

Suppl. Figure 1. Seahorse analysis of macrophages treated with either IFN_γ and LPS or IL-4. Naïve BMDMs (**A**) and HMDMs (**B**) were polarized towards a pro-inflammatory phenotype with IFN_γ and LPS or a pro-resolving phenotype with IL-4 for 24 h followed by Seahorse analysis. The extracellular acidification rate (ECAR), a measure of glycolysis, was measured at baseline and after the addition of glucose ("glycolysis"), oligomycin ("glycolytic capacity"), and 2-DG. The oxygen consumption rate (OCR), a measure of oxidative phosphorylation, was measured at baseline ("basal respiration") and after the addition of oligomycin, FCCP ("maximal respiration), and rotenone plus antimycin A (*n* = 15-16 and *n* = 7-8 wells/group for BMDMs and HMDMs, respectively). All values are means ± SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 as compared to the naïve groups, determined by one ANOVA with Fisher's LSD post hoc analysis.

Suppl. Figure 2. Flow cytometry analysis of cell-surface GLUT1 expression in efferocytic macrophages. BMDMs were incubated with PKH67-labeled apoptotic cells (ACs) for 45 min, rinsed and harvested 1 h later for flow cytometric analysis of cell-surface GLUT1 using an APC-conjugated GLUT1 antibody. (A) Gating strategy for AC⁻ and AC⁺ macrophages, with PKH67 detected in the FITC channel. (B) The mean fluorescent intensity (MFI) of cell-surface GLUT1 based on the flow cytometric data.

Suppl. Figure 3. RT-qPCR analysis to test siRNA silencing efficiency and efferocytosis-induced gene expression. (A) BMDMs were transfected with scrambled RNA or siSlc2a1, and *Slc2a1* expression was measured by RT-qPCR (n = 2 wells/group). (B) BMDMs were transfected with scrambled RNA or siTxnip, and *Txnip* expression was measured by RT-qPCR (n = 2 wells/group). (C) BMDMs were incubated in the absence or presence of ACs for 45 min, rinsed, and *Pfkfb2* expression was measured 1 h later (n = 4 wells/group). (D) BMDMs were transfected with scrambled RNA or siPfkfb2, and *Pfkfb2* expression was measured by RT-qPCR (n = 2 wells/group). All values are means \pm SEM. *P < 0.05, ****P < 0.0001 as compared with the indicated control groups, determined by the two-tailed Student's t-test. ns, not significant (P > 0.05).

Suppl. Figure 4. Additional efferocytosis assays and validation of siRNA silencing efficiency. (A) BMDMs were pretreated without or with 10 mM 2-DG for 1 h, followed by incubation with PKH26-labeled apoptotic Jurkat cells (ACs) for 45 min. Unengulfed ACs were then rinsed away, and the number of PKH26⁺ macrophages were quantified as a measure of single efferocytosis (n = 4 wells/group). (B) BMDMs were transfected with scrambled RNA or siPfkfb2, and *Pfkfb2* gene expression was measured by RT-qPCR (n = 3 wells/group). (C) BMDMs were transfected with scrambled RNA or siLdha, and *Ldha* gene expression was measured by RT-qPCR (n = 3 wells/group). (D) BMDMs were transfected with scrambled RNA, siPfkfb2 or siLdha, followed by a single efferocytosis assay as described for panel A (n = 3 wells/group). (E) HMDMs were transfected with scrambled RNA or siPfkfb2, and *PFKFB2* gene expression was measured by RT-qPCR (n = 3 wells/group). (E) HMDMs were transfected with scrambled RNA or siPfkfb2, and *PFKFB2* gene expression was measured by RT-qPCR (n = 3 wells/group). (E) HMDMs were transfected with scrambled RNA or siPfkfb2, and *PFKFB2* gene expression was measured by RT-qPCR (n = 3 wells/group). All values are means \pm SEM. ****P < 0.0001 as compared with the indicated control groups, determined by the two-tailed Student's t-test (A-C & E) or two-way ANOVA with Fisher's LSD post hoc analysis in panel D. ns, not significant (P > 0.05).

Suppl. Figure 5. Pfkfb3 and Pfkfb4 are upregulated by IFN_γ and LPS, and partial silencing of Pfkfb3 and Pfkfb4 does not affect efferocytosis. (A-B) Expression levels of *Pfkfb3 and Pfkfb4* were measured by RT-qPCR in naïve macrophages and macrophages polarized towards a proinflammatory phenotype with IFN_γ and LPS (n = 4 wells/group). (C) BMDMs were transfected with scrambled RNA or siPfkfb3, and *Pfkfb3* expression was measured (n = 3 wells/group). (D) BMDMs were transfected with scrambled RNA or siPfkfb4, and *Pfkfb4* expression was measured (n = 3 wells/group). (E) BMDMs transfected with scrambled RNA, siPfkfb3, or siPfkfb4 were incubated with PKH26-labeled apoptotic Jurkat cells (ACs) for 45 min. Unengulfed ACs were removed by rinsing, and the number of PKH26⁺ macrophages were quantified (n = 4 wells/group). (F) BMDMs transfected with scrambled RNA, siPfkfb4 were first incubated with PKH67-labeled ACs for 45 min, rinsed, and 2 h later incubated with PKH26-labeled ACs for 45 min. The number of PKH67⁺ PKH26⁺ Mφs relative to PKH67⁺ Mφs was quantified as a measure of continual efferocytosis (n = 4 wells/group). All values are means \pm SEM. **P < 0.01, ****P < 0.0001 as compared with the indicated control groups, determined by the two-tailed Student's t-test (A-D) or one ANOVA with Fisher's LSD post hoc analysis (E-F). ns, not significant (P > 0.05).

Suppl. Figure 6. Macrophages from PFKFB2 mutant mice show attenuated efferocytosis-induced glycolysis. BMDMs from PFKFB2 mutant mice and wild-type littermates were subjected to Seahorse analysis. (A) The extracellular acidification rate (ECAR), a measure of glycolysis, was measured at baseline and after the addition of glucose ("glycolysis"), oligomycin ("glycolytic capacity"), and 2-DG (n = 8-9 wells/group). (B) The oxygen consumption rate (OCR), a measure of oxidative phosphorylation, was measured at baseline ("basal respiration") and after the addition of oligomycin, FCCP ("maximal respiration), and rotenone plus antimycin A (n = 8-9 wells/group). All values are means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 as compared with the indicated control groups, determined by two ANOVA with Fisher's LSD post hoc analysis. ns, not significant (P > 0.05).

Suppl. Figure 7. Flow cytometric analysis of apoptotic thymocytes from the dexamethasone-thymus experiment. All cells were isolated from the thymi of hematopoietic PFKFB2 mutant and wild-type mice of the dexamethasone-thymus experiment (see Fig. 5 of the main manuscript) and subjected to flow cytometric analysis. The cells were immunostained for the apoptotic cell marker annexin V (AnnV; FITC) and, using the depicted gating strategy, quantified for the percentages of AnnV⁻ (live) and AnnV⁺ (apoptotic) thymocytes.

Supplementary Table

Gene	Species	Primer sequence (5' \rightarrow 3')	
		Forward	Reverse
Ldha	Mouse	TGTCTCCAGCAAAGACTACTGT	GACTGTACTTGACAATGTTGGGA
Pfkfb2	Mouse	ACATGCTCATGGGCTTCCTAT	GTTGAGGTAGCGTGTTAGTTTCT
Rplp0	Mouse	GGACCCGAGAAGACCTCCTT	GCACATCACTCAGAATTTCAATGG
Slc2a1	Mouse	GCAGTTCGGCTATAACACTGG	GCGGTGGTTCCATGTTTGATTG
Slc16a1	Mouse	TGTTAGTCGGAGCCTTCATTTC	CACTGGTCGTTGCACTGAATA
Txnip	Mouse	TCTTTTGAGGTGGTCTTCAACG	GCTTTGACTCGGGTAACTTCACA

Supplementary Table 1. Primer sequences used for quantitative RT-PCR analysis