# **Supporting Information**

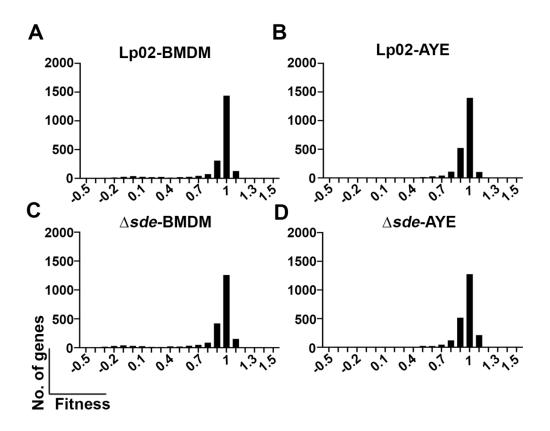



Fig. S1 (Linked to Fig.1). Histogram plots of fitness for all *L. pneumophila* genes represented on Tn-seq.

Histogram of WT (SK01) Tn-seq pool following either infection in BMDM (A) or growth in nutrient-rich AYE medium (B). Histogram of  $\Delta sde$  (SK02) Tn-seq pool following infection in BMDM (C) or growth in nutrient-rich AYE medium (D).

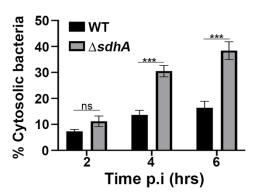



Fig. S2 (Linked to Fig.3). The integrity of LCVs harboring  $\Delta sdhA$  strains after challenge with L. pneumophila.

Percent cytosolic bacteria was quantified based on antibody accessibility. BMDMs were infected with either WT or  $\Delta s dh A$  strains for 2, 4, and 6 hr, fixed, and stained with antibodies. The internalized bacteria in the absence of permeabilization were calculated relative to the total infected population (mean  $\pm$  SEM; three biological replicates were performed and 100 LCVs were counted per biological replicate). Statistical analysis was conducted using unpaired two-tailed Student's t test (ns, not significant; \*\*\*p < 0.001).

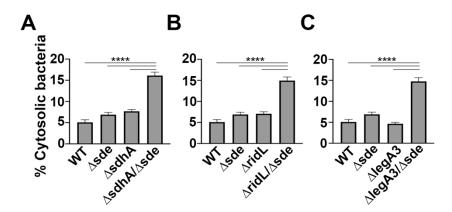



Fig. S3 (Linked to Fig. 3). The loss of sdhA, ridL and legA3 aggravated vacuole disruption in  $\Delta sde$  strain.

Vacuole integrity was measured based on antibody accessibility. BMDMs in a 96 well plate were infected with the indicated strains for 2 hr, fixed and stained with antibodies. The images were taken by Lionheart automatic microscope using 10X magnification objective. The internalized bacteria in the absence of permeabilization were calculated relative to total infected population to determine fraction of disrupted vacuoles (mean  $\pm$  SEM; three biological replicates were performed and 1000-3000 LCVs were counted per biological replicate). Statistical significance was tested using one-way ANOVA with Tukey's multiple comparisons; \*\*\*p <0.001.

Table S1. Strains, Plasmids and Oligonucleotides used in this study

| Strains               |                                                                                                                          |                                                              |           |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|
| Name                  | Genotype                                                                                                                 | Description                                                  | Reference |
| L.pneumophila         |                                                                                                                          |                                                              |           |
| Lp02                  | Philadelphia 1 thyA rpsL hsdR                                                                                            | Wild type strain                                             | (1)       |
| SK01                  | Lp02 thyA <sup>+</sup>                                                                                                   | Wild type strain <i>thyA</i> <sup>+</sup>                    | This work |
| Lp03                  | thyA <sup>+</sup> rpsL hsdR dotA03                                                                                       | Icm/Dot translocation deficient                              | (1)       |
| JV6113                | Lp02 $\triangle sidE \triangle sdeC \triangle sdeBA$<br>( $\triangle lpg0234 \triangle lpg2153 \triangle lpg2156-2157$ ) | sidE family deletion mutant                                  | (2)       |
| SK02                  | $JV6113 thyA^+$                                                                                                          | JV6113 strain <i>thyA</i> <sup>+</sup>                       | This work |
| SK03                  | $Lp02 thyA^{+}\Delta sdhA$                                                                                               | sdhA deletion mutant                                         | This work |
| SK04                  | JV6113 $thyA^+\Delta sdhA$                                                                                               | sdhAsidE family deletion mutant                              | This work |
| SK05                  | Lp02 $thyA^+ \Delta ridL$                                                                                                | ridL deletion mutant                                         | This work |
| SK06                  | JV6113 $thyA^+ \Delta ridL$                                                                                              | ridLsidE family deletion mutant                              | This work |
| SK07                  | Lp02 $thyA^+ \Delta legA3$                                                                                               | legA3 deletion mutant                                        | This work |
| SK08                  | JV6113 $thyA^+ \Delta legA3$                                                                                             | <i>legA3sidE</i> family deletion mutant                      | This work |
| SK09                  | Lp02 $thyA^+$ $\Delta sdhA$ $\Delta ridL$                                                                                | sdhAridL deletion mutant                                     | This work |
| SK10                  | Lp02 $thyA^+$ $\Delta sdhA$ $\Delta legA3$                                                                               | sdhA legA3 deletion mutant                                   | This work |
| SK11                  | Lp02 $thyA^+ \Delta ridL \Delta legA3$                                                                                   | <i>ridL legA3</i> deletion mutant                            | This work |
| SK12                  | $Lp02 thyA^+ kan^R P_{ahpc}::lux$                                                                                        | wild type strain Lux <sup>+</sup>                            | This work |
| SK13                  | JV6113 thy $A^+$ kan <sup>R</sup> $P_{ahpc}$ ::lux                                                                       | sidE family deletion mutant Lux <sup>+</sup>                 | This work |
| SK14                  | SK02 $kan^R P_{ahpc}$ :: $lux$                                                                                           | sdhA deletion mutant Lux <sup>+</sup>                        | This work |
| SK15                  | SK03 $kan^R P_{ahpc}::lux$                                                                                               | sdhAsidE family deletion mutant Lux <sup>+</sup>             | This work |
| SK16                  | SK04 $kan^R P_{ahpc}$ :: $lux$                                                                                           | <i>ridL</i> deletion mutant Lux <sup>+</sup>                 | This work |
| SK17                  | SK05 $kan^R P_{ahpc}::lux$                                                                                               | <ul><li>ridLsidE family deletion mutant</li></ul>            | This work |
| SK18                  | SK06 $kan^R P_{ahpc}::lux$                                                                                               | <i>legA3</i> deletion mutant Lux <sup>+</sup>                | This work |
| SK19                  | SK07 $kan^R P_{ahpc}::lux$                                                                                               | <pre>legA3 sidE family deletion mutant Lux<sup>+</sup></pre> | This work |
| Lp03 lux <sup>+</sup> | Lp03 $kan^R P_{ahpc}$ :: $lux$                                                                                           | Icm/Dot translocation deficient Lux <sup>+</sup>             | (3)       |
| JV4487                | $\Delta sidJ$                                                                                                            | sidJ deletion mutant                                         | (2)       |
| SK20                  | Lp02 ΔsdhA                                                                                                               | sdhA deletion mutant                                         | This work |
| SK21                  | Lp02 ΔsdhA ΔsidJ                                                                                                         | sdhAsidJ deletion mutant                                     | This work |
| SK22                  | SK01+ pMMB207 $\Delta$ 267                                                                                               |                                                              | This work |
| SK23                  | SK02+ pMMB207 $\Delta$ 267                                                                                               |                                                              | This work |
| SK24                  | SK03+ pMMB207 $\Delta$ 267                                                                                               |                                                              | This work |
| SK25                  | SK04+ pMMB207Δ267                                                                                                        |                                                              | This work |

| Plasmids                           |                                                                                                  |                                                    |                      |
|------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------|
| Name                               | Features                                                                                         | Description                                        | Reference            |
| pTO100MmeI                         | R6K <i>ori kan<sup>R</sup></i> , <i>sacB</i> , <i>ampR</i> , <i>himar1</i> -MmeI, C9 transposase | Tn-seq transposon mutagenesis plasmid              | (5)                  |
| pSR47S                             | R6Kori sacB, kan <sup>R</sup>                                                                    | suicide vector                                     | (6)                  |
| pSR47S-<br>P <sub>ahpc</sub> ::lux | R6Kori sacB, kan <sup>R</sup> P <sub>ahpc</sub> ::lux                                            | pSR47 containing P. luminescens lux operon         | (7)                  |
| pJB3395                            | pBluescript::thyA <sup>+</sup> amp <sup>R</sup>                                                  | thyA allelic exchange vector                       | J. Vogel             |
| pTO243                             | pbluescript:: PolyHis-attR1-<br>[Kan <sup>R</sup> -Kan <sup>R</sup> - ccdB]-attR2                |                                                    | O'Connor<br>Tamara   |
| pSK01                              | pSR47S:: ΔsdhA                                                                                   | sdhA deletion plasmid                              |                      |
| pSK02                              | pSR47S:: $\Delta ridL$                                                                           | ridL deletion plasmid                              |                      |
| pMMB207                            | OriR (RSF1010), Cm <sup>R</sup>                                                                  |                                                    | (8)                  |
| pMMB207Δ267                        | OriR (RSF1010), Cm <sup>R</sup> , Δ267                                                           | pMMB207 lacking 267 bps of N- terminal <i>mobA</i> | Elizabeth<br>Creasey |
| pSK03                              | pMMB207 $\Delta$ 267::PolyHis-attR1- $[Kan^R$ - $Kan^R$ - $CcdB$ ]-attR2                         | Gateway destination version of pMMB207Δ267         | This work            |
| pSK04                              | pMMB207Δ267::PolyHis- <i>attB1</i> -<br>sdeA-attB2                                               | sdeA complementation plasmid                       | This work            |
| pSK05                              | pMMB207 $\Delta$ 267::PolyHis- <i>attB1</i> -<br>sdeB-attB2                                      | sdeB complementation plasmid                       | This work            |
| pSK06                              | pMMB207Δ267::PolyHis- <i>attB1</i> -<br>sdeC-attB2                                               | sdeC complementation plasmid                       | This work            |
| pTO198                             | pSR47S::∆ <i>legA3</i>                                                                           | legA3 deletion plasmid                             | (9)                  |
| E. coli                            |                                                                                                  |                                                    |                      |
| DH5α                               | supE44 $\Delta$ lacU169( $\Phi$ 80lacZDM15)<br>hsdR17 recA1 endA1 gyrA96<br>thi-1 relA1          |                                                    |                      |
| DH5α λpir                          | DH5α (λ <i>pir</i> ) <i>tet</i> ::Mu recA                                                        |                                                    | (12)                 |
| BL21 DE3                           | $F^+$ ompT hsdSB dcm (DE3)                                                                       |                                                    |                      |
| Oligonucleotide                    | S                                                                                                |                                                    |                      |
| Name                               | Sequences (5' to 3')                                                                             |                                                    |                      |
| Construction of sd                 | 1 /                                                                                              |                                                    |                      |
| SK1                                | GGCGCTAATTGCTGAAATCAT                                                                            | TTCAATATTAAAAAAATTAA                               | C                    |
| SK2                                | CCGGGGGATGAACAATTTACC                                                                            |                                                    |                      |
| SK3                                | GATTTCAGCAATTAGCGCCATCCGCATAAAAATATTTG                                                           |                                                    |                      |
| SK4                                | GAACTAGGGCGTAGGCGTTGACCATTAAAAG                                                                  |                                                    |                      |
| pSR47s sdhA F                      | TTGTTCATCCCCGGGCTGCAGGAAT                                                                        |                                                    |                      |
| pSR47s sdhA R                      | CCTACGCCCTAGTTCTAGAGC                                                                            |                                                    |                      |
| . – –                              |                                                                                                  |                                                    |                      |

Construction of ridL mutant

SK5 TCATTATTATTATGTGTTCATTTTAAGCCAAAAAAC

| SK6           | AGCCCGGGGGGTTATTACTGAAGTCGTGAC  |
|---------------|---------------------------------|
| SK7           | CTAGAACTAGGATACTGGTGGATTGTCG    |
| SK8           | TGAACACATAATAATAATGACTTTGGCTCTC |
| pSR47s_ridL_F | CAGTAATAACCCCCCGGGCTGCAGGAAT    |
| pSR47s_ridL_R | CACCAGTATCCTAGTTCTAGAGCGGCCGCC  |

### Confirmation of recombinant plasmid

| pSR47s_conF | GGGAACAAAAGCTGGAGC  |
|-------------|---------------------|
| pSR47s conR | GTGAACGGCAGGTATATGT |

## qRT-PCR

| 7       |                          |
|---------|--------------------------|
| Name    | Sequences (5' to 3')     |
| rRNA_F  | AGAGATGCATTAGTGCCTTCGGGA |
| rRNA_R  | ACTAAGGATAAGGGTTGCGCTCGT |
| ridL_F  | GTCCTCTGAAGGATAGCGAAAC   |
| ridL_R  | GTGTAAGTTCCCGCAACAAATC   |
| sidE_F  | GCCTAAGTACGTTGAAGGGATAG  |
| sidE_R  | GCCTGTCAAGAGCACCTTTA     |
| sdeC_F  | AAATCAGGAGAAGCGGTTAGG    |
| sdeC_R  | CGTGAGAGCCGGGATAATTT     |
| sdeB_F  | CCAGGCTTCACTCACTTGATAA   |
| sdeB_R  | CCTCTCGATACCTACTGTGTCT   |
| sdeA_F  | CCCACTGCACCACAAGATAA     |
| sdeA_R  | GGTATACGGTTTGCCCAGATAG   |
| sdhA_F  | GGAAGGCAGGATTCTCCATTTA   |
| sdhA_R  | AGCTCTGAGTTCAGGAGGTAT    |
| legA3_F | CTCCGCTCTTTCCAGATGAC     |
| legA3_R | GAGTGGGTCGAGTGGGATAA     |
| sidJ_F  | GTTGTTCCTACCCAACCTGG     |
| sidJ_R  | CAGAGAGGTGTCATGAGTGC     |
|         |                          |

### Mariner Tn-seq sequencing library construction

| Na | me Sec | quences (5' to 3 |  | Inc | dex |
|----|--------|------------------|--|-----|-----|
|----|--------|------------------|--|-----|-----|

First PCR

Nextera 2A-R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

1st TnR GTAATACGACTCACTATAGGGTCTAGAG

## Second PCR- Leftward Mariner specific Nextera Indexed primers

| mar147 | AATGATACGGCGACCACCGAGATCTACACGCAGGCGGC | GCAGGCGG |
|--------|----------------------------------------|----------|
|        | GTTGACCGGGGACTTATCAGCCAACCTGTTA        |          |
| mar148 | AATGATACGGCGACCACCGAGATCTACACAGGCAGAAC | AGGCAGAA |
|        | GTTGACCGGGGACTTATCAGCCAACCTGTTA        |          |
| mar149 | AATGATACGGCGACCACCGAGATCTACACCAGAGAGGC | CAGAGAGG |
|        | GTTGACCGGGGACTTATCAGCCAACCTGTTA        |          |
| mar150 | AATGATACGGCGACCACCGAGATCTACACCGAGGCTGC | CGAGGCTG |

GTTGACCGGGGACTTATCAGCCAACCTGTTA

mar151 AATGATACGGCGACCACCGAGATCTACACAAGAGGCAC AAGAGGCA

GTTGACCGGGGACTTATCAGCCAACCTGTTA

mar152 AATGATACGGCGACCACCGAGATCTACACGAGGAGCCC GAGGAGCC

GTTGACCGGGGACTTATCAGCCAACCTGTTA

Second PCR- Rightward Mariner specific Nextera Indexed primers

olk141 CAAGCAGAAGACGGCATACGAGATCCGCCTGCGTCTCGT GCAGGCGG

**GGGCTCGGAGATGTG** 

N703 index CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGT AGGCAGAA

GGGCTCGGAGATGTG

Reconditioning

P1 AATGATACGGCGACCACCGA P2 CAAGCAGAAGACGGCATACGA

Sequencing

mar512 CGTTGACCGGGGACTTATCAGCCAACCTGTTA

#### **SI References**

- 1. K. H. Berger, R. R. Isberg, Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. *Mol Microbiol* 7, 7-19 (1993).
- 2. K. C. Jeong, J. A. Sexton, J. P. Vogel, Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. *PLoS Pathog* **11**, e1004695 (2015).
- 3. A. W. Ensminger, Y. Yassin, A. Miron, R. R. Isberg, Experimental evolution of Legionella pneumophila in mouse macrophages leads to strains with altered determinants of environmental survival. *PLoS Pathog* **8**, e1002731 (2012).
- 4. N. A. Ellis, B. Kim, J. Tung, M. P. Machner, A multiplex CRISPR interference tool for virulence gene interrogation in Legionella pneumophila. *Commun Biol* 4, 157 (2021).
- 5. J. M. Park, S. Ghosh, T. J. O'Connor, Combinatorial selection in amoebal hosts drives the evolution of the human pathogen Legionella pneumophila. *Nat Microbiol* **5**, 599-609 (2020).
- 6. J. J. Merriam, R. Mathur, R. Maxfield-Boumil, R. R. Isberg, Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. *Infect Immun* **65**, 2497-2501 (1997).
- 7. J. Coers, R. E. Vance, M. F. Fontana, W. F. Dietrich, Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. *Cell Microbiol* **9**, 2344-2357 (2007).
- 8. V. M. Morales, A. Backman, M. Bagdasarian, A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. *Gene* **97**, 39-47 (1991).
- 9. T. J. O'Connor, D. Boyd, M. S. Dorer, R. R. Isberg, Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. *Science* **338**, 1440-1444 (2012).
- 10. M. Wan *et al.*, Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain-containing Legionella effectors. *Proc Natl Acad Sci U S A* **116**, 23518-23526 (2019).
- 11. Y. H. Lin *et al.*, Host Cell-catalyzed S-Palmitoylation Mediates Golgi Targeting of the Legionella Ubiquitin Ligase GobX. *J Biol Chem* **290**, 25766-25781 (2015).
- 12. R. Kolter, M. Inuzuka, D. R. Helinski, Trans-complementation-dependent replication of a low molecular weight origin fragment from plasmid R6K. *Cell* **15**, 1199-1208 (1978).