₃₃NNaO₆SSi⁺ [M+Na]⁺ 526.1690, found: 526.1693.

FTIR (thin film): 2956, 2876, 1663, 1638, 1601, 1519, 1455, 1413, 1357, 1336, 1243, 1210, 1187, 1173, 1109, 1068, 1036, 1000, 959, 901, 843, 814, 782, 728, 662, 569, 553, 522, 494, 452 cm⁻¹.

<u>TLC</u>: $R_f = 0.15$ (40% EtOAc/hexanes).

Preparation of Azidoindoloquinone 9

Indoloquinone **21** (0.34 g, 0.678 mmol, 1.0 equiv), NaN₃ (0.221 g, 3.4 mmol, 5 equiv), and DMF (4 mL, 0.16 mmol/mL with respect to **21**) were added to a flame-dried 10 mL round-bottom flask. The mixture was placed in a heating mantle and stirred for 24 h at 60 °C. The mixture was cooled to rt and diluted with H₂O (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with H₂O (3 x 10 mL), brine (3 x 10 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (hexanes/EtOAc 70:30) to give azainodoloquinone **9** (0.143 g, 57% yield) as an orange oil that solidifies in the freezer (~-20 °C).

Note: Due to sodium azide being heat, shock, and friction sensitive, proper caution should be implemented.

<u>**1H NMR**</u> (400 MHz, CDCl₃): δ 5.67 (s, 1H), 4.05 (s, 3H), 3.80 (s, 3H), 3.45-3.42 (m, 2H), 3.10-3.06 (m, 2H), 1.01-0.90 (m, 15H).

¹³C NMR: (101 MHz, CDCl₃): δ 184.2, 172.1, 160.1, 140.6, 132.4, 131.8, 124.3, 107.5, 56.7, 51.8, 36.7, 26.0, 7.6, 4.6.

HRMS (ESI+): calculated for C₁₈H₂₆N₄NaO₃Si⁺ [M+Na]⁺ 397.1666, found: 397.1671.

<u>FTIR</u> (thin film): 2955, 2876, 2094, 1665, 1641, 1603, 1519, 1456, 1413, 1337, 1242, 1211, 1110, 1054, 1034, 1002, 925, 892, 844, 794, 735, 486, 456, 426 cm⁻¹.

<u>TLC</u>: $R_f = 0.22$ (20% EtOAc/hexanes).

Preparation of Vinylogous Imidate 6b

Azidoindoloquinone 9 (0.14 g, 0.382 mmol, 1.0 equiv), PPh₃ (0.20 g, 0.764 mmol, 2.0 equiv), and THF/H₂O (2.2 mL, 9:1 mixture, 0.2 M with respect to 9) were added to a 6-dram vial. The mixture stirred for 16 h, at which point complete consumption of starting material was observed by TLC. The contents of the vial were transferred to a flask (rinsing the sides of the vial with CH₂Cl₂), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH 97:3) to give vinylogous imidate **6b** (0.082 g, 65% yield) as a dark purple oil.

Note: We have found the vinylogous imidate **6b** to be unstable as an impurity (<10%) quickly starts to form over time. We have found that the impurity does not impede the overall reactivity of the next step (aminolysis) and could be readily separated at that point. In addition, we have discovered that this two-step sequence (Staudinger reduction and aminolysis) could be accomplished in one-pot to obtain the desired vinylogous amidine **22** in comparable yields.

Two-step, one-pot sequence: Azaindoloquinone **9** (0.027 g, 0.072 mmol, 1.0 equiv), PPh₃ (0.038 g, 0.144 mmol, 2.0 equiv), and THF/H₂O (0.4 mL, 9:1 mixture) were added to a 6-dram vial. The mixture stirred for 16 h and Na₂SO₄ was added. The contents of the vial were filtered into a 6-dram vial and concentrated *in vacuo*. The crude mixture was carried forward without further purification.

<u>**H NMR**</u>: (400 MHz, CDCl₃) δ 6.05 (s, 1H), 4.11 (t, *J* = 7.8 Hz, 2H), 4.04 (s, 3H), 3.81 (s, 3H), 2.79 (t, *J* = 7.8 Hz, 2H), 0.99-0.95 (m, 9H), 0.90-0.86 (m, 6H).

¹³C NMR: (101 MHz, CDCl₃) δ 171.6, 158.7, 156.8, 137.8, 127.18, 127.16, 121.1, 105.9, 56.6, 50.9, 35.9, 20.8, 7.5, 4.0.

<u>HRMS</u> (ESI+): calculated for $C_{18}H_{27}N_2O_2Si^+$ [M+H]⁺ 331.1836, found: 331.1834.

FTIR (thin film): 2953, 2875, 1654, 1614, 1571, 1452, 1320, 1282, 1218, 1179, 1129, 1044, 1007, 921, 837, 792, 734, 698, 585, 421 cm⁻¹.

<u>**TLC</u>**: $R_f = 0.33$ (5% MeOH/CH₂Cl₂).</u>

Preparation of Vinylogous Amidine 22

Vinylogous imidate **6b** (0.071 g, 0.214 mmol, 1.0 equiv), NH₄Cl (0.11 g, 2.14 mmol, 10 equiv), and MeOH (1 mL, 0.2 M with respect to **6b**) were added to a 2-dram vial. The mixture was stirred for 16 h, at which point,full consumption of the starting material was observed by TLC. The reaction was concentrated *in vacuo* and the crude mixture was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH 90:10) to give vinylogous amidine **22** (0.038 g, 56% yield) as a dark green solid.

Two-step, one-pot sequence: crude vinylogous imidate **6b**, NH₄Cl (0.039 g, 0.72 mmol, 10.0 equiv) and MeOH (0.3 mL) were added to a 6-dram vial. The mixture was stirred for 16 h and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH 90:10) to give vinylogous amidine **22** (0.012 g, 53% yield over two steps)

Note: The ¹H NMR peak corresponding to the $-NH_2$ of the vinylogous amidine is presumed to be exchange-broadened and is not observed in the spectral data reported below.

¹**H** NMR: (600 MHz, methanol-*d4*) δ 5.65 (s, 1H), 4.07 (s, 3H), 3.82 (t, *J* = 7.6 Hz, 2H), 3.01 (t, *J* = 7.6 Hz, 2H), 1.04-0.95 (m, 15H).

<u>¹³C NMR</u>: (151 MHz, methanol-*d4*) δ 169.8, 160.0, 157.8, 142.5, 129.9, 128.8, 123.3, 87.9, 43.9, 37.1, 21.8, 7.6, 4.5.

<u>HRMS</u> (ESI+): calculated for $C_{17}H_{26}N_3OSi^+$ [M+H]⁺ 316.1840, found: 316.1841.

FTIR (thin film): 2955, 2875, 1676, 1607, 1530, 1455, 1392, 1343, 1295, 1253, 1223, 1139, 1004, 967, 846, 726 cm⁻¹.

<u>**TLC:</u>** $R_f = 0.18 (4\% \text{ MeOH/CH}_2\text{Cl}_2).$ </u>

Preparation of Makaluvamine A (1)

Vinylogous amidine **22** (0.013 g, 0.041 mmol, 1.0 equiv) and THF (0.2 mL, 0.2 M with respect to **22**) were added to flame-dried 2-dram vial. The solution was cooled to 0 °C and TBAF (0.08 mL, 0.082 mmol, 2.0 equiv, 1M solution in THF) was added dropwise. The reaction was warmed to rt (by removing ice bath) and the solution was stirred for 1 h at this temperature, at which point full consumption of starting material was observed by TLC. The reaction was concentrated *in vacuo* and the crude mixture was purified by flash column chromatography on silica gel (CHCl₃/MeOH/NH₄OH 89:10:1) to give makaluvamine A (1), which was redissolved in MeOH (5 mL) and TFA (0.1 mL) was added. The resulting solution concentrated to give the corresponding TFA salt as dark purple solid (0.009 g, 69% yield).²

<u>**H NMR**</u> (600 MHz, DMSO-*d6*) δ 10.40 (s, 1H), 9.09 (s, 1H), 8.40 (s, 1H), 7.31 (s, 1H), 5.60 (s, 1H), 3.89 (s, 3H), 3.76 (td, = 7.6, 2.7 Hz, 2H), 2.84 (t, = 7.6 Hz, 2H).

<u>1³C NMR</u>: (151 MHz, DMSO-*d6*) δ 168.3, 156.8, 156.1, 131.1, 123.1, 122.4, 117.9, 86.5, 42.1, 35.9, 18.1.

<u>HRMS</u> (ESI+): calculated for $C_{11}H_{12}N_3O^+$ [M+H]⁺ 202.0975, found: 202.0975.

FTIR (thin film): 3470 (br), 2953, 2930, 2856, 1759, 1644, 1542, 1462, 1440, 1376, 1319, 1254, 1204, 1143, 1110, 1007, 894, 836, 808, 776, 698, 650, 588, 544, 491, 435, 424 cm⁻¹.

<u>TLC</u>: $R_f = 0.15 (10\% \text{ MeOH/CH}_2\text{Cl}_2).$

Preparation of Secondary Vinylogous Amidine 23

Vinylogous imidate **6b** (0.37 g, 1.12 mmol, 1.0 equiv), tyramine (0.23 g, 1.68 mmol, 1.5 equiv), and MeOH (5.5 mL, 0.2M with respect to **6b**) were added to a 10 mL round-bottom flask. The mixture was stirred for 16 h, at which point full consumption of the starting material was observed by TLC. The reaction was concentrated *in vacuo* and the crude mixture was purified by flash column chromatography on silica gel (CH₂Cl₂/MeOH 90:10) to give secondary vinylogous amidine **23** (0.21 g, 43% yield) as a dark brown film.

<u>**'H NMR:**</u> (500 MHz, methanol-*d4*) δ 7.07 (d, *J* = 8.5 Hz, 2H), 6.72 (d, *J* = 8.4 Hz, 2H), 5.42 (s, 1H), 4.06 (s, 3H), 3.82 (t, *J* = 7.6 Hz, 2H), 3.54 (t, *J* = 7.3 Hz, 2H), 3.00 (t, *J* = 7.7 Hz, 2H), 2.88 (t, *J* = 7.0 Hz, 2H), 1.04-0.95 (m, 15H).

13C NMR: (125 MHz, methanol-*d4*) δ 169.3, 159.4, 157.4, 154.7, 142.8, 130.9, 130.0, 129.9, 128.8, 123.3 116.5, 85.5, 46.5, 44.1, 37.1, 34.4, 21.8, 7.6, 4.5.

HRMS (ESI+): (ESI+): calculated for C₂₅H₃₄N₃OSi⁺ [M+H]⁺ 436.2415, found: 436.2414.

FTIR (thin film): 3202, 2954, 2926, 2874, 1726, 1672, 1599, 1544, 1515, 1452, 1345, 1254, 1138, 1064, 1005, 968, 832, 738 cm⁻¹.

<u>**TLC:</u>** $R_f = 0.16$ (10% MeOH/CH₂Cl₂).</u>

Preparation of Makaluvamine K (4)

Vinylgous amidine **23** (0.050 g, 0.114 mmol, 1.0 equiv) and THF (0.6 mL, [0.2 M] in respect to **23**) were added to flame-dried 2-dram vial. The solution was cooled to 0 °C and TBAF (0.17 mL, 0.172 mmol, 1.5 equiv, 1M solution in THF) was added dropwise. The reaction warmed to rt (by removing ice bath), and the solution stirred for 1 h, at which point, full consumption of starting material was observed by TLC. The reaction was concentrated *in vacuo* and the crude mixture was purified by flash column chromatography on silica gel (CHCl₃/MeOH/TFA 89:10:1) to give makaluvamine K (**4**), which was redissolved in MeOH (5 mL) and TFA (0.1 mL) was added. The resulting solution concentrated to give the corresponding TFA salt as red brown solid (0.025 g, 51% yield).³

<u>**'H NMR:**</u> (400 MHz, DMSO-*d6*) δ 10.53 (s, 1H), 9.29 (br s, 1H), 8.95 (t, *J* = 6.3 Hz, 1H), 7.33 (s, 1H), 7.04 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 2 H), 5.50 (s, 1H), 3.90 (s, 3H), 3.78 (td, *J* = 7.7, 2.4 Hz, 2H), 3.50-3.40 (m, 2H), 2.85 (t, = 7.6 Hz, 2H), 2.78 (t, *J* = 7.6 Hz, 2H).

¹³C NMR: (125 MHz, DMSO-*d*6) δ 167.7, 156.5, 156.0, 152.9, 131.4, 129.6, 128.2, 123.1, 122.3, 118.1, 115.3, 84.2, 45.1, 42.2, 35.9, 32.4, 18.1.

<u>HRMS</u> (ESI+): calculated for $C_{19}H_{20}N_3O_2^+$ [M+H]⁺ 322.1550, found: 322.1551.

FTIR (thin film): 3239 (br), 2923, 2853, 1676, 1599, 1557, 1517, 1436, 1352, 1318, 1200, 1133, 970, 837, 801, 722 cm⁻¹.

<u>TLC</u>: $R_f = 0.30 (1\% \text{ TFA}/10\% \text{ MeOH}/\text{CH}_2\text{Cl}_2).$

III. SPECTRAL COMPARISONS FOR NATURAL PRODUCTS

Table S1. Tabular collation of ¹H/¹³C NMR data for synthetic and natural makaluvamine A (1)

(1)

Position	Synthetic δ ¹ H (600 MHz)	Natural δ ¹ H (500 MHz)	$\Delta_{ m ppm}$
N-Me	3.89 (s)	3.88 (s)	+0.01
2	7.31 (s)	7.30 (s)	+0.01
3	2.84 (t, J = 7.6 Hz)	2.83 (t, J = 7.5 Hz)	+0.01
4	3.76 (td, J = 7.6, 2.7 Hz)	3.75 (t, J = 7.5 Hz)	+0.01
5	10.40 (s)	10.44 (s)	-0.04
6	5.60 (s)	5.61 (s)	-0.01
9	9.09, 8.40	9.09, 8.37	+0.03

Position	Synthetic δ ¹³ C (151 MHz)	Natural δ ¹³ C (125 MHz)	$\Delta_{ m ppm}$
N-Me	35.9	35.8	+0.1
2	131.1	131.0	+0.1
2a	117.9	117.8	+0.1
3	18.1	18.0	+0.1
4	42.1	42.0	+0.1
5a	156.1	156.0	+0.1
6	86.5	86.4	+0.1
7	156.8	156.7	+0.1
8	168.3	168.2	+0.1
8a	123.1	123.0	+0.1
8b	122.4	122.3	+0.1

Figure SI. Stacked plots of (A) literature ¹H NMR for makaluvamine A (see ref. 2, main text, 500 MHz) and (B) synthetic makaluvamine A (1) ¹H NMR spectra (600 MHz).

Table S2. Tabular collation of ${}^{1}H/{}^{13}C$ NMR data for synthetic and natural makaluvamine K (4)

Makaluvamine K (4)

Position	Synthetic δ ¹ H (400 MHz)	Natural δ ¹ H (400 MHz)	$\Delta_{ m ppm}$
N-Me	3.90 (s)	3.89 (s)	+0.01
2	7.34 (s)	7.33 (s)	+0.01
3	2.85 (t, J = 7.6 Hz)	2.84 (t, J = 7.5 Hz)	+0.01
4	3.78 (td, J = 7.7, 2.7 Hz)	3.78 (t, <i>J</i> = 7.5 Hz)	0
5	10.44 (s)	10.47 (br s)	-0.03
6	5.48 (s)	5.47 (s)	+0.01
9	8.96 (t, J = 6.4 Hz)	8.97 (t, $J = 6$ Hz)	-0.01
10	3.47 (m)	3.48 (m)	-0.01
11	2.78 (t, J = 7.5 Hz)	2.77 (t, J = 7 Hz)	+0.01
13,17	7.04 (d, J = 8.1 Hz)	7.03 (d, J = 8 Hz)	+0.01
14, 16	6.70 (d, J = 8.2 Hz)	6.68 (d, J = 8 Hz)	+0.02
15 (OH)	9.28 (br s)	9.30 (br s)	+0.02

Position	Synthetic δ ¹³ C (151 MHz)	Natural δ ¹³ C (100.6 MHz)	$\Delta_{ m ppm}$
N-Me	35.9	35.9	0
2	131.4	131.4	0
2a	118.1	118.0	+0.1
3	18.1	18.0	+0.1
4	42.2	42.2	0
5a	156.5	156.5	0
6	84.2	84.2	0
7	152.9	152.9	0
8	167.7	167.7	0
8a	123.1	123	+0.1
8b	122.3	122.3	0
10	45.1	45.1	0
11	32.4	32.4	0
12	128.2	128.2	0
13,17	129.6	129.6	0
14, 16	115.3	115.3	0
15	156.0	156.0	0

IV. SPECTRAL DATA FOR NEW COMPOUNDS

Figure S3: ¹³C NMR (101 MHz, CDCl₃) for hydroquinone 14

Figure S4: ¹H NMR (500 MHz, CDCl₃) for trimethoxy arene 15

Figure S6: ¹H NMR (500 MHz, CDCl₃) for aryl iodide 16

Figure S8: ¹H NMR (300 MHz, CDCl₃) for iodoaniline 11

Figure S13: ¹H NMR (500 MHz, CDCl₃) for trimethoxyindole 10

Figure S15: ¹³C NMR (126 MHz, CDCl₃) for trimethoxyindole 10

230

Figure S17: ¹H NMR (400 MHz, CDCl₃) for N-methylindole 19 (4.20-0.75 ppm inset)

Figure S19: ¹H NMR (300 MHz, CDCl₃) for crude indoloquinone 20

Figure S21: ¹H NMR (300 MHz, CDCl₃) for tosylate 21 (4.25-0.75 ppm inset)

230

Figure S24: ¹H NMR (400 MHz, CDCl₃) for azidoindoloquinone 9 (4.10-0.75 ppm inset)

Figure S27: ¹H NMR (400 MHz, CDCl₃) for vinylogous imidate 6b (4.25-0.75 ppm inset)

Figure S29: ¹H NMR (600 MHz, CD₃OD) for vinylogous amidine 22

Figure S33: ¹H NMR (600 MHz, DMSO-d6) for makaluvamine A trifluoroacetate (1) (10.5-5.0 ppm inset)

S-58

Figure S35: ¹³C NMR (151 MHz, DMSO-d6) for makaluvamine A trifluoroacetate (1)

Figure S37: ¹H NMR (500 MHz, CD₃OD) for secondary vinylogous amidine 23 (4.0- 0.75 ppm inset)

Figure S39: ¹H NMR (500 MHz, DMSO-d6) for makaluvamine K trifluoroacetate (4)

VI. REFERENCES

- 1) Sneddon, H. F.; Gaunt, M. J.; Ley, S. V.; Org. Lett. 2003, 5, 1147-1150.
- 2) Radisky, D. C.; Radisky, E. S.; Barrows, L. R.; Copp, B. R.; Kramer, R. A.; Ireland, C. M. *J. Am. Chem. Soc.* **1993**, *115*, 1632-1638.
- 3) Schmidt, E. W.; Harper, M. K.; Faulkner, D. J J. Nat. Prod. 1995, 58, 1861-1867.