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Supplementary Figure 1. Technical variation in the bulk tissue RNA sequencing data. (A)
Distribution of RNA integrity (RIN) values are balanced between sexes and across brain regions.
(B) RNA integrity (RIN) values are randomly distributed with respect to age. (C) RNA integrity
(RIN) values, (D) number of reads mapping to the rhesus reference genome, and (E)
sequencing batch visualized in UMAP dimensions. (F) RNA integrity (RIN) values, (G) number
of reads mapping to the rhesus reference genome, and (H) sequencing batch visualized in the
first two principal components.
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Supplementary Figure 2. Biological variation in the bulk tissue RNA sequencing data. (A)
Age, (B) sex, and (C) dominance rank visualized in UMAP dimensions. (D) Brain region, (E) age,
(F) sex, and (G) dominance rank visualized in the first two principal components.
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Supplementary Figure 3. Variance partitioning of brain gene expression. (A) Variance
partitioning on global gene expression across all brain regions (N=527 biologically independent
samples) reveals that, of all tested variables, brain region explains the greatest proportion
(median ~30%) of variation. Variables are sorted by the proportion of variance explained.
Variance partitioning was performed without first removing technical variation. Variance
partitioning results from gene expression data with technical variation removed are shown in Fig.
1C. (B) Variance partitioning on region-specific gene expression (N=36 biologically independent
animals)—with technical covariates regressed out—reveals that age explains the greatest
proportion of variance of all tested covariates within single brain regions, though still a relatively
small proportion (median 0.6–6.0%) of overall variation. Box plots depict the median (center),
and interquartile range (IQR, bounds of box), with whiskers extending to either the
maxima/minima or to the median ±1.5⇥IQR, whichever is nearest.
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Supplementary Figure 4. Age effects on principal axes of variation. Principal components
analyses (PCAs) were conducted on each brain tissue dataset separately. The loading on each
principal component (PC) was regressed against age, with sex and dominance rank included as
covariates. The -log10 P value from the age predictor (linear model, two-sided test, no correction
for multiple comparisons) is plotted against each PC, with the size of each point proportional to
the percentage variance explained. Only the first N principal components together explaining
>99% of variance are included for each brain region.
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Supplementary Figure 5. Strong biological signals in whole-brain age-differentially

expressed genes. (A) Quantile-quantile (QQ) plots from Gene Ontology (GO) hypergeometric
enrichment tests, conducted for wbaDEGs as well as separately for each brain region, show
enrichment of low P values, particularly for genes decreasing in expression with age. (B) QQ
plots from hypergeometric enrichment tests conducted on disease associations from the
DISEASES database and (C) QQ plot from transcription factor motif enrichment results,
conducted on wbaDEGs using the HOMER software, similarly show strong enrichment signals.
(D) Enriched GO biological processes and diseases among wbaDEGs (Supplementary Table 6).
Odds ratios (ORs) are uncorrected for the GO graph structure, with the red dotted line
representing a neutral OR = 1. All P values are based on one-sided Fisher’s exact test with no
correction for multiple comparisons.
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Supplementary Figure 6. Correlation between age enrichment effects between macaques

and humans. Scatterplots depict positive relationships between age effects estimated from
macaques from this study (x axis) and humans from the GTEx study (y axis) in overlapping brain
regions. wbaDEGs, which show the strongest support for shared effects across macaque brain
regions, are highlighted in red.



DG CN Pu LGN VMH

M1 STS V1 AMY CA3

dmPFC dlPFC vmPFC vlPFC ACCg

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0
1
2
3
4
5
6
7
8
9

10

0
1
2
3
4
5
6
7
8
9

10

0
1
2
3
4
5
6
7
8
9

10

< log10(Expected�p)

<
lo

g 1
0(

O
bs

er
ve

d�
p)

MASH

DGLM

dmPFC

dlPFC
vmPFC

vlPFC
ACCg

M1 STS
V1 AMY

CA3
DG CN Pu LGN

VMH

 8000

D
ec
re
as
e

    0

In
cr
ea
se

 8000

 8000

D
ec
re
as
e

    0

In
cr
ea
se

 8000

N
um

be
r o

f g
en

es

dm
PFC

dlP
FC
vm

PFC

vlP
FC
ACCg

M1 STS
V1 AMY

CA3
DG CN Pu LG

N
VMH

02505007501000
Decreased variance

0 250 500 750 1000
Increased variance

0

1

2

3

4

5

6

0 1 2 3
< log10(Expected�p)

<
lo

g 1
0(

O
bs

er
ve

d�
p)

A B

C D

Supplementary Figure 7. Aging impacts the variability of gene expression. (A) QQ-plots of
initial double generalized linear model (DGLM) results show enrichment of low P values
(two-sided test, no correction for multiple comparisons). (B) A multivariate adaptive shrinkage
(MASH) approach finds substantially less sharing between tissues compared to our analysis of
mean effects, resulting in a more conservative set of significant genes. (C) Upset plot showing
the rank order of brain regions with the greatest number of genes exhibiting significant
age-associated changes in variance. Most genes with age-associated changes in variance were
found across a group of regions including V1, AMY, CA3, DG, and CN. (D) QQ plot of GO
hypergeometric enrichment test results shows a strong biological signal among genes increasing
in dispersion with age (one-sided Fisher’s exact test, no correction for multiple comparisons).
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Supplementary Figure 8. Western blotting results. Representative western blot images for
analysis of (A) FKBP5 and (B) MBP protein levels in macaque dlPFC. Experimenters were
blinded to sample identities, which were alternated young (<10 years old) and old (>10 years
old) across two gels. Both gels were run, transferred, blotted, exposed, and analyzed in parallel.
Protein levels of target proteins were normalized to expression values of GAPDH. Relative
quantities were measured and are reported in Supplementary Table 22. For FKBP5 analysis,
two experiments were run, with similar results. For data analysis, normalized values were
averaged across technical replicates for each animal. These average values are presented in
Supplementary Table 22. For MBP analysis, a single experiment was run.
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Supplementary Figure 9. Overview of single-nucleus RNA sequencing data quality

control pipeline. (A) Unique indices (i.e., sci-RNA-seq3 barcode combinations, which primarily
represent single nuclei with a small fraction of multiplets) per sample in an initial dataset of
96,906 total indices with > 100 unique molecular indices (UMIs). (B) Total UMIs per sample in
the same initial dataset. (C) Nuclei with greater than 10% expression in mitochondrial genes
were excluded. 93,143 total indices passed this filter. (D) The distribution of Scrublet
k -nearest-neighbor (kNN) scores were visualized per sample and thresholds were manually set
per sample to exclude indices with higher kNN scores. 88,491 indices passed this filter. (E)
UMAP plot of 88,491 indices, colored by cluster. (F) Scrublet kNN scores visualized on UMAP
plot. Clusters with high median kNN scores were manually removed. 71,863 total indices
passed this filter (Supplementary Fig. 10).
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Supplementary Figure 10. Distribution of technical and biological variation in

single-nucleus RNA sequencing data. (A) Unsupervised clusters, (B) UMI counts, (C)
Scrublet kNN scores, (D) age, (E) social groups, and (F) nuclei isolation batches visualized in
UMAP dimensions.
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Supplementary Figure 11. Integration and label transfer on single-nucleus RNA

sequencing data corroborate cell-type assignments. UMAP plots of 71,863 rhesus macaque
single-nucleus dlPFC cells and reference Allen Brain Map cells are visualized on integrated data
spaces. Rhesus macaque data are shown with (A) 200,000 mouse cerebral
cortex+hippocampus cells; and (B) 76,533 human M1 cells. For both datasets, cells are colored
by (top) rhesus macaque manual cell annotations (mouse cells shown in light gray) and (bottom)
Allen Brain Map cell classes (rhesus cells shown in light gray). For non-neuronal cell types in the
Allen reference datasets, the cell subclass is highlighted instead.
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Supplementary Figure 12. Comparison of RNA count normalization strategies on

pseudobulk data. Heatmaps compare (top) a standard RNA-seq normalization procedure
(voom from the limma R package) with (bottom) a normalization procedure designed for
zero-inflated count data (GMPR). The two methods produce qualitatively similar results on (A) a
cell type (inhibitory neurons) exhibiting no age-associated differences in proportion (linear
model, two-sided test, uncorrected P = 0.900). GMPR, however, eliminates age-associated
artifacts on global expression in (B) a cell type (oligodendrocyte precursor cells) exhibiting
moderate age-associated decreases in proportion (linear model, two-sided test, uncorrected P =
0.029, Bonferroni-adjusted P = 0.234) and (C) a cell type (oligodendrocytes) exhibiting
significant age-associated increases in proportion (linear model, two-sided test, uncorrected P =
0.005, Bonferroni-adjusted P = 0.043), likely due to the correction for a higher prevalence of
zeroes in libraries aggregated from fewer nuclei. For all plots, libraries on the x axis are
arranged from youngest (left) to oldest (right).
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Supplementary Figure 13. Parallel signatures of aging and dominance rank on gene

expression. Aging (x axis) and dominance rank (y axis) are positively correlated across most
brain regions. For these plots, only genes with LFSR < 0.2 for both age and rank effects in a
given brain region are included and effect size signs for dominance rank were reversed such that
positive values indicate higher expression in lower ranking individuals. Red points indicate that
genes share the sign of their effect sizes for both variables. Error bands represent the 95%
confidence interval of linear model predictions. (B) As depicted in Fig. 6A, correlations between
age and dominance rank effects robustly increase at more stringent statistical thresholds. 95%
confidence intervals estimated through 1,000 bootstrap replicates are included. Dot sizes
indicate the number of genes passing a given threshold for both age and dominance rank. In
addition, the number of genes passing thresholds of LFSR < 0.05 and LFSR < 0.2 are
annotated..
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Supplementary Figure 14. Age predictions from gene expression robustly exhibit positive

correlations with chronological age across brain regions. (A) Comparison of known
chronological ages and predicted transcriptomic ages on all samples combined across regions.
All predicted ages were estimated using leave-one-out cross validation (LOOCV) in which model
coefficients were re-estimated following EMMA and MASH models omitting the test samples
from an individual. Error bands represent the 95% confidence interval of linear model
predictions. (B) Gene selection from wbaDEGs identified the optimal threshold (LFSR < 0.005)
and number of genes (N = 13) that together minimized the mean error (mean absolute
deviation), and produced a slope and intercept closest to 1 and 0, respectively. (C) Age
predictions from elastic net regression models trained with glmnet showed a similarly strong
overall correlation but with a more compressed range of predicted ages. Predicted ages were
also estimated using an LOOCV procedure in which elastic net models were rerun after leaving
out all samples from a test individual. Error bands represent the 95% confidence interval of
linear model predictions. (D) wbaDEGs model predictions and (E) glmnet model predictions
robustly maintain strong positive correlations and accuracy after filtering to genes showing
increasingly strong support for dominance rank effects. Error bands represent the 95%
confidence interval of linear model predictions.
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Supplementary Figure 15. Dominance rank alters aging among a subset of

age-associated genes. Comparison of dominance rank classes shows that high ranking
females in particular exhibit age deceleration relative to other females and to males (N=527
biologically independent samples) based on both (A) wbaDEGs model predictions and (B)
glmnet model predictions. The relationship is stronger at more stringent LFSRRANK thresholds.
Box plots depict the median (center), and interquartile range (IQR, bounds of box), with whiskers
extending to either the maxima/minima or to the median ±1.5⇥IQR, whichever is nearest. (C)
Linear regression using percentage dominance ranks shows a similarly strengthening
relationship between dominance rank and eAGE at increasingly stringent LFSRRANK thresholds,
indicating that dominance rank-based variation in aging is strongest in genes that underlie
shared signatures of aging and dominance rank. Error bands represent the 95% confidence
interval of linear model predictions.
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Supplementary Figure 16. Evaluation of dominance rank/age relationship across a broad

range of thresholds. For both wbaDEGs (A) and glmnet (B) models, iterating across a greater
range of LFSRRANK thresholds reveals that statistical support for dominance rank/predicted age
relationship generally improves while predictions remain positively correlated with chronological
age. For both models, however, the improvements eventually reverse when very few genes
remain. Open circles indicate that the relationship between dominance rank and predicted age
was significant (linear model, two-sided test, uncorrected P < 0.05).
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Supplementary Figure 17. Original scans of Western blot gels. Original scans of (A) FKBP5,
(B) MBP, and (C) GAPDH Western blot experiments.
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