

## Supplementary Material

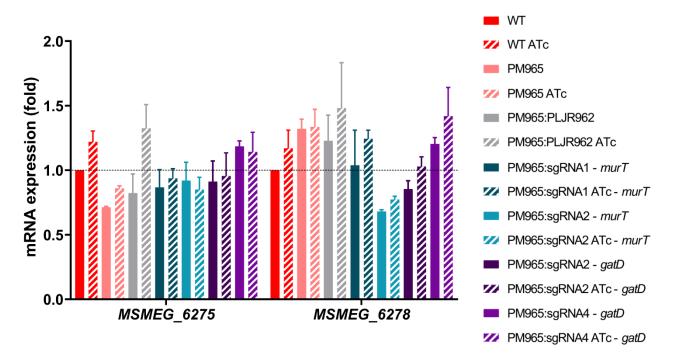
## **1** Supplementary Figures and Tables

## **1.1 Supplementary Figures**

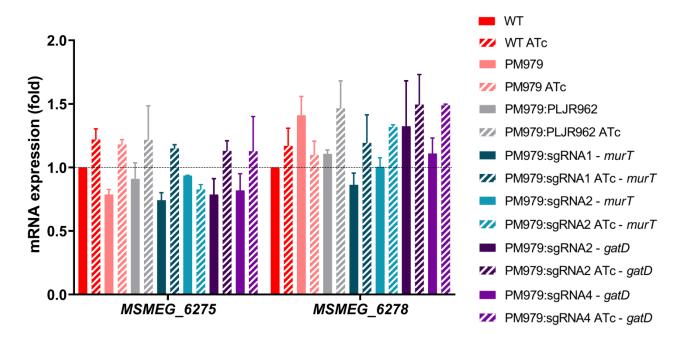
CLUSTAL 0(1.2.4) multiple sequence alignment

| sp A0A0H3JUU7 MURT_STAANMRQWTAIHLAKLARKASRAVGKRGTDLPGQIAsp Q8DNZ9 MURT_STRR6MNLKTTLGLLAGRSSHFVLSRLGRGSTLPGKVAtr A0R5Q7 A0R5Q7_MYCS2-MLTVRGRAALAAGAAARWASRVTGRGAGAMIGGLVAtr I6Y4C7 I6Y4C7_MYCTU-WVTTRARLALAAGAGAARWASRVTGRGAGAMIGGLVA                                                                                                      | 32<br>33<br>36<br>36     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| RKVDTDVLRKLAEQVDDIVFISGTNGKTTTSNLIGHTLKANNIQIIHNNEGANMAAGITSAFIMQST<br>LQFDKDILQSLAKNY-EIVVVTGTNGKTLTTALTVGILKEVYGQVLTNPSGANMITGIATTFLTAKS<br>MTLDRSVLRQLGQGR-RTAIVTGTNGKSTTTRMIAAALA-PLGPVASNTEGANMDAGLVSALAANR-<br>MTLDRSILRQLGMGR-RTVVVT <u>GTNGKSTT</u> TRMIAAALG-TLGAVATNAEGANMDAGLVAALAAHR-<br>.* .:*:.*:*****: *: : * : * .* .**** | 99<br>99<br>100<br>100   |
| PKTKIAVIEIDEGSIPRVLKEVTPSMMVFTNFFRDOMDRFGEIDIMVNNIAETISNKG-IKLLLN<br>SKTGKNIAVLEIDEASLSRICDYIQPSLFVITNIFRDOMDRFGEIYTTYNMILDAIRKVPTATVLLN<br>DAGLAALEVDEMHVPHVSDAVSPSVIVLLNLSRDOLDRVGEINHIERTLRAGLARHPDAVIVAN<br>DAELAVLEVDEMHVPHISDAVDPAVVVLLNLSRDOLDRVGEINVIERTLRAGLARHPDAVVVAN<br>:*.:*:** ::: :: :: :: :: :: :: :: :: :: ::            | 163<br>166<br>164<br>164 |
| ADDPFVSRLKIASDTIVYYGMKAHAHEFEQ-STMNESRYCPNCGRLLQYDYIHYNQIGHYHCQ-CGF<br>GDSPLFYKPTI-PNPIEYFGFDLEKGPAQLAHYNTEGILCPDCQGILKYEHNTYANLGAYICEGCGC<br>CDDVLMTSAAYDNPDVVWVAAGGTWANDSVSCPRSGEVIVRDGRDWYSTGTDF<br>CDDVLMTSAAYDSPNVVWVAAGGAWSNDSVSCPRSGEVIVRAPSQEDHWYSTGADF<br>*. :. :: :: :: :: :: :: :: :: :: :: :: ::                              | 228<br>232<br>217<br>221 |
| KREQAKYEISSFDVAPFLYLNINDEKYDMKIAGDFNAYNALAAYTVLRELGLNEQTIKNGFETYT   KRPDLDYRLTKLVELTNNRSRFVIDGQEYGIQIGGLYNIYNALAAVAIARFLGADSQLIKQGFDKSR   KRPSPQWWFDETHIHGPDGLSVPMELALPGTVNRGNATQAVAAAVALGADPVAAVAAVSTVD   KRPAPHWWFDDATLYGPDGLALPMRLALPGSVNRGNAAQAVAAAVALGADPAAVAAAVCQVD   ** :: * ** : ** :                                             | 293<br>299<br>279<br>283 |
| I<br>SDNGRMQYFKKER-KEAMINLAKNPAGMNASLSVGEQLEGEKVYVISLNDNAADGRDTSWIYDADFE<br>AVFORQETFHIGD-KECTLVLIKNPVGATQAIEMIKLAPYPFSLSVLLNANYADGIDTSWIWDADFE<br>EVACRYRTVQVGPRHTARVLLAKNPAGWQEALSMVDRTGAGVVIAVNGQVPDGEDLSWLWDVRFE<br>EVACRYRTVRIGA-HQARILLAKNPAGWQEALAMVDKHADGVVIAVNGRVPDGEDLSWLWDVRFE<br>**: : * ***** :: : . : * ***:**<br>III I     | 359<br>365<br>344<br>347 |
| KLSKQQIEAIIVTGTRAEELQLRKLAEVEVPIIVERDIYKATAKTMDYKGFTVAIPNYTSIAPM<br>QITDMDIPEINAGGVRHSEIARRLRVTGYPAEKITETSNLEQVLKTIENQDCKHAYILATYTAMLEF<br>DFSGVQVVAAGERGTDLAVRLGYADVEHTLVHDTISAIKSCPPGHVEVIANYTAFLQL<br>HFEKTRVVAA <u>GERGTDLAVRLGYA</u> GVEHTLVHDTVAAIASCPPGRVEV <u>VANYTAF</u> LQL<br>.: : . * * :: ** : : : : : : : : : : : :         | 424<br>432<br>402<br>405 |
| LEQLNRSFEGGQS 437<br>RELLASRQIVRKEMN 447<br>NRRLS 407<br>QRALARRG 413                                                                                                                                                                                                                                                                     |                          |

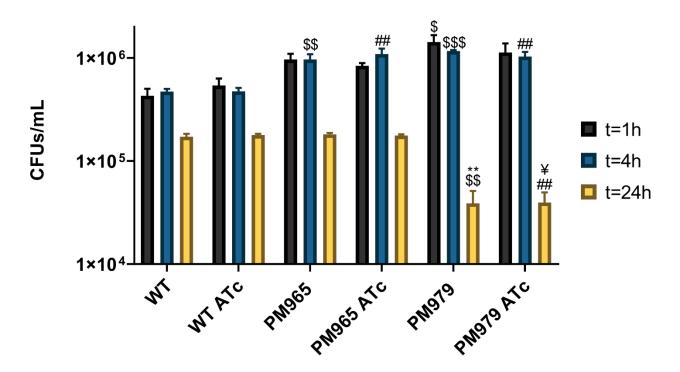
Supplementary Figure 1. Multiple amino acid sequence alignment of MurT from *S. aureus* (MURT\_STAAN), *S. pneumoniae* (MURT\_STRR6), *M. smegmatis* (A0R5Q7\_MYCS2), and *M. tuberculosis* (I6Y4C7\_MYCTU) using CLUSTAL version 1.2.4 (https://www.ebi.ac.uk/Tools/msa/clustalo/). The MurT central domain is displayed in black while the C-terminal domain (DUF1727) is shown in orange. The ATP and Mg<sup>2+</sup> binding regions are presented in blue and green rectangles, respectively. A cysteine-rich region is shown in purple, with *S. aureus* and *S. pneumoniae* conserved cysteines in **bold**. The four conserved regions (I, II, III, and IV) of the MurT DUF1727 domain are indicated in red. The two residues and the DNAAD motif involved in the recognition and channeling of the ammonia produced by GatD, in *S. aureus*, are shown in grey.


CLUSTAL 0(1.2.4) multiple sequence alignment

| sp A0A0H3JN63 GATD_STAAN<br>sp Q8DNZ8 GATD_STRR6<br>tr A0A0D6J2S9 A0A0D6J2S9_MYCSM<br>tr I6XI14 I6XI14_MYCTU                                                                          | MHELTIYHFMSDKLNLYS<br>MVYTSLSSKDGNYPYQLNIAHLYGNLMNTYG<br>MTHPSTVRIGLVLPDVMGTYG<br>MVRIGLVLPDVMGTYG<br>: * . : :. *. | 18<br>31<br>21<br>16     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------|
| DIGNIIALRQRAKKRNIKVNVVEINETEGITFDEC<br>DNGNILMLKYVAEKLGAHVTVDIVSLHDDFDENHY<br>DGGNAVVLRQRLRLRGIDAEIVEITLDDPV-PESL<br>DGGNAVVLRQRLLLRGIAAEIVEITLADPV-PDSL<br>* ** : *: : : . :         | DIAFFGGGQDFEQSIIADDLPAKKESIDNYIQ<br>DLYTLGGAEDYAQRLATKHLIRH-PGLQRAAE<br>DLYTLGGAEDYAQRLATRHLRRY-PGLQRAAG            | 85<br>98<br>86<br>81     |
| DGMPGLTICGGYQFLGKKYITPDGTELEGLGILDF<br>NDGVVLAICGGFQLLGQYYVEASGKRIEGLGVMGH<br>RGAPILAICAAIQVLGHWYETSAGERVEGVGLLDA<br>RGAPVLAIQAAIQVLGHWYETSSGDRVDGVGLLDV<br>. *:** *.**: * * .::*:*:* | YTLNQTNNRFIGDIKIHNEDFDETYYGFEN<br>TTSPQ-EARTIGEVASRPLPDGLDQPLTGFEN                                                  | 148<br>163<br>152<br>147 |
| HGGRTYHDFGTLGHVTFGYGNNDEDKKEGIHYK<br>HQGRTFLSDDQKPLGQVVYGNGNNEEKVGEGVHYK<br>HRGGTLLGSDARPLGAVTKGAGNRAGDGFDGAVQG<br>HRGGTVLGPGTSPLGAVVKGAGNRAGDGFDGAVAG<br>* * *                       | NVFGSYFHGPILSRNANLAYRLVTTALKKKYG<br>SVVATYMHGPCLARNPQLADHLLSRVVGDLP-<br>SVVATYMHGPCLARNPELADLLLSKVVGELA-            | 212<br>230<br>218<br>213 |
| IPFEPKEIDNEAEIQAKQVLIDRANRQKKSR<br>QDIQLPAYEDILSQEIAEEYSDVKSKADFS<br>-PLELPEVERLRSERL-AAPRRV<br>-PLDLPEVDLLRRERL-SAR<br>:: : ::                                                       | 243<br>260<br>239<br>231                                                                                            |                          |


Supplementary Figure 2. Multiple amino acid sequence alignment of GatD from *S. aureus* (MURT\_STAAN), *S. pneumoniae* (MURT\_STRR6), *M. smegmatis* (A0R5Q7\_MYCS2), and *M. tuberculosis* (I6Y4C7\_MYCTU) using CLUSTAL version 1.2.4 (https://www.ebi.ac.uk/Tools/msa/clustalo/). Two conserved regions important for glutamine amidotransferase activity are presented in red. The two conserved residues responsible for the catalytic activity (C94, H189) of GatD are indicated in blue. The Y17 residue that interacts with MurT protein is displayed in a green rectangle. The D32 of *S. pneumoniae* that substitutes the missing glutamate in the catalytic triad of GatD is shown in purple.




Supplementary Figure 3. Results of qRT-PCR assays for the *murT* (blue shade bars) and *gatD* (purple shade bars) knockdown mutants constructed in *M. smegmatis* WT (n=2). The graph shows the mean of the relative mRNA expression of *MSMEG\_6275* and *MSMEG\_6278* normalized to *sigA*, at 6 hours post-induction, with (stripped bars) and without (smooth bars) ATc. The dashed lines show the WT sample as calibrator. Error bars show the standard error of the mean. Multiple comparisons were made using one-way ANOVA. No significant differences were found.



Supplementary Figure 4. Results of qRT-PCR assays for the double mutants, that is, the *murT* (blue shade bars) and *gatD* (purple shade bars) knockdown mutants constructed in the *M*. *smegmatis* PM965 strain (n=2). The graph shows the mean of the relative mRNA expression of  $MSMEG_{6275}$  and  $MSMEG_{6278}$  normalized to *sigA*, at 6 hours post-induction, with (stripped bars) and without (smooth bars) ATc. The dashed lines show the WT sample as calibrator. Error bars show the standard error of the mean. Multiple comparisons were made using one-way ANOVA. No significant differences were found.



Supplementary Figure 5. Results of qRT-PCR assays for the triple mutants, that is, the *murT* (blue shade bars) and *gatD* (purple shade bars) knockdown mutants constructed in the *M*. *smegmatis* PM979 strain (n=2). The graph shows the mean of the relative mRNA expression of  $MSMEG_{6275}$  and  $MSMEG_{6278}$  normalized to *sigA*, at 6 hours post-induction, with (stripped bars) and without (smooth bars) ATc. The dashed lines show the WT sample as calibrator. Error bars show the standard error of the mean. Multiple comparisons were made using one-way ANOVA. No significant differences were found.



Supplementary Figure 6. Logarithmic representation of the mean of the bacterial survival of the parental strains *M. smegmatis* WT, PM965 and PM979, with and without ATc, in CFUs/mL, after infection and disruption of J774.A1 macrophages (n=3). Error bars show the standard error of the mean. Multiple comparisons were made using one-way ANOVA, with significance levels: \* P < 0.05; \*\* P < 0.01; \*\*\* P < 0.001. Significant differences are indicated with symbols: \$ comparing to the WT strain; # comparing to the induced WT strain (WT ATc), \* comparing to the PM965 strain; ¥ comparing to the induced PM965 ATc).



## **1.2 Supplementary Tables**

**Table S1 – sgRNAs used to target** *murT*, *gatD* and *namH* in *M. smegmatis*.<sup>a</sup> - mRNA knockdown caused by the electroporation of the indicated sgRNA in the *M. smegmatis* WT strain was measured by qRT-PCR after ATc induction. Fold knockdown efficiency is relative to an uninduced control plasmid containing the same sgRNA.

| Target<br>gene | Name of<br>the<br>oligos | РАМ               | Base-pairing region of the sgRNA<br>(the 12 bp seed region is underlined) | BLASTed sequence in the genome of <i>M. smegmatis</i> (seed region + PAM) | Fold<br>knockdown<br>efficiency <sup>a</sup> |
|----------------|--------------------------|-------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|
|                | sgRNA1                   | 5 '- GCAGAAC - 3' | 5' - GCTGATCAC <u>GCGACAGATTGA</u> - 3'                                   | 5' - GCGACAGATTGAGCAGAAC - 3'                                             | 57                                           |
| murT           | sgRNA2                   | 5' - CAGGAAC - 3' | 5' - GACAGCCG <u>CCGGTTCAGTTG</u> - 3'                                    | 5' - CCGGTTCAGTTGCAGGAAC - 3'                                             | 1.6                                          |
|                | sgRNA3                   | 5' - GCAGGAC - 3' | 5' - GCGGCCCT <u>GGCCGAGCTGCC</u> - 3'                                    | 5' - GGCCGAGCTGCCGCAGGAC - 3'                                             | 21.1                                         |
|                | sgRNA1                   | 5' - CGAGAAG - 3' | 5' - GAGCGGAC <u>GTGCGTCGGAAC</u> - 3'                                    | 5' - GTGCGTCGGAACCGAGAAG - 3'                                             | 1.7                                          |
| gatD           | sgRNA2                   | 5' - CGAGGAT - 3' | 5' - ACCTGGATGG <u>CCGCGCAGATCG</u> - 3'                                  | 5' - CCGCGCAGATCGCGAGGAT - 3'                                             | 2.4                                          |
| guiD           | sgRNA3                   | 5' - CGAGCAG - 3' | 5' - GCCTCCTGCGGAG <u>AGGTGGTGGCGT</u> - 3'                               | 5' - AGGTGGTGGCGTCGAGCAG - 3'                                             | 3.3                                          |
|                | sgRNA4                   | 5' - AGAGCAG - 3' | 5' - GCAGATCGC <u>CGACCACGCGGG</u> - 3'                                   | 5' - CGACCACGCGGGAGAGCAG - 3'                                             | 2.5                                          |
|                | sgRNA1                   | 5' - CTGGAAC - 3' | 5' - AGAGTGCT <u>TCGCCAGCCTAG</u> - 3'                                    | 5' - TCGCCAGCCTAGCTGGAAC - 3'                                             | 7.5                                          |
| namH           | sgRNA2                   | 5' - GAAGAAG - 3' | 5' - GCTTCACCGA <u>GTCGGTGGTCTC</u> - 3'                                  | 5' - GTCGGTGGTCTCGAAGAAG - 3'                                             | 5.6                                          |
|                | sgRNA3                   | 5' - GGGGAAG - 3' | 5' - GGTTCGCG <u>GACAACCCGTTT</u> - 3'                                    | 5' - GACAACCCGTTTGGGGGAAG - 3'                                            | 5.3                                          |

Table S2 - Primers designed and synthesized to clone the sgRNAs into PLJR962 for CRISPRi-mediated targeting in *M. smegmatis*. <sup>a</sup> – PAM strength was described in accordance with the table of functional PAMs *in vivo* for dCas9<sub>Sth1</sub>-mediated targeting in mycobacteria defined by Rock *et al.*; <sup>b</sup> – Calculated with the Eurofins Genomics Melting temperature (Tm) formula.

| Target<br>gene | Name<br>of the<br>oligos | РАМ                 | PAM<br>strength <sup>a</sup> | Gene<br>Location<br>5'-3'<br>(bp) | Primers                            |                                          | Length<br>(bp) | %<br>GC | Tm <sup>b</sup><br>(°C) |
|----------------|--------------------------|---------------------|------------------------------|-----------------------------------|------------------------------------|------------------------------------------|----------------|---------|-------------------------|
|                | sgRNA1                   | 5 '- GCAGAAC - 3'   | 5                            | 406                               | PFwd                               |                                          |                | 56      | 66                      |
|                | sgrinai                  | 5 - UCAUAAC - 5     | 5                            | 400                               | PRv                                |                                          |                | 48      | 63                      |
| murT           | sgRNA2                   | 5' - CAGGAAC - 3'   | 14                           | 1220                              | PFwd                               | 5' - GGGAGACAGCCGCCGGTTCAGTTG - 3'       | 24             | 67      | 70                      |
| mui 1          | sginiaz                  | 5 - CAUGAAC - 5     | 14                           | 1220                              | PRv                                | 5' - AAACCAACTGAACCGGCGGCTGTC - 3'       | 24             | 58      | 66                      |
|                |                          | 5' - GCAGGAC - 3'   | 15                           | 153                               | PFwd                               | 5' - GGGAGCGGCCCTGGCCGAGCTGCC - 3'       | 24             | 83      | 76                      |
|                | sgRNA3                   | 5 - OCAOUAC - 5     | 15                           | 155                               | PRv                                | 5' - AAACGGCAGCTCGGCCAGGGCCGC - 3'       | 24             | 75      | 73                      |
|                | sgRNA1 5' - CGAGAAG - 3' |                     | 1                            | 498                               | PFwd                               | 5' - GGGAGAGCGGACGTGCGTCGGAAC - 3'       | 24             | 71      | 71                      |
|                | sgRNA1                   | J - CUAUAAO - J     | I                            | 490                               | PRv                                | 5' - AAACGTTCCGACGCACGTCCGCTC - 3'       | 27             | 63      | 68                      |
|                | sgRNA2 5'                | 2 5' - CGAGGAT - 3' | 9                            | 299                               | PFwd                               | 5' - GGGAACCTGGATGGCCGCGCAGATCG - 3'     | 26             | 69      | 73                      |
| gatD           | sginaz                   | 5 - CUAUUAT - 5     | )                            | 2))                               | PRv                                | 5' - AAACCGATCTGCGCGGCCATCCAGGT - 3'     | 20             | 62      | 70                      |
| guiD           | sgRNA3 5' - CGAGCAG - 3' |                     | 13                           | 383                               | PFwd                               | 5' - GGGAGCCTCCTGCGGAGAGGTGGTGGCGT - 3'  | 29             | 72      | 77                      |
|                | sgiuns                   | J - CUAUCAU - J     | 15                           | 383                               | PRv                                | PRv 5' - AAACACGCCACCACCTCTCCGCAGGAGGC - |                | 66      | 74                      |
|                | sgRNA4                   | 5' - AGAGCAG - 3'   | 13                           | 652                               | PFwd                               | 5' - GGGAGCAGATCGCCGACCACGCGGG - 3'      | 25             | 76      | 75                      |
|                | Sgittinne                | J - AGAGEAG - J     | 15                           | 032                               | PRv                                | 5' - AAACCCCGCGTGGTCGGCGATCTGC - 3'      | 25             | 68      | 71                      |
|                | sgRNA1                   | 5' - CTGGAAC - 3'   | 11                           | -44                               | PFwd                               | 5' - GGGAAGAGTGCTTCGCCAGCCTAG - 3'       | 24             | 63      | 68                      |
|                | sgittal                  | 5 - CTOOAAC - 5     | 11                           | -44                               | PRv                                | 5' - AAACCTAGGCTGGCGAAGCACTCT - 3'       | 24             | 54      | 64                      |
| namH           | sgRNA?                   | 5' - GAAGAAG - 3'   | 1                            | 318                               | PFwd                               | 5' - GGGAGCTTCACCGAGTCGGTGGTCTC - 3'     | 26             | 65      | 71                      |
| num11          | SERINAL                  | J - UAAUAAU - J     | 1                            | 510                               | PRv                                | 5' - AAACGAGACCACCGACTCGGTGAAGC - 3'     | 20             | 58      | 68                      |
|                | sgRNA3                   | 5' - GGGGAAG - 3'   | 4                            | 1142                              | PFwd                               | 5' - GGGAGGTTCGCGGACAACCCGTTT - 3'       | 24             | 63      | 68                      |
| sgKINA3        | 5 - 0000AA0 - 5          | +                   | 1142                         | PRv                               | 5' - AAACAAACGGGTTGTCCGCGAACC - 3' | 24                                       | 54             | 64      |                         |

Table S3 - Primers used to quantify the mRNA expression levels of target genes by qRT-PCR in *M. smegmatis.* <sup>a</sup> - qRT-PCR primers were designed to avoid primer secondary structures and sequence repeats, have at least 50% of GC content and have a Tm between 57-63  $^{\circ}$ C; <sup>b</sup> - Calculated with the Eurofins Genomics Tm formula; <sup>c</sup> – AE designates the amplification efficiency calculated for each pair of primers in a single-run qPCR amplification of the calibrator sample (*M. smegmatis* WT), performed in triplicates.

| qRT-PCR primers <sup>a</sup> |      |                                |                |         |                          |                         |                        |  |  |
|------------------------------|------|--------------------------------|----------------|---------|--------------------------|-------------------------|------------------------|--|--|
| Target gene                  |      | Primer sequences               | Length<br>(bp) | %<br>GC | Tm <sup>b</sup><br>(° C) | Product<br>size<br>(bp) | AE <sup>c</sup><br>(%) |  |  |
| sigA                         | PFwd | 5' - ACACCGACCTGGAACTCG - 3'   | 18             | 61      | 58                       | 152                     | 80                     |  |  |
| (MSMEG_2758)                 | PRv  | 5' - GACGCCTTGTCCTTCTCG - 3'   | 18             | 61      | 58                       | 132                     | 80                     |  |  |
| murT                         | PFwd | 5' - AATCGACCACCACCAGGAT - 3'  | 19             | 53      | 57                       | 213                     | 105                    |  |  |
| ( <i>MSMEG_6276</i> )        | PRv  | 5' - CGACAGATTGAGCAGAACGA - 3' | 20             | 50      | 57                       | 213                     | 105                    |  |  |
| gatD                         | PFwd | 5' - GCGACGGTTTCGACGGTG - 3'   | 18             | 67      | 61                       | 167                     | 95                     |  |  |
| ( <i>MSMEG_6277</i> )        | PRv  | 5' - AGGCGCTCAGAACGCAAAC - 3'  | 19             | 58      | 59                       | 107                     | 93                     |  |  |
| MSMEC (275                   | PFwd | 5' - GAAGCTGTAGTCGAACCCCG - 3' | 20             | 60      | 61                       | 160                     | 04                     |  |  |
| MSMEG_6275                   | PRv  | 5' - CTCAACCCTGGTGTCGATCC - 3' | 20             | 60      | 61                       | 160                     | 84                     |  |  |
| MCMEC (270                   | PFwd | 5' - TTGAACACCCCGACGATCAC - 3' | 20             | 55      | 59                       | 154                     | 90                     |  |  |
| MSMEG_6278                   | PRv  | 5' - CGATGTCCTCGACTTCGCA - 3'  | 19             | 58      | 59                       | 154                     | 80                     |  |  |
| namH                         | PFwd | 5' - CGTTCTTCAAGTGCCTCACC - 3' | 20             | 55      | 59                       | 1.6.                    | 07                     |  |  |
| ( <i>MSMEG_6410</i> )        | PRv  | 5' - GTTGCCTTCCACCACACC - 3'   | 18             | 61      | 58                       | 165                     | 87                     |  |  |
| MOMEC (199                   | PFwd | 5' - CCGCAGCTTCGAGATCAAGG - 3' | 20             | 60      | 61                       | 127                     | 02                     |  |  |
| MSMEG_6409                   | PRv  | 5' - CCGGTACAGGTTCTTCGGAC - 3' | 20             | 60      | 61                       | 137                     | 83                     |  |  |
| MSMEC (411                   | PFwd | 5' - GTGCCAGAAGCTGTGACCG - 3'  | 19             | 63      | 61                       | 120                     | 05                     |  |  |
| MSMEG_6411                   | PRv  | 5' - GGGATCACCTTCGATGTGCC - 3' | 20             | 60      | 61                       | 120                     | 85                     |  |  |

Table S4 – The EUCAST non-species related PK/PD breakpoints for amoxicillin (AMX), amoxicillin-clavulanate (AMX+CLA), cefotaxime (CTX) and meropenem (MEM). These breakpoints, used when there are no species-specific breakpoints, are based on version 12 of the EUCAST guidelines on susceptibility testing (<u>https://www.eucast.org/clinical\_breakpoints/</u>). For the AMX+CLA breakpoint, the concentration of clavulanate used was fixed at 2 µg/mL.

| EUCAST breakpoi | EUCAST breakpoints (µg/mL) |     |  |  |  |  |  |  |
|-----------------|----------------------------|-----|--|--|--|--|--|--|
|                 | S≤                         | R > |  |  |  |  |  |  |
| AMX             | 2                          | 8   |  |  |  |  |  |  |
| AMX+CLA         | 2                          | 8   |  |  |  |  |  |  |
| СТХ             | 1                          | 2   |  |  |  |  |  |  |
| MEM             | 2                          | 8   |  |  |  |  |  |  |

Table S5 - Single nucleotide polymorphisms (SNPs) found in the target genes *murT*, *gatD* or *namH* through the whole genome sequencing of 172 clinical strains of *Mtb*, with the description ID of the strains in which mutations were found. Locus tags, gene names, products and positions refer to the H37Rv reference genome (AL123456.3).

| Locus<br>Tag  | Gene<br>Name | Genomic<br>Position | Mutation | Type of<br>Variant | Effect in<br>Product | Frequency | Strains                                                                                                                  |
|---------------|--------------|---------------------|----------|--------------------|----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------|
| Rv3712        | murT         | 4158032             | A>C      | Missense           | Lys351Thr            | 1/172     | PT_TB0303                                                                                                                |
|               |              | 4158361             | A>G      | Synonymous         | Pro45Pro             | 1/172     | PT_TB0303                                                                                                                |
| Rv3713        | gatD         | 4158493             | C>T      | Synonymous         | Ile89Ile             | 10/172    | PT_TB0067; PT_TB0057;<br>PT_TB0029; PT_TB0069;<br>PT_TB0328; PT_TB0319;<br>PT_TB0276; PT_TB0265;<br>PT_TB0288; PT_TB0214 |
|               |              | 4158865             | G>A      | Synonymous         | Ala213Ala            | 4/172     | PT_TB0311; PT_TB0314;<br>PT_TB0305; PT_TB0242                                                                            |
|               |              | 4282589             | T>C      | Synonymous         | Ala47Ala             | 1/172     | PT_TB0245                                                                                                                |
| <b>D2</b> 010 |              | 4282707             | C>G      | Missense           | Pro87Ala             | 1/172     | PT_TB0070                                                                                                                |
| Rv3818        | namH         | 4283319             | G>A      | Missense           | Ala291Thr            | 2/172     | PT_TB0313; PT_TB0250                                                                                                     |
|               |              | 4283424             | G>C      | Missense           | Ala326Pro            | 1/172     | PT_TB0350                                                                                                                |

Table S6 - Information of the strain ID, Sequence Read Archive (SRA)/European Nucleotide Archive (ENA) accession numbers, drug-resistance profile and *in silico* TB-profiler predictions of lineages, spoligotypes and regions of difference (RD) of the clinical isolates of *Mtb* for which mutations in the target genes *murT*, *gatD* or *namH* were found through whole genome sequencing.

| Starin ID | SRA/ENA     |                | Drug-resistance | e TB profiler prediction |                      |                                   |  |
|-----------|-------------|----------------|-----------------|--------------------------|----------------------|-----------------------------------|--|
| Strain ID | Accession # | Classification | Profile         | Lineage                  | Spoligotype          | <b>Regions of difference (RD)</b> |  |
| PT_TB0303 | ERR7764425  | Susceptible    | Susceptible     | lineage6                 | AFRI 1               | RD702                             |  |
| PT_TB0067 | ERR2864255  | Resistant      | MDR             | lineage2.2.1             | Beijing-RD181        | RD105; RD207; RD181               |  |
| PT_TB0057 | ERR2864286  | Resistant      | MDR             | lineage2.2.1             | Beijing-RD181        | RD105; RD207; RD181               |  |
| PT_TB0029 | ERR2864231  | Resistant      | MDR             | lineage2.2.1             | Beijing-RD181        | RD105; RD207; RD181               |  |
| PT_TB0069 | ERR2864228  | Resistant      | MDR             | lineage2.2.1             | Beijing-RD181        | RD105; RD207; RD181               |  |
| PT_TB0328 | ERR7764343  | Susceptible    | Susceptible     | lineage2.2.1             | Beijing-RD181        | RD105; RD207; RD181               |  |
| PT_TB0319 | ERR7764417  | Susceptible    | Susceptible     | lineage2.2.1.1           | Beijing-RD150        | RD105; RD207; RD181; RD150        |  |
| PT_TB0276 | ERR7764390  | Susceptible    | Susceptible     | lineage2.2.1             | Beijing-RD181        | RD105; RD207; RD181               |  |
| PT_TB0265 | ERR7764438  | Susceptible    | Susceptible     | lineage2.2.1             | Beijing-RD181        | RD105; RD207; RD181               |  |
| PT_TB0288 | ERR7764362  | Susceptible    | Susceptible     | lineage2.2.1             | Beijing-RD181        | RD105; RD207; RD181               |  |
| PT_TB0214 | ERR4781456  | Resistant      | Pre-XDR         | lineage2.2.1.1           | Beijing-RD150        | RD105; RD207; RD181; RD150        |  |
| PT_TB0311 | ERR7764372  | Susceptible    | Susceptible     | lineage4.8               | T1; T2; T3; T5       | RD219                             |  |
| PT_TB0314 | ERR7764364  | Susceptible    | Susceptible     | lineage4.8               | T1; T2; T3; T5       | RD219                             |  |
| PT_TB0305 | ERR7764375  | Resistant      | Mono-DR         | lineage4.8               | T1; T2; T3; T5       | RD219                             |  |
| PT_TB0242 | ERR7764378  | Susceptible    | Susceptible     | lineage4.8               | T1; T2; T3; T5       | RD219                             |  |
| PT_TB0245 | ERR7764426  | Susceptible    | Susceptible     | lineage4.1.2.1           | T1; H1               | RD182                             |  |
| PT_TB0070 | ERR2864232  | Resistant      | MDR             | lineage3                 | CAS                  | RD750                             |  |
| PT_TB0313 | ERR7764325  | Susceptible    | Susceptible     | lineage4.8               | T1; T2; T3; T5       | RD219                             |  |
| PT_TB0250 | ERR7764333  | Susceptible    | Susceptible     | lineage4.8               | T1; T2; T3; T5       | RD219                             |  |
| PT_TB0350 | ERR7764370  | Resistant      | MDR             | lineage4.3.4.2           | LAM1; LAM4;<br>LAM11 | RD174                             |  |