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Supplementary Text 1 

This section contains additional results from assessing the performance of the scHLApers 
pipeline. 

Examining reads switching alignments from HLA-B to HLA-C 

Given the shared evolutionary history of class I genes (69), we hypothesized that the 
observed decrease in HLA-B expression after personalization was due to reads aligned to HLA-
B in the standard pipeline aligning to a different gene in scHLApers. By tracking where individual 
reads aligned before and after personalization for Synovium and PBMC-cultured using the BAM 
files generated by STARsolo, we found that in both datasets, 99% of reads that previously 
aligned to HLA-B (but aligned to a different location after personalization) aligned instead to 
HLA-C. We then tracked where the read alignments to HLA-C in scHLApers “came from” in the 
standard pipeline (Fig. S5A). For Synovium, 14.8% came from HLA-B in the standard pipeline, 
75.1% were originally also aligned to HLA-C in the standard pipeline, 8.3% came from 
unmapped reads, and the remaining 1.8% came from other genomic regions. For PBMC-
cultured, the breakdown was 2.5% HLA-B, 51.7% HLA-C, 44.4% unmapped, and 1.4% other. 

Interestingly, an individual’s change in HLA-B counts depended on their HLA-C 
genotype, supporting the observed decrease in HLA-B after personalization. Performing a 
multiple sequence alignment on the HLA-C alleles present in our cohorts showed that the 
reference allele (HLA-C*07:02) grouped with a set of similar “reference-like” alleles (Fig. S5B): 
HLA-C*04:04, C*04:01, C*18:01, C*14:02, C*14:03, C*01:02, C*03:04, C*03:03, C*03:05, 
C*03:02, C*17:01, C*07:01, and C*07:04. For individuals with both HLA-C alleles similar to the 
reference allele (HLA-C*07:02), HLA-B was less affected by personalization (Fig. S5B,C). 
However, for individuals with at least one “non-reference-like” HLA-C allele (i.e., other than 
HLA-C*07:02), some reads aligned to HLA-B before personalization aligned better to HLA-C 
after personalization, leading to decreased HLA-B counts. 

Application of scHLApers pipeline to 10x 5’-based dataset 

All four datasets included in the study used 10x 3’-based single-cell libraries. As a proof-
of-concept analysis demonstrating the feasibility of scHLApers on 5’-based data, we also 
applied scHLApers to a separate 10x 5’-based dataset from a subset of Synovium individuals 
(n=9 individuals, 26,638 cells, see Fig. S4B). We found that in 5’-based data, estimates for all 
eight classical HLA genes increased after personalization. 

Technical note on HLA allele calling and allele-specific expression 

scHLApers requires HLA allele calls per individual, which can be obtained directly by 
sequence-based typing or by HLA imputation using genotyped variants. There have been efforts 
to use bulk RNA-seq to infer HLA alleles without orthogonal genotype data (17, 70); however, 
inferring alleles from single-cell reads with high accuracy may prove challenging beyond one-
field resolution (71). Allele-specific expression (ASE) analysis is an alternative way to detect 
regulatory effects. However, it is challenging to map reads unambiguously between alleles using 
short-read 3’-based sequencing data because it largely excludes the highly variable 5’ region of 
the gene (Fig. S3). In contrast, 5’-based data may be more effective for ASE. 
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Supplementary Text 2 

See the separate document (Kang_etal_SuppText_2.pdf, appended to the end of this PDF), 
which contains additional methods regarding the removal of suspected doublets for the PBMC-
blood dataset (OneK1K cohort). We present these methods as a separate supplementary text to 
allow it to serve as a standalone entity and be referenced by subsequent work. 
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Fig. S1. Cohort demographics. (A) Cohort sizes after QC. (B) Sex and age distributions. Note: 
PBMC-cultured is male-only. (C-F) Genotype PCs (gPC) capturing genetic ancestry, calculated 
on the intersecting genome-wide variants across all cohorts. (C) Percentage of variance 
explained by each gPC. Red line denotes five gPCs used in the eQTL analysis. (D) Reported 
ancestry (African = red, European = blue) of PBMC-cultured individuals. (E) PBMC-cultured 
individuals along gPC1 (x-axis) versus estimated proportion of African admixture (as reported by 
original study, y-axis). (F) Top four gPCs across individuals. Colors denote individuals included 
in the eQTL analysis, whereas gray individuals were genotyped on the same array (used in 
PCA) but did not have available scRNA-seq data. Note: all PBMC-blood individuals are 
European ancestry; Intestine cohort was genotyped across two arrays. 
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Fig. S2. Imputation and quality control of MHC variants for eQTL analysis. (A) The number 
of starting typed and imputed MHC variants in each cohort; the Intestine dataset was genotyped 
on two arrays. (B) The number of variants remaining after filtering for MAF > 1% and DR2 > 0.8 
within each cohort separately. (C) The final number of variants used in eQTL analysis after 
taking the intersection of variants passing QC across cohorts. The histogram shows the 
distribution of variants across the MHC region (x-axis). 
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Fig. S3. Read coverage for 10x scRNA-seq 3’ and 5’ assays. (A) Integrative Genomics 
Viewer (IGV) screenshot showing read alignments from scHLApers pipeline to a representative 
class I allele for two samples (from the same Synovium individual), sequenced with 10x 3’ assay 
(top, orange track) and 5’ assay (bottom, blue). Additional tracks show inferred splice junctions 
and example individual read alignments. (B) Same as in (A) except shows alignments to a 
representative class II allele. 
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Fig. S4. Correcting HLA expression estimation bias with scHLApers. (A) Schematic 
showing how high HLA gene polymorphism leads to bias in read alignment to a single reference 
genome. Consider two hypothetical individuals who are either homozygous for HLA-DRB1 allele 
X (orange) or allele Y (green), where the reference allele is X. Reads from X will align perfectly 
to the reference, leading to accurate HLA-DRB1 quantification. However, for Y, reads will fail to 
align to the reference due to discordant sequence content, leading to unmapped reads and 
underestimation of expression. (B) Percentage change per individual (y-axis) in total UMIs for 
each HLA gene (x-axis) across all cells after scHLApers (compared to standard pipeline) in 10x 
5’-based data (n=9 individuals, 26,638 cells, subset of main Synovium cohort). (C) Percentage 
change in expression (total UMIs for HLA gene per individual, y-axis) across cohorts (Synovium 
n=69 individuals, Intestine n=22, PBMC-cultured n=73, PBMC-blood n = 909). (D) Percentage 
change in estimated expression (total UMIs for HLA gene per individual, y-axis) in Synovium 
(n=69) as a function of the mean (between the individual’s two alleles) Levenshtein distance 
relative to the GRCh38 reference allele at the 3’ end of each gene (x-axis). For (B-D), dotted red 
lines denote no change. For all boxplots, center line represents median; lower and upper box 
limits represent the 25% and 75% quantiles, respectively; whiskers extend to box limit 
±1.5 × IQR; outlying points are plotted individually.  
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Fig. S5. Reads switching alignments between HLA-B and HLA-C. (A) Heatmap showing the 
alignment of reads to each gene in scHLApers (rows) versus where the same read aligned 
(“came from”) in the standard pipeline (columns) for Synovium (top) and PBMC-cultured 
(bottom). Columns include HLA genes, other regions in the extended MHC, or unmapped reads. 
Rows sum to 100%, and a darker color indicates that more of the reads aligning to a given gene 
in scHLApers came from the corresponding location in the standard pipeline. (B) Phylogenetic 
tree derived from a multiple sequence alignment of HLA-C allelic genomic sequences. The 
reference allele is C*07:02. Yellow box shows alleles similar to the reference (“reference-like”). 
(C) Boxplot showing the change in HLA-B estimated UMI counts summed across cells from 
each sample (y-axis) compared to the genotype for HLA-C in terms of dosage of “non-
reference-like” alleles (x-axis). The center line of the boxplot represents the median, the lower 
and upper box limits represent the 25% and 75% quantiles, respectively, the whiskers extend to 
the box limit ±1.5 × IQR, and outlying points are plotted individually. Dotted red line denotes no 
change. 
  



Kang et al. 

 9 

 
Fig. S6. Single-cell dataset metrics after QC. Metrics for scRNA-seq data for each cohort 
after uniform QC (removing cells with fewer than 500 genes or greater than 20% mitochondrial 
UMIs). (A) The number of genes per cell. (B) The number of UMIs per cell. (C) The percentage 
of mitochondrial UMIs per cell. The red dotted line indicates the mean value across cells; mean 
and standard deviation (SD) are listed. (D) Number of cells per sample in eQTL analysis by cell 
type and cohort (colors). The center line of the boxplot represents the median, the lower and 
upper box limits represent the 25% and 75% quantiles, respectively, the whiskers extend to the 
box limit ±1.5 × IQR, and all points are plotted individually. 
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Fig. S7. PEER factor relevance and schematic of the multi-cohort model. (A) Relevance of 
each PEER factor (y-axis) for each dataset and cell type. Different numbers of PEER factors 
were used for each cohort (K=7 for Synovium, 2 for Intestine, 7 for PBMC-cultured, and 20 for 
PBMC-blood). (B) Schematic of pseudobulk eQTL multi-cohort analysis strategy. Cells were 
mean-aggregated within each sample to obtain a samples-by-genes matrix for each cohort and 
cell type. Then, we ran inverse normal transformation and PEER factor normalization separately 
within each cohort to obtain a samples-by-residuals matrix for each cohort. We concatenated 
these matrices into a single matrix across all cohorts. We identified eQTLs for HLA genes using 
a single linear model, modeling the residual as a function of genotype and cohort across all 
individuals. 
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Fig. S8. Pseudobulk eQTL results in myeloid cells. (A) Boxplot showing the effect of the lead 
eQTL for each gene from the multi-cohort model. The genotype of each individual (x-axis) is 
plotted against the inverse-normal transformed residual of the gene’s expression (after adjusting 
for covariates, y-axis), colored by cohort. Variants starting with “HLA” denote HLA alleles. 
Boxplot center line represents the median; lower and upper box limits represent the 25% and 
75% quantiles, respectively; whiskers extend to box limit ±1.5 × IQR; outlying points are plotted 
individually. (B) We performed up to three additional rounds of conditional analysis to identify 
independent eQTLs. Manhattan plots showing the distance from TSS (x-axis, TSS ± 2MB of 
each gene) versus the significance of association with gene expression (y-axis). Each row 
represents one round of conditional analysis, and each subsequent round controls for the lead 
effects from the previous rounds. Blank elements in the grid indicate that no variants reach P-
value < 5e-8. 
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Fig. S9. Pseudobulk eQTL results in B cells. Same as Fig. S8 but for B cells. 
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Fig. S10. Pseudobulk eQTL results in T cells. Same as Fig. S8 but for T cells. 
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Fig. S11. Concordance with Aguiar et al., differential allelic expression, and IGV read 
alignment visualization. (A) Concordance between the effect sizes of lead HLA eQTLs 
identified in the multi-cohort pseudobulk model for B cells (this study, y-axis) and the same 
variant’s effect in LCLs identified through bulk RNA-seq eQTL analysis (Aguiar et al., x-axis). 
Because not all lead variants in this study were directly comparable due to different sets of 
tested variants, we tested the concordance of the most significant variant present in both 
datasets (triangles indicate that the exact lead variant in this study was also tested in Aguiar et 
al., whereas circles indicate “substitute” lead variants was used for comparison). (B) HLA-B 
expression in myeloid cells (top) and HLA-C expression in B cells (bottom), showing mean 
log(CP10k+1)-normalized expression (y-axis) across cells for each individual in PBMC-blood by 
allele (x-axis). Each individual’s expression value is plotted once if they are homozygous (red) 
and twice if heterozygous (tan) for each allele (imputed dosage is rounded to the nearest 
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integer). The black diamonds show the mean value for each allele (used to order the x-axis). (C) 
IGV screenshots showing read alignments for alleles HLA-B*15:01 and HLA-C*07:01, 
associated with lower expression of the respective genes, for a representative individual in 
Synovium. 
  



Kang et al. 

 16 

 
Fig. S12. Examples of cell-type-dependent eQTLs for HLA-DP genes. Boxplots across cell 
types (columns) comparing the effects of B cell lead eQTLs (rows) for (A) HLA-DPA1 and (B) 
HLA-DPB1. In both examples, the lead eQTL was identified in B cells and was weaker in 
myeloid and T cells. The genotype of each individual (x-axis) is plotted against the inverse-
normal transformed residual of the gene’s expression (after adjusting for covariates, y-axis). 
Boxplots are colored by cohort, with individual points overlaid; center line represents the 
median; lower and upper box limits represent the 25% and 75% quantiles, respectively; 
whiskers extend to box limit ±1.5 × IQR; outlying points are plotted individually. 
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Fig. S13. Linkage disequilibrium among conditionally independent eQTLs across genes 
and cell types. Heatmaps showing the LD relationship among lead eQTL variants identified in 
the multiple rounds of conditional analysis. For each pair of cell types among B (blue), myeloid 
(purple), and T cells (red) (including self-pairs), the plot shows the LD (r2, color) between each 
pair of eQTLs. Each eQTL is labeled as HLA-X_Y, where X is the gene and Y is the round of 
conditional analysis (e.g., HLA-B_3 represents the tertiary eQTL for HLA-B). LD is calculated 
using the multi-ancestry MHC reference used for HLA imputation. 
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Fig. S14. Two strategies for embedding cells from multiple datasets. (A) Schematic of de 
novo integration of all datasets using Harmony (left) versus a reference-mapping-based 
approach where the two solid tissue datasets were used to construct the embedding, and 
PBMC datasets were mapped into the same coordinate space using Symphony (right). (B-D) 
The resulting UMAP embeddings for Synovium and PBMC-blood datasets using each approach 
for (B) myeloid, (C) B, and (D) T cells, colored by merged cell state annotations. 
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Fig. S15. Atlas of HLA gene expression in myeloid cells across four datasets. Expression 
of eight classical HLA genes (rows) in myeloid cells in Synovium (n=66,789 cells), Intestine 
(n=14,492 cells), PBMC-cultured (n=23,241 cells), and PBMC-blood (n=40,568 cells) plotted on 
a hexagon-binned UMAP to address overplotting (50 bins per both horizontal and vertical 
directions), with each bin colored by mean log(CP10k+1)-normalized expression of the gene. 
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Fig. S16. Atlas of HLA gene expression in B cells across four datasets. Same as Fig. S15 
but for B cells in Synovium (n=25,917 cells), Intestine (n=56,572 cells), PBMC-cultured 
(n=17,662 cells), and PBMC-blood (n=80,784 cells). 
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Fig. S17. Atlas of HLA gene expression in T cells across four datasets. Same as Fig. S15 
but for T cells in Synovium (n=82,423 cells), Intestine (n=47,868 cells), PBMC-cultured 
(n=136,519 cells), and PBMC-blood (n=538,579 cells). 
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Fig. S18. Testing single-cell NBME model for concordance with pseudobulk models and 
for calibration for genotype-cell-state interactions. The models in (A-B) test genotype main 
effects, whereas (C-D) test genotype-cell-state interaction. (A-B) Concordance of genotype 
main effect estimates (A) and significance of genotype main effect (B) between the NBME 
model (y-axis) and the pseudobulk model for the PBMC-blood dataset (x-axis) across all cell 
types and classical HLA genes. (C-D) We permuted cell state (10 hPCs as a block) for 1,000 
tests and obtained interaction P-values from a likelihood ratio test (LRT) comparing to the null 
model without GxhPC interaction terms. Q-Q plots showing statistical calibration (compared to 
uniform P-values) for (C) PME model versus (D) NBME model when testing for cell state 
interactions for representative class I (HLA-A) and class II (HLA-DPA1) genes in myeloid cells in 
PBMC-blood. The red line is the identity line. The histograms below show distributions of LRT 
P-values for HLA-DPA1.  
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Fig. S19. Dynamic eQTLs in myeloid cells. Lead HLA-A eQTL (rs7747253) in myeloid cells 
(n=66,789 cells in Synovium, 40,568 in PBMC-blood). (A) UMAP colored by per-cell estimated 
eQTL effect (𝛽!"!#$), from blue (weakest) to orange (strongest). (B) Cells colored by quintiles of 
𝛽!"!#$. (C) Boxplot showing the eQTL effect across individuals in the top and bottom quintiles of 
cells. Labeled 𝛽%&'( and P-value are derived from fitting the NBME model without cell state 
interaction terms on cells from the discrete quintile and comparing to a null model without 
genotype using an LRT. Mean log2(UMI+1) across cells per individual (y-axis) by each 
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genotype. Boxplot center line represents the median; lower and upper box limits represent the 
25% and 75% quantiles, respectively; whiskers extend to box limit ±1.5 × IQR; outlying points 
are plotted individually. (D) Scatter plot showing the mean estimated 𝛽!"!#$ (y-axis) compared to 
the mean log(CP10k+1)-normalized expression of HLA-A (x-axis) across annotated cell states 
(color). (E-G) Comparing myeloid HLA-DQA1 eQTL (rs3104413) effects in two different cell 
embeddings. UMAP of PBMC-blood myeloid cells (n=40,568 cells) in (E) tissue-defined hPCs 
versus (F) hPCs defined using PBMC-blood alone, colored by 𝛽!"!#$ (left), merged cell 
annotations (middle), and dataset annotations (right). (G) Concordance between per-cell 𝛽!"!#$ 
values in tissue-defined (y-axis) versus PBMC-blood embedding (x-axis); Pearson r is labeled. 
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Fig. S20. Dynamic HLA-DQ eQTLs in B cells. (A-D) Dynamic HLA-DQA1 eQTL in B cells 
(n=25,917 cells in Synovium, n=80,784 in PBMC-blood). (A) UMAP of cells for tissue-defined 
embedding, colored by 𝛽!"!#$, from blue (weakest) to orange (strongest). (B) Cells colored by 
quintiles of 𝛽!"!#$. (C) Boxplot showing the eQTL effect across individuals in the bottom and top 
quintiles. Labeled 𝛽%&'( and P-value are from fitting the NBME model without cell state 
interaction terms on the cells from the discrete quintile and comparing to a null model without 
genotype using an LRT. Mean log2(UMI+1) across cells per individual (y-axis) by each 
genotype. Boxplot center line represents the median; lower and upper box limits represent the 
25% and 75% quantiles, respectively; whiskers extend to box limit ±1.5 × IQR; outlying points 
are plotted individually. (D) Scatter plot showing the mean estimated 𝛽!"!#$ (y-axis) compared to 
the mean log(CP10k+1)-normalized expression of HLA-DQA1 (x-axis) across annotated cell 
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states (color). Panels (E-G) are analogous to panels (B-D), respectively, for lead HLA-DQB1 
eQTL in B cells. Note: in this HLA-DQB1 example, the effect of the eQTL is negative as defined 
by the ALT allele, so more negative 𝛽%&'( (quintile 1) corresponds to stronger eQTL effect. 
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Dataset abbrev. Synovium Intestine PBMC-cultured PBMC-blood 
 

Cohort characteristics 
Source of data AMP Phase 2 

Consortium 
Zhang et al. 
(in revision; 
bioRxiv, 
2022) 

Smillie et al.  
(Cell, 2019) 

Randolph et al.  
(Science, 2021) 

OneK1K Cohort 
Yazar et al.  
(Science, 2022) 

Tissue Synovial joint Intestine PBMCs  PBMCs 
Conditions RA (60) and 

OA (9) 
UC (13) and HC 
(9) 

IAV (73) and 
control (73) 

N/A (population 
cohort) 

# indivs. 69 22 73 909 
# cells 275,323 137,321 188,507 765,079 
Ancestry Multiple Multiple European and 

African 
European 

 
Dataset technical details 

Genotype assay 
(# MHC variants) 

Illumina 
MEGA 
(10,159) 

Illumina GSA 
(7,544) or custom 
array (772) 

Low-pass WGS 
(10,814) 

Illumina GSA 
(7,046) 

Single-cell assay 10x CITE-seq 
(3’ v3) 

10x scRNA-seq (3’ 
v1, v2) 

10x scRNA-seq 
(3’ v2) 

10x scRNA-seq (3’ 
v2) 

Read length(s) 94 bp 55 bp 84 and 289 bp 98 bp 
Input format FASTQ FASTQ BAM BAM 
Barcode length 16 14 and 16 16 16 
UMI length 12 and 10 10 10 10 
Whitelist (10x 
Genomics)  

V3 (3M-
febrary-
2018.txt.gz ) 

V1 (737K-april-
2014_rc.txt) and 
V2 (737K-august-
2016.txt) 

V2 (737K-
august-2016.txt) 

V2 (737K-august-
2016.txt) 

Notes Some 
samples have 
10bp UMI but 
all use v3 
whitelist 

Barcode length = 
14 for V1 

Demultiplexed 
batch-level 
BAMs with sinto 

Demultiplexed 
batch-level BAMs 
with sinto 

 
Table S1. Datasets included in the study. Cohort characteristics include reference 
publication, sampled tissue, biological conditions (if any), number of individuals, number of 
single cells, and genetic ancestry. The numbers of individuals and cells are shown after 
removing individuals with uncertain HLA allele calls and low-quality cells. All PBMC-cultured 
individuals had samples from both conditions (treated with influenza A virus and mock 
conditions). Dataset technical details include type of genotype data (and # of variants in the 
MHC as input to HLA imputation), single-cell assay, read length(s), input format, barcode and 
UMI length, and whitelist used for STARsolo. Abbreviations: PBMCs, peripheral blood 
mononuclear cells; RA, rheumatoid arthritis; OA, osteoarthritis; UC, ulcerative colitis; HC, 
healthy control; IAV, influenza A virus; MHC, major histocompatibility complex; WGS, whole-
genome sequencing; GSA, Global Screening Array; MEGA, Multi-ethnic Genotyping Array. 
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Dataset Synoviu

m 
Intestin
e 

PBMC-cultured PBMC-blood Total 

Individual
-level 
counts 

# individuals 
with 
genotype 
and scRNA 

78 25 89 973 1165 

# individuals 
passing 
genotype QC 

78 25 88 969 1160 

# individuals 
with 
complete 
HLA 
imputation 

69 22 73 909 1073 

Cell-level 
counts 

# cells 
before cell 
QC 

278238 265629 189488 772252 1505607 

# Myeloid 66789 14492 23241 40568 145090 
# B 25917 56572 17662 80784 180935 
# T 82423 47868 136519 538579 805389 
# NK 7749 1883 11085 105148 125865 
# Fibroblast 69246 13405 0 0 82651 
# Endothelial 23199 3101 0 0 26300 
Sum (all cell 
types) 

275323 137321 188507 765079 1366230 

Sum 
(myeloid, B, 
T) 

175129 118932 177422 659931 1131414 

 
Table S2. Sample and cell numbers before and after QC. Top section includes number of 
individuals per dataset before QC and during each step. Bottom section includes number of 
cells before QC and cell counts for each major cell type and total count after QC per dataset. 
Bottom row shows sum of cells used in eQTL analysis (myeloid, B, and T cells). 
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Mean DR2 for two-field 
alleles with AF > 5% 

      

Gene Synovium Intestine 
(GSA) 

Intestine 
(custom) 

PBMC-
cultured 

PBMC-
blood 

Mean 

HLA-A 0.960 0.966 0.966 0.914 0.966 0.954 
HLA-B 0.943 0.950 0.958 0.940 0.961 0.950 
HLA-C 0.965 0.977 0.973 0.951 0.976 0.968 
HLA-DPA1 0.960 0.960 0.960 0.963 0.970 0.963 
HLA-DPB1 0.968 0.972 0.948 0.978 0.972 0.968 
HLA-DQA1 0.971 0.977 0.977 0.977 0.977 0.976 
HLA-DQB1 0.982 0.972 0.967 0.950 0.971 0.968 
HLA-DRB1 0.947 0.920 0.919 0.877 0.958 0.924        

Mean DR2 for two-field 
alleles with AF > 1% 

      

Gene Synovium Intestine 
(GSA) 

Intestine 
(custom) 

PBMC-
cultured 

PBMC-
blood 

Mean 

HLA-A 0.913 0.912 0.881 0.861 0.919 0.897 
HLA-B 0.880 0.890 0.908 0.897 0.908 0.897 
HLA-C 0.922 0.944 0.929 0.901 0.948 0.929 
HLA-DPA1 0.864 0.943 0.937 0.886 0.950 0.916 
HLA-DPB1 0.927 0.905 0.884 0.909 0.922 0.909 
HLA-DQA1 0.971 0.967 0.969 0.954 0.969 0.966 
HLA-DQB1 0.942 0.945 0.938 0.921 0.950 0.939 
HLA-DRB1 0.881 0.880 0.882 0.834 0.868 0.869 

 
Table S3. SNP2HLA imputation quality for HLA alleles. Mean imputation dosage R2 (DR2) 
for two-field HLA alleles with AF > 5% (top) and >1% (bottom) for each HLA gene (row) across 
each array dataset (columns), as well as mean across datasets (rightmost column). 
 
  



Kang et al. 

 30 

  
Percent change in expression after 
personalization 

Gene Dataset mean median q25 q75 
HLA-A  Synovium 0.268 0.117 -0.122 0.447 

Intestine -1.644 0.015 -2.027 0.614 
PBMC-cultured 0.323 0.278 0.145 0.455 
PBMC-blood -0.015 -0.012 -0.094 0.073 

HLA-B  Synovium -11.802 -12.91 -21.893 0.384 
Intestine -9.897 -9.36 -19.358 0.438 
PBMC-cultured -8.247 -7.217 -13.426 1.424 
PBMC-blood -12.071 -13.907 -21.57 0.758 

HLA-C  Synovium 26.278 29.411 4.625 43.818 
Intestine 28.794 24.934 6.184 49.257 
PBMC-cultured 38.129 40.353 4.264 53.649 
PBMC-blood 5.339 2.224 -0.062 12.058 

HLA-DPA1  Synovium 3.022 0.098 -0.088 4.348 
Intestine 0.857 0.044 -0.018 1.552 
PBMC-cultured 5.995 4.103 0 10.563 
PBMC-blood 0.554 0.085 0 0.998 

HLA-DPB1  Synovium 3.618 1.761 -0.475 6.335 
Intestine 2.416 0.627 -0.384 4.257 
PBMC-cultured 34.893 26.977 0.192 48.413 
PBMC-blood 1.055 0.237 -0.273 1.962 

HLA-DQA1  Synovium 29.007 20.261 2.834 44.221 
Intestine 22.159 15.612 2.788 32.822 
PBMC-cultured 43.461 10.767 2.875 60.908 
PBMC-blood 24.203 13.885 4.347 41.031 

HLA-DQB1  Synovium 6.757 5.061 2.876 10.191 
Intestine 7.536 7.047 2.716 10.17 
PBMC-cultured 20.486 7.309 1.517 27.283 
PBMC-blood 3.58 2.894 1.203 5.156 

HLA-DRB1  Synovium 29.021 24.545 10.216 37.902 
Intestine 17.531 16.65 6.834 22.706 
PBMC-cultured 53.603 35.305 10.341 53.387 
PBMC-blood 17.565 16.283 6.217 26.721 

 
Table S4. Percent change in estimated HLA expression after scHLApers. For each 
classical HLA gene in each dataset (rows), the mean, median, 25th and 75th quantile of percent 
change in total UMI counts (sum across all cells per individual) using scHLApers relative to a 
standard pipeline without personalization. 
Table S5. Merging cell annotations across datasets to shared labels. (See 
Kang_etal_SuppTables.xlsx, tab “Table S5”) 
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Mapping between the cell annotations provided by the original dataset, major cell types in this 
study (B, myeloid, T, NK, fibroblast, or endothelial), and merged finer-grained annotations (for B, 
myeloid, and T cells in PBMC-blood and Synovium datasets). 
 
Table S6. Characteristics of MHC variants used for eQTL testing. (See 
Kang_etal_SuppTables.xlsx, tab “Table S6”) 
Information regarding the 12,050 variants across the MHC used for eQTL testing, including 
chromosome 6 genomic position in GRCh38 (POS), REF and ALT alleles (for one- and two-field 
HLA alleles, A denotes absent, and T denotes present), imputation quality in Synovium (DR2), 
MAF in each cohort, and hg19 position (hg19_POS; as output by SNP2HLA based on MHC 
reference). For variant names, “rs” prefix indicates variant in the MHC region (dbSNP name), 
and “HLA” prefix indicates classical HLA allele. 
 
Table S7. Multi-cohort pseudobulk eQTL full results for myeloid, B, and T cells. (See 
Kang_etal_TableS7.csv)  
Results from testing each of 12,050 for association with classical HLA gene expression in each 
cell type (total 8 genes x 3 cell types x 12,050 variants = 289,200 tests) in the multi-cohort 
pseudobulk linear model. Columns list the variants in multi-cohort analysis, cell type, gene, 
effect size of variant on covariate-corrected standardized gene expression (beta), standard error 
of beta estimate, nominal P-value, and REF and ALT alleles. See Table S6 for metadata about 
each tested variant. 
 
Table S8. Multi-cohort pseudobulk lead eQTL results for myeloid, B, and T cells. (See 
Kang_etal_SuppTables.xlsx, tab “Table S8”) 
The lead eQTLs for each HLA gene and cell type in the multi-cohort pseudobulk linear model. 
Columns list the effect size (beta), standard error of beta estimate, nominal P-value, and REF 
and ALT alleles. 
 
Table S9. Comparison of effect sizes from multi-cohort vs. single-cohort pseudobulk 
eQTL models. (See Kang_etal_SuppTables.xlsx, tab “Table S9”) 
Data for Fig. 3D. Columns list the lead variants from multi-cohort analysis, cell type, gene, 
dataset (either one of four single-dataset cohorts or the combined multi-dataset cohort), effect 
size of variant on covariate-corrected standardized gene expression (beta), standard error of 
beta estimate, nominal P-value, and REF and ALT alleles. See Table S6 for metadata about 
each tested variant. 
 
Table S10. Grouping of classical HLA alleles by lead eQTLs. (See 
Kang_etal_SuppTables.xlsx, tab “Table S10”) 
For each lead eQTL variant that was not itself an HLA allele, we determined the co-occurrence 
pattern between the eQTL variant REF and ALT alleles versus two-field classical HLA alleles for 
the eQTL-associated gene. Each row corresponds to one [eQTL]-[HLA-allele] pair, listing the 
number of haplotypes in the multi-ethnic HLA reference panel with the two-field HLA allele and 
the REF eQTL allele (nHaplos_wREF), number of haplotypes with the two-field allele and ALT 
eQTL allele (nHaplos_wALT), and proportion of total reference haplotypes with the two-field 
allele (nHaplos_withAllele) with the ALT version (prop_ALT). 
 
Table S11. Multi-cohort cell-type-interaction analysis results. (See 
Kang_etal_SuppTables.xlsx, tab “Table S11”) 
Results from testing lead HLA eQTLs from multi-cohort pseudobulk analysis for cell-type 
interaction. For the lead eQTL in each gene/cell type pair, table lists the effect size (beta), 
standard error, and Wald P-value for the cell type it was the lead eQTL for, the LRT P-value 
from the mixed-effects model testing for cell type interaction, and the betas and Wald P-values 
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in each cell type (myeloid, B, and T, from the original multi-cohort pseudobulk model without cell 
type interaction) for comparison. 
 
Table S12. Multi-cohort pseudobulk conditional analysis results. (See 
Kang_etal_TableS12.csv) 
Results from conditional analysis identifying eQTLs, conditioning on the lead variant(s) from 
previous round(s). Columns list the variant, cell type, gene, round of conditional analysis 
(conditional_iter, ranging from 1 to 4 for primary to quaternary effects), effect size of eQTL 
(beta), standard error of beta estimate, and nominal P-value. Includes only variants with nominal 
P < 0.05 to reduce file size. See Table S6 for metadata about each tested variant. 
 
Table S13. Proportion of gene expression variance explained by cell state. (See 
Kang_etal_SuppTables.xlsx, tab “Table S13”)  
The estimated proportion of variance in each classical HLA gene explained by cell state (first 10 
tissue-defined hPCs) in Synovium and PBMC-blood in myeloid, B, and T cells. Columns indicate 
estimated R2 for the full NBME model (full_rsq), R2 for a model without cell state (nostate_rsq), 
and the difference (full_rsq - nostate_rsq) representing variance explained by cell state. 
 
Table S14. Testing eQTLs for cell-state interaction with single-cell NBME model. (See 
Kang_etal_SuppTables.xlsx, tab “Table S14”) 
Results from testing lead HLA eQTLs for cell-state dependence using the single-cell NBME 
model with cell state defined using the top 10 tissue-defined hPCs per cell type. For each gene, 
lead eQTL variant, dataset, and cell type (row), column E lists the significance (LRT P-value) of 
the genotype main effect as determined using a NBME model with genotype but without cell 
state terms (used to define 58 variant-gene pairs with robust main effects). Columns F-M show 
the results from the NBME model testing for cell-state interactions: the hPC with the most 
significant interaction with genotype (𝛽)×+,-, max_int_term), the interaction effect size and Wald 
P-value, the genotype main effect (𝛽), G_main_Estimate) and its Wald P-value, the size of the 
maximum interaction effect size in proportion to the genotype main effect (int_prop_main), and 
the significance of cell-state-dependency (LRT P-value and Chi-Square statistic comparing the 
full model for all hPCs to a null model without cell state interaction terms). 
 
Gene Mean 𝝌𝟐 statistic Number 

of tests 
HLA-A 133.1 9 
HLA-B 61.7 7 
HLA-C 177.8 9 
HLA-DPA1 39.4 6 
HLA-DPB1 43.1 6 
HLA-DQA1 596.9 8 
HLA-DQB1 220.4 8 
HLA-DRB1 58.1 5 
Total  58 

 
Table S15. Degree of cell-state-dependency by gene. The mean LRT 𝜒! statistic 
value from testing for cell-state-dependence across all variant-dataset-cell-type tests 
(and number of tests performed) for each gene. 
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1 Motivation

In collaboration with the authors of the OneK1K dataset index publication [1], we applied more
stringent quality control to these PBMC scRNA-seq profiles before employing the dataset in our own
analyses. Our additional dataset processing, summarized in this document, was prompted by our
observations of isolated populations with mixed type assignments that expressed unexpected marker
genes. We initially observed these putative doublet populations when performing a standard PCA-
based analysis on each major cell type separately (e.g. PCA on cells labeled B cells). We observed
fragmented cell populations with mixed type assignments (e.g. mixed B naive and B memory labels
in a population separate from the major populations for these B cell subtypes) that also contained
expression of unexpected marker genes that did not match the assigned labels (e.g. CD3 among these
“B cells”). We we found that these populations corresponded to droplets identified as doublets by
Demuxlet [2] or Scrublet [3] but not previously removed from the dataset.

2 Approach

We received scRNA-seq profiling (cells-by-counts matrix), as well as Demuxlet and Scrublet method
output, directly from the study authors. Cell type assignments provided by the study authors were
based on Azimuth mapping to a PBMC reference dataset [4]. After affirming basic per-profile QC
thresholds were met (>200 genes, <8% mitochondrial gene reads), and removing 7680 genes that
appeared in fewer than three profiles, we subdivided the profiles by major cell type using the following
mapping from the 31 available labels to 7 major types:

• CD4+ T = [CD4 TCM, CD4 Naive, CD4 TEM, Treg, CD4 CTL, CD4 Proliferating]

• Other T = [CD8 TEM, CD8 Naive, CD8 TCM, MAIT, CD8 Proliferating, gdT, dnT]

• NK = [NK, NK CD56bright, NK Proliferating, ILC]

• Monocyte = [CD14 Mono, CD16 Mono]

• DC = [cDC1, cDC2, pDC, ASDC]

• B = [B naive, B memory, B intermediate, Plasmablast]

• Other = [HSPC, Platelet, Eryth]

For each major cell type, we followed standard processing using scanpy (with parameters as de-
scribed in the “Preprocessing and clustering 3k PBMCs” tutorial unless otherwise specified [5]) to
total-count normalize to 10,000 reads per profile, logarithmize the data, retain only highly-variable
genes and compute principal components (PCs). For each major cell type, we corrected these PCs for
batch with harmony (batch = “pool”, nclust = 50, sigma = 0.2, max iter harmony = 50) to generate
hPCs. Resuming the scanpy pipeline, we used these hPCs to construct a nearest-neighbor graph and
UMAP embedding per major cell type.

The index publication authors had previously removed any droplet identified as a doublet by both
Scrublet and Demuxlet, but retained all droplets identified as doublets by only one of these two
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methods. Of the 1,249,037 profiles provided by the OneK1K dataset authors, 22,662 were identified
as doublets by Scrublet (predicted doublet mask==True) and 382,464 were called as doublets by
Demuxlet (‘BEST’ assignment to ‘DBL-’). We chose to remove these profiles. None of the cells
included in the published dataset provided by the original authors had been classified by Demuxlet as
ambiguous. Given that many profiles identified as doublets by Scrublet or Demuxlet were observed to
cluster together transcriptionally in the dataset (Figures 1, 2, 3, 4, 5, 6, 7), we performed fine-grained
clustering within each major cell type and removed any clusters for which >2/3 profiles were identified
as doublets (by either Demuxlet or Scrublet).

We used Wilcoxon rank-sum tests to identify differentially-expressed genes per fine-grained cluster
(scanpy’s rank gene groups function with method = ‘wilcoxon’). For major cell type groups besides
“Other”—which contains the profiles assigned by Azimuth to the Platelet type—we also removed fine-
grained clusters for which differential expression analysis identified PPBP, PF4, GP1BB and NRGN
among the top 6 cluster-characteristic markers, suggestive of platelet doublets.

Finally, 1803 profiles lacked results from Demuxlet and Scrublet. Of these profiles, 131 were labeled
“Doublet” by the publication authors and the remainder corresponded to an individual who also failed
genotype data quality control in our analyses (not described here). We removed these 1083 profiles.

In summary, we removed each profile if:

• The profile was identified as a doublet by either Demuxlet or Scrublet OR

• The profile was assigned to a doublet-dominated fine-grained cluster OR

• The profile was labeled as a non-platelet type but assigned to a fine-grained cluster characterized
by platelet-related genes OR

• The profile lacked doublet-calling results

Finally, we reassigned cell type labels to our retained cells, applying the same approach used by
the publication authors for the initially-provided cell type labels: Azimuth reference mapping to the
Azimuth PBMC reference. To accommodate Azimuth data volume limitations, we split the total
dataset into 15 subsets by batch pool group and applied Azimuth separately to each subset. The
major cell type classifications for the retained cells (i.e. among T, B, NK, and Myeloid groups) were
unchanged for the vast majority of cells when compared to each cell’s original major type assignment.

3 Results

Of the 1,249,037 profiles provided by the study authors from the published dataset, we chose to remove
416,556 (33%), the vast majority of which (405,126 profiles, 97%) were identified as doublets by either
Scrublet or Demuxlet, and the remainder selected using our other two criteria (Tables 1, 2).

We found that the droplets identified as doublets by Scrublet or Demuxlet largely explained the
isolated cell populations with mixed assigned types that we had observed, and platelet-contaminated
populations explained some remaining fragmented populations (Figures 1, 2, 3, 4, 5, 6, 7, 8).

Major Type Profiles Resolution Demuxlet Scrublet Fraction Removed
DC 6648 1.0 0.2 0.04 0.28
Mono 51876 2.0 0.22 0.02 0.25
B 129588 3.0 0.29 0.02 0.32
NK 172397 4.0 0.29 0.02 0.33
CD4+ T 624592 6.0 0.32 0.01 0.34
Other T 259893 6.0 0.31 0.03 0.34
Other 3912 0.2 0.44 0.04 0.61

Table 1: Profiles selected for removal, by major type. For each major type group, the total number
of profiles assigned to that group (“Profiles”) is shown, along with the resolution used for fine-grained
clustering (“Resolution”), the fraction of all profiles identified as doublets by Demuxlet or Scrublet
(“Demuxlet” and “Scrublet”, respectively), and the fraction selected for removal based on all criteria
(“Fraction Removed”)
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Removed Scrublet Dblt. Demuxlet Dblt. Platelet Clust. Dblt. Clust. Count
F F F F F 832481
T F F F T 7734
T F F T F 1893
T F T F F 358161
T F T F T 23198
T F T T F 1105
T T F F F 18602
T T F F T 4033
T T F T F 27
T NA NA NA NA 1803

Table 2: Profiles selected for removal, by criterion. “Removed”: T if the profile was selected for
removal. “Scrublet Dblt.”: T if Scrublet identified the profile as a doublet. “Demuxlet Dblt.”: T if
Demuxlet identified the profile as a doublet. “Platelet Clust.”: T if the profile was assigned to a fine-
grained cluster characterized by platelet-related genes. “Dblt. Clust.”: T if the profile was assigned to
a fine-grained cluster with <2/3 doublets. “Count”: The number of profiles matching the combination
of features captured by the corresponding row. The authors had previously removed profiles called
as doublets by both Scrublet and Demuxlet. The final row captures profiles for which doublet-calling
results were not available.

We make available a table containing the results of this data processing. This table contains one
row per cell, indexed by barcode. In addition to cell-level metadata provided in the published dataset,
we have added the following columns:

• demuxlet DBL: True iff the cell was assigned as a doublet by Demuxlet

• demuxlet AMB: True iff the cell was assigned as ambiguous by Demuxlet

• scrublet DBL: True iff the cell was assigned as a doublet by Scrublet

• scrublet score: Score assigned by Scrublet

• preQC Azimuth type: Azimuth-based cell types shared by the publication authors

• DBL cluster: True iff the cell belonged to a cluster with >2/3 cells assigned as doublets by
Scrublet or Demuxlet

• Platelet cluster: True iff the cell belonged to a cluster characterized by platelet-associated marker
genes

• remove cellQC: True iff the cell met one of the four critera for removal described here

• remove sampleQC: True iff the cell was associated with a sample we removed for our analyses
(samples with low-quality or missing genotyping data, or labeled as ethnic outliers)

• fail QC: True iff remove cellQC or remove sampleQC is True

• celltype: Azimuth cell type assignments for retained cells

• majortype: Major cell type assignments, aggregated from celltype

4 Discussion

Identification and removal of doublet droplets is a crucial quality control step in single-cell data anal-
ysis. Scrublet and Demuxlet are two of many available methods to accomplish this task. Scrublet
simulates doublet transcriptional profiles as combinations of observed profiles and compares the ob-
served profiles to these simulates. Demuxlet identifies droplets whose transcripts reflect a combination
of genetic variants unlikely to arise from a single individual in the dataset. Because these methods
have contrasting failure modes, applying both to the same dataset can enable the detection of droplets
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Figure 1: Dendritic cells. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.

by one method that were missed by the other. In the original publication of the OneK1K dataset, only
cells called as doublets on the basis of both Scrublet and Demuxlet were removed, a small fraction of
all identified doublets. Of the retained profiles identified as doublets, the vast majority were flagged by
Demuxlet (i.e. on the basis of contrasting genotypes detected in the same droplet). We found that the
retained doublets were transcriptionally perturbed in the dataset relative to cells identified as singlets
and have chosen a more stringent quality control approach to remove these cells. In collaboration
with the OneK1K dataset authors, we make available a table indicating which cells were selected for
removal in our more stringent quality control.

References

[1] Seyhan Yazar, Jose Alquicira-Hernandez, Kristof Wing, Anne Senabouth, M. Grace Gordon, Stacey
Andersen, Qinyi Lu, Antonia Rowson, Thomas R. P. Taylor, Linda Clarke, Katia Maccora, Chris-
tine Chen, Anthony L. Cook, Chun Jimmie Ye, Kirsten A. Fairfax, Alex W. Hewitt, and Joseph E.
Powell. Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune dis-
ease. Science, 376(6589):eabf3041, April 2022.

[2] Hyun Min Kang, Meena Subramaniam, Sasha Targ, Michelle Nguyen, Lenka Maliskova, Elizabeth
McCarthy, Eunice Wan, Simon Wong, Lauren Byrnes, Cristina M. Lanata, Rachel E. Gate, Sara
Mostafavi, Alexander Marson, Noah Zaitlen, Lindsey A. Criswell, and Chun Jimmie Ye. Multi-
plexed droplet single-cell RNA-sequencing using natural genetic variation. Nature Biotechnology,
36(1):89–94, January 2018. Number: 1 Publisher: Nature Publishing Group.

[3] Samuel L. Wolock, Romain Lopez, and Allon M. Klein. Scrublet: Computational Identification of
Cell Doublets in Single-Cell Transcriptomic Data. Cell Systems, 8(4):281–291.e9, April 2019.

[4] Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck, Shiwei Zheng, Andrew
Butler, Maddie J. Lee, Aaron J. Wilk, Charlotte Darby, Michael Zager, Paul Hoffman, Marlon
Stoeckius, Efthymia Papalexi, Eleni P. Mimitou, Jaison Jain, Avi Srivastava, Tim Stuart, Lamar M.

4



A Assigned cell 
type groups B Demuxlet- and Scrublet-

called doublets C Leiden clusters
(res = 2)

D Doublet clusters E Platelet marker clusters F Removed cells

Figure 2: Monocytes. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.

Figure 3: B cells. (A) Profiles colored by type label, as provided by the publication authors. (B)
Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments to
fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet or
Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.
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Figure 4: NK cells. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.

Figure 5: CD4+ T cells. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.
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Figure 6: Other T cells. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.
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Figure 7: All other cells. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.
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Figure 8: Doublet cluster identification. The profiles within each major type were clustered at
a fine-grain resolution to identify and remove doublet-predominant clusters, in addition to isolated
doublet profiles. The fraction of profiles called as doublets (by Scrublet or Demuxlet) for each fine-
grained cluster is shown along the y axis, while the size of each cluster (number of profiles) is shown
along the x axis, with plots separated by major type. Clusters with >2/3 doublets, above the blue
line, were selected for removal.
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