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Supplementary Figures

A

Supplementary Figure 1: Predictive performances of the models. A: Precision recall curves
(PRCs) for training/validation and the test set for the pre-trained model for rDHS classification.
AUPRCs are provided in parentheses. B: PRCs for the six ChromTransfer fine-tuned models for
classification of cell-type specific chromatin accessibility. AUPRCs for each cell line are
provided in parentheses. C: PRCs for the six binary class baseline models (direct training
scheme) for classification of cell-type specific chromatin accessibility. AUPRCs for each cell
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Supplementary Figure 2: Sample counts per predicted probability bin. A-F: The number of
samples in each predicted probability bin (vertical axes) and the distributions of bins
(horizontal axes, 10 bins) for cell lines A549 (A), GM12878 (B), HCT116 (C), HepG2 (D), K562
(E), and MCF7 (F). For each cell line: top panel displays the sample count for the fine-tuned
model (ChromTransfer) while bottom panel displays the sample count for the binary class
baseline model (direct training scheme). Note each model and cell line has different ranges
of predicted probabilities and therefore different value ranges for each bin.
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Supplementary Figure 3: Validation of feature importance scores using in-silico
mutagenesis. A-C: Comparison of gradient x input scores (horizontal axis) and ISM delta
scores (vertical axis) associated with predicted TF binding sites of HNF4A (A), CEBPA (B), and
FOS-JUNB heterodimer (C). For computational reasons, only true positive predictions were
considered. Pearson’s correlation coefficients are given in the top right corner of each panel.
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Supplementary Figure 4: Ranking of feature importance scores reveals TFs important for
cell-type specific chromatin accessibility. A-B: Kolmogorov-Smirnov (K-S) test statistics (D
statistics, vertical axes) for feature importance scores (gradient x input) associated with
predicted binding site sequences of each considered TF in the HepG2 (A) and K562 (B) fine-
tuned models versus their ranks (horizontal axes). Top 10 and bottom 10 ranked TFs are

highlighted for each model.
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Supplementary Figure 5: Feature importance analysis reveals how fine-tuning has captured
relevant sequence elements for prediction. A-B: Kolmogorov-Smirnov (K-S) test statistics (D
statistics) for feature importance scores (gradient x input) associated with predicted binding
site sequences of each considered TF in the HepG2 fine-tuned and pre-trained models (A) and
K562 fine-tuned and pre-trained models (B). TFs are colored according to a K-S D statistic
calculated from the difference between TF binding site feature importance scores of the fine-
tuned and pre-trained models for each cell line. Only TFs with Benjamini-Hochberg adjusted
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Supplementary Tables

Cell line Model AUROC F1 overall F1 neg F1 pos
A549 Pre-trained 0.74 0.32 0.31 0.33
A549 Baseline (binary) [0.72 0.8 0.91 0.26
A549 Fine-tuned 0.86 0.86 0.93 0.55
HCT116 Pre-trained 0.69 0.29 0.26 0.39
HCT116 Baseline (binary) |[0.52 0.68 0.87 0.0
HCT116 Fine-tuned 0.79 0.8 0.9 0.44
HepG2 Pre-trained 0.71 0.49 0.31 0.68
HepG2 Baseline (binary) |[0.77 0.6 0.73 0.47
HepG2 Fine-tuned 0.89 0.79 0.82 0.75
GM12878 Pre-trained 0.66 0.34 0.29 0.46
GM12878 Baseline (binary) [0.74 0.72 0.82 0.46
GM12878 Fine-tuned 0.85 0.8 0.87 0.61
K562 Pre-trained 0.66 0.24 0.22 0.33
K562 Baseline (binary) [0.82 0.81 0.91 0.39
K562 Fine-tuned 0.87 0.86 0.91 0.62
MCF7 Pre-trained 0.72 0.42 0.27 0.63
MCF7 Baseline (binary) [0.71 0.46 0.72 0.11
MCF7 Fine-tuned 0.85 0.73 0.81 0.62

Supplementary Table 1: Predictive performances of the models. AUROCs, overall and per-
class (positive (pos): open chromatin, negative (neg): closed chromatin) F1 scores on the test
set for the pre-trained model (prediction of rDHSs) as well as the fine-tuned and binary class
baseline models (prediction of cell-type specific chromatin accessibility) of the six considered

cell lines.




A549 HCT116 HepG2 GM12878 K562 MCF7
A549 0.55 0.24 0.53 0.39 0.49 0.42
HCT116 0.44 0.44 0.40 0.36 0.39 0.38
HepG2 0.60 0.13 0.75 0.53 0.63 0.48
GM12878 0.43 0.16 0.50 0.61 0.45 0.36
K562 0.51 0.16 0.51 0.40 0.62 0.34
MCF7 0.53 0.23 0.61 0.51 0.51 0.62

Supplementary Table 2: Fine-tuning adapts model to cell-type specific predictions. Positive
class F1 scores for each fine-tuned model (rows) using each of the test set data for the six cell

lines (columns).

Cell line AUROC AUPRC
A549 0.61 0.24
GM12878  |0.75 0.56
HCT116 0.62 0.38
HEPG2 0.77 0.76
K562 0.74 0.44
MCF7 0.68 0.64

Supplementary Table 3: Performance of the multi-class classification baseline model.
Training and evaluation was performed on the concatenation of fine tuning datasets. Due to
different class-balances of the multi-class model, AUPRC values are expected to be lower
when compared to the binary classification models.



