Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in *Vibrio cholerae*

Cristian M. Pis Diez^{1,2}, Giuliano T. Antelo^{1,2}, Triana N. Dalia³, Ankur B. Dalia³, David P. Giedroc^{2*} and Daiana A. Capdevila^{1*}

¹ Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina

² Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA

³ Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA

This file contains Supporting Tables S1-S2, Supporting Figures S1-S10.

Table 51.)	. choter de strains and primers doed to		uns study.	
Strain	Des	Description		
TND0004	WT Alw ZwD - www.CCED.C.R			
TND2455	$\Delta lac L:: P_{hlyA}-msfGFP Cm^{*}$			
TND2459	$\Delta hly U::Kan^{*}, \Delta lac Z:: P_{hlyA}-msfGFP Cm^{*}$			
TND2456	$\Delta nap K:: Spec", \Delta lac L:: P_{hlyA}-msfGFP Cm"$			
TND2533	$\Delta niy \cup :: Kan^{-}, \Delta nap K :: Spec^{-}, \Delta lac L :: P_{hlyA}-msfGFP Cm^{-}$			
TND2534	$\Delta Jur:: Im$, $\Delta napK: Spec$, $\Delta lacZ:: P_{hlyA}-mSJGFP Cm^{-1}$			
TND2531	$\Delta yur m$, $\Delta nup K spec$, $\Delta nup U Kun$, $\Delta lac L P_{hlyA}-msJGFP Cm^{*}$			
TND2532	$\Delta fur: Tm^{R}, \Delta hly U: Kan^{R}, \Delta lacZ:: P_{hlyA}-msfGFP Cm^{R}$			
TND3182	$\Delta hapR:Spec^{R}, \Delta fur::Tm^{R}, \Delta lacZ::P_{hlyA}-msfGFP Cm^{R}$			
TND3183	$\Delta hapR:Spec^{R}, \Delta fur::Tm^{R}, \Delta hns::Carb^{R}, \Delta lacZ::P_{hlyA}-msfGFP Cm^{R}$			
TND3185	$\Delta hapR:Spec^{R}, \Delta fur::Tm^{R}, \Delta hlyU::Kan^{R}, \Delta lacZ::P_{hlyA}-msfGFP Cm^{R}$			
TND3186	Δ hapR:Spec ^R , Δ fur::Tm ^R , Δ hlyU::Kan ^R , Δ hns::Carb ^R , Δ lacZ::P _{hlyA} -msfGFP Cm ^R			
Primers PCR	Sequence			
<i>recA</i> – rev	GCGCAGCAATCTTGTTCTTC			
<i>recA</i> – fwd	CGTTTGGATATTCGCCGTACT			
hlyA – rev	CTC TGT GGC TGA GGC TTT AT			
<i>hlyA</i> – fwd	CGA TGC TTT GTG GGT GAA TAC			
GFP – rev	GCTCTTGCACGTATCCTTCT			
<i>GFP</i> – fwd	TTGTGACGA	TTGTGACGACTCTGACTTATGG		
hlyU-rev	CCA CGC TAG ATG TTG AGA AAG A			
<i>hlyU</i> – fwd	GGA CAA TGA ACT GTC GGT AGG			
Table S2: Characterized ArsRs in the SSN.				
Protein Name*	Organism	Uniprot ID	Cluster number in Network	
ecArsR (116)	Escherichia coli	P37309	1A	
ArsR2 (117)	Escherichia coli	A0A142BMN6	1A	
ArsR(118)	Staphylococcus aureus	P30338	1A	
ArsR1&2 (119)	Geobacillus kaustophilus	Q5KUX7	1A	
ArsR (120)	Pseudomonas putida	Q88LK1	1A	
AseR(67)	Bacilus subtilis	P96677	1A	
ArsR (77)	Corynebacterium glutamicum	A0A5H1ZR36	1A	
Rv2642(105)	Mycobacterium tuberculosis	P71941	1A	
AztR(121)	Cyanobacterium anabaena	Q8ZS91	1B	
BxmR(122)	Oscillatoria brevis	Q76L30	1B	
NmtR(104)	Mycobacterium tuberculosis	O69711	1B	
ZiaR(123)	Synechocystis sp.	Q55940	1B	
CadC(124)	Staphylococcus aureus	P20047	1B	
SmtB(125)	Synechococcus elongatus	P30340	1B	
CzrA(126)	Staphyloccocus aureus	085142	1B	
CzrA(67)	Bacilus subtilis	O31844	1B	
CadC(127)	Listeria innocua serovar 6	P0A4U2	1B	

Table S1: *V. cholerae* strains and primers used for qRT PCR used for this study.

SmtB(102)	Thermus thermophilus	Q72KG0	1B
CadC (127)	Lysteria monocytogenes	Q56405	1B
Rv2034(72)	Mycobacterium tuberculosis	O53478	2
SdpR (128)	Bacilus subtilis	O32242	2
Rv0081(78)	Mycobacterium tuberculosis	P9WMI7	3
AntR(129)	Comamonas testosteroni	A0A096FLR2	3
BigR(48)	Acinetobacter baumanni	D0C7U0	4
YgaV(130)	Escherichia coli	P77295	4
NolR(71)	Rhizobium fredii	Q83TD2	4
SqrR(50)	Rhodobacter capsulatus	D5AT91	4
HlyU(11)**	Vibrio cholerae serotype Ol	P52695	4
HlyU(20)	Vibrio parahaemolyticus	Q87S95	4
HlyU(19)	Vibrio vulnificus	A0A3Q0L222	4
BigR(40)	Xylella fastidiosa	Q9PFB1	4
BigR(131)	Agrobacterium tumefaciens	Q8UAA8	4
PigS (99)	Serratia sp. strain ATCC 39006	E7BBJ0	4
SoxR(132)	Pseudaminobacter salicylatoxidans	Q5ZQN5	4
ArsR(77)	Acidithiobacillus ferrooxidans	B7J952	5
ArsR(133)	Agrobacterium tumefaciens ArsR 1	НОНННО	5
CyeR(134)	Corynebacterium glutamicum	A4QI86	6
YczG(135)	Bacilus subtilis	O31480	6
RexT(61)	Nostoc sp.	Q8YVV6	6
MerR(136)	Streptomyces lividans	P30346	8
PyeR(137)	Pseudomonas aeruginosa	Q9HW47	9
KmtR(103)	Mycobacterium tuberculosis	O53838	10
PagR(138)	Bacillus anthracis	O31178	14
SmtB(139)	Mycobacterium tuberculosis	P9WMI4	16
SrnR(73)	Streptomyces griseus	Q8L1Y3	21
CmtR(75)	Streptomyces coelicolor	Q9RD34	22
CmtR(140)	Mycobacterium tuberculosis	P9WMI8	22

* The protein name is followed by the most updated publication with the available biochemistry information. ** This work.

Figure S1. (A) ArsR superfamily proteins architecture (a1-a2-a3-a4-b1-b2-a5) and DNA recognition exemplified by the structure of DNA-bound NoIR. The contacts between the protein sequence in a4 (*red*) and bases from DNA (*green*) in the first half-site are marked with *black* dashes. **(B)** All the main clusters generated in the sequence similarity network obtained using Pfam PF01022 and Interpro IPR001845 datasets of annotated ArsRs proteins.

Figure S2. Genomic neighborhood and location of ArsR genes from cluster 1 (A and B), cluster 4 (C) and cluster 5 (D).

Figure S3. LC-ESI-MS analysis of HlyU *in vitro* reactivity upon a one-hour incubation with a 20fold excess of **(A)** GSSG, Na₂S and Na₂S₄ and **(B)** organic persulfides GSSH, cysteine and homocysteine persulfides (CSSH and hCSSH, respectively) and then capped with IAM. *Grey* dashed lines correspond to the reduced and uncapped HlyU monomer, while the two *red* dashed lines correspond to the tetrasulfide and pentasulfide species.

Figure S4. (A) ¹H, ¹⁵N HSQC spectrum of reduced *Vibrio cholerae* HlyU. **(B)** Overlay of ¹H, ¹⁵N HSQC spectrum of reduced *Vibrio cholerae* HlyU (*green*) and pre-treated with 20x GSSH (*red*). **(C)** Overlay of ¹H, ¹⁵N HSQC spectrum of reduced *Vibrio cholerae* HlyU (*green*) and pre-treated with 20x H₂O₂ (*blue*). All spectra were measured at 30 °C using a 20mM MES pH 6, 250mM NaCl, 1mM EDTA buffer, with the addition of 2mM TCEP in the case of the reduced state.

Figure S5. (A) Far-UV CD spectra of reduced HlyU. (B) Temperature-induced conformational transitions observed as changes in ellipticity at 232 nm in the 25–90 °C temperature range for reduced (*black*), tetrasulfide (*red*) and diamide treated (disulfide, *green*) crosslinked HlyU. The line indicates a sigmoidal fitting used to obtain the melting temperature. All spectra were measured using in 25 mM HEPES, pH 7.0, 200 mM NaCl, 1 mM EDTA, with the addition of 1 mM TCEP in the case of the reduced state.

Figure S6. Assessing HlyU activity *in vivo* using a P_{hlyA} -GFP transcriptional reporter. Fluorescence of the indicated *V. cholerae* strains was measured to assess the impact of **(A)** HapR / Fur, and **(B)** HNS on HlyU-dependent activation of P_{hlyA} . Data are from four independent biological replicates and shown as the mean \pm SD. Statistical significance was established using a unpaired parametric *t*-test (**p<0.01, *p<0.05).

Figure S7. Fold changes transcripts levels of *Vc hlyU* and *gfP* followed by quantitative RT-PCR performed over a Δ CTX Δ fur Δ hapR *V. cholerae* strain with the addition of Na₂S or H₂O₂. Transcript values were normalized relative to the transcription level of *recA*. The values correspond to transcript levels relative to wild-type unstressed (WT UN) and are shown as mean ± SD from replicate cultures. Statistical significance was stablished using a paired t test relative to WT UN under the same conditions (**p<0.01, *p<0.05).

Figure S8. (A) Endogenous concentrations of LMW thiols before and after the addition of Na₂S and H₂O₂ to mid-log-phase cultures (*, P< 0.05 using a paired t test relative to WT UN under the same conditions) determined using HPEIAM as capping agent. (B) *V. cholerae* genes encoding proteins associated with the biosynthesis of LMW thiols. OPS, O-phospho-L-serine; OAS, O-acetyl-L-serine; ac, acetate; pyr, pyruvate; CBL, cystathonine- γ -lyase. Adapted from reference(48).

Figure S9. (A) Endogenous concentrations of LMW thiols before and after the addition of 0.2 mM Na₂S to mid-log-phase cultures (*, p < 0.05) determined using mBBr as capping agent. (B) Endogenous concentrations of LMW persulfides before and after the addition of Na₂S to mid-log-phase cultures (*, p < 0.05 using a paired t test relative to WT UN under the same conditions) determined using mBBr as capping agent.

Figure S10. (**A**) Extracted ion chromatograms corresponding to cysteine thiol and cysteine persulfide (top panel) in unstressed cells and following 15 min of applied stress (Na₂S, middle panel and H₂O₂, bottom panel). (**B**) Extracted ion chromatograms corresponding to glutathione thiol and glutathione persulfide. (**C**) Extracted ion chromatograms corresponding to inorganic sulfide and disulfide. The peaks show in each case the relative intensity of the HPE-IAM labelled metabolites, relative to the intensity of the internal standard. On the right, we show the molecular structure, molecular weight and retention time of the metabolites analyzed in the panels, together with the internal standard used in each case.