Supplemental material

Statistical methods

The outcome in each analysis was the logarithm of the $\phi 6$ count and tube (with duplicate measurements) was used as the cluster variable. Adherence to model assumptions was investigated by plotting graphs of the residual or standardised residual against each of the explanatory variables and in a quantile-quantile plot in the censored and uncensored experiments respectively.

Validation of storage conditions for φ6 suspensions

Triplicate tubes containing $\phi 6$ in Dey-Engley neutralizing broth (DEB) were set up and periodically enumerated via plaque assays at room temperature (0, 1, 2 and 3 hours) and at 4 °C (0, 24, 48 and 168 hours). The results were analysed using uncensored linear regression with temperature and time as categorical variables (Supplementary table 2).

Efficacy of the antimicrobial coating

Censored linear regression was performed on all experiments assessing the efficacy of the antimicrobial coating. The variables and interactions included on each of the models are shown on supplementary table 1.

Supplemental table 1. Variables and interactions included on the statistical models.

Experiment	Experiment Variables		Results table
Application of the antimicrobial coating on glass coupons	Application method, date of experiment, contact time	NA	Supplementary table 3
Application of antimicrobial coating on stainless steel and polystyrene coupons	Antimicrobial coating application, days after application of antimicrobial coating, coupon material, contact time	Antimicrobial coating application, days after application of antimicrobial coating, coupon material	Supplementary table 4
Interfering material evaluation with BSA and FBS	Antimicrobial coating application, interfering material, coupon material, contact time	Antimicrobial coating application, interfering material, coupon material	Supplementary table 5
Application of the antimicrobial coating on tray tables and an armrest	Antimicrobial coating application, days after application of antimicrobial coating	Antimicrobial coating application, days after application of antimicrobial coating,	Supplementary table 6

	(co), interfering material, train part, contact time	interfering material, train part	
Application of the	Antimicrobial coating	Antimicrobial coating	Supplementary
antimicrobial coating	application, days after	application, days	table 7
on a hand pole	application of	after application of	
	antimicrobial coating,	antimicrobial coating	
	interfering material,	(co), interfering	
	contact time	material	
Effect of wiping on	Antimicrobial coating	Antimicrobial coating	Supplementary
efficacy of the	application, days after	application, days	table 8
antimicrobial coating	application of	after application of	
on a train tray table	antimicrobial coating,	antimicrobial coating,	
in the presence of	interfering material	interfering material.	
in the presence of	interiering material,		
FBS as an interfering	train part, wiping,	train part, wiping	
FBS as an interfering material	train part, wiping, contact time	train part, wiping	

NA – Not applicable, BSA – bovine serum albumin, FBS – foetal bovine serum, (co) – continuous variable, categorical otherwise

Where there was a continuous variable in the model, it was entered as a cubic function and successively simplified to a linear function if the highest order term was not statistically significant at each step. After doing this where applicable, each model was simplified by removing the highest order interaction term that was not statistically significant and the largest p-value or was not estimable. If a model was not estimable, the next simplest model was fitted by removal of an interaction if more than one interaction of the same order in the model or the highest order interaction term, as applicable. This process continued until either all the terms in the model were main effects or the highest order interaction(s) found to be statistically significant, together with all its (their) lower order interaction, yielding the final model.

Results

Supplementary tables 2-8 show the estimates, their 95% confidence intervals (CIs) and pvalues from the final models. Model diagnostics, as described in the methods, revealed no major violations of modelling assumptions.

Supplemental table 2. Validation of storage conditions for $\phi 6$ suspensions. There was a statistically significant difference over time in the \log_{10} counts, with time points 2 and 3 hours significantly lower, and time point 48 hours significantly higher, than time point 0. However, the range of average \log_{10} change was from -0.07 to 0.05 which, in the context of these experiments, is not considered of practical significance.

Variable	Category	Coeff.*	95% CI [*]	p-value
Time (hours)	0	0.00	-	<0.001
	1	-0.01	-0.05, 0.02	
	2	-0.04	-0.08, -0.01	
	3	-0.07	-0.10, -0.03	
	24	0.00	-0.04 <i>,</i> 0.03	
	48	0.05	0.02, 0.09	
	168	-0.03	-0.07 <i>,</i> 0.00	

*Adjusted for temperature

Supplemental table 3. Application of the antimicrobial coating on glass coupons.

Application of the antimicrobial coating on glass coupons resulted in significantly lower log_{10} counts of $\phi 6$ than those obtained on non-coated coupons. The two methods of coating did not differ significantly from one another.

Variable	Category	Coeff.*	95% CI [*]	p-value
Application	No coating	0.00	-	< 0.001
method	Manual	-3.30	-4.34, -2.25	
	spraying	-3.84	-5.55, -2.13	
	Pipetting (75µL)			

*Adjusted for date of experiment and contact time (minutes)

Supplemental table 4. Application of antimicrobial coating on stainless steel and

polystyrene coupons. Application of antimicrobial coating on stainless steel and polystyrene coupons resulted in significantly lower log_{10} counts of $\phi 6$ than those obtained on non-coated coupons. No statistically significant differences were found between the materials or results obtained on different number of days since application of the antimicrobial coating.

Variable	Category	Coeff.*	95% CI*	p-value
Antimicrobial No coatin coating application (Pipetting 40		0.00 -6.16	- -6.94, -5.38	<0.001
Material Polystyrene Stainless steel		0.00 0.27	- -0.39, 0.92	0.4

Days after	1	0.00	-	0.4
application of antimicrobial	7	0.33	-0.68, 1.34	
coating	14	0.15	-0.84, 1.14	
	21	0.10	-0.94, 1.13	
	28	1.02	-0.09, 2.13	

*Adjusted for contact time (minutes)

Supplemental table 5. Interfering material evaluation. Application of the antimicrobial coating on stainless steel and polystyrene coupons in the presence or absence of bovine serum albumin (BSA) or fetal bovine serum (FBS) as interfering materials. When FBS was applied over the antimicrobial coating the average log₁₀ counts were significantly higher compared to when BSA or no interfering material were applied. However, no difference was found between average log₁₀ counts when no interfering substance was present or when BSA was applied.

Vari	able	Coeff*	95% CI*	p-value
Antimicrobial coating application	Interfering material			
No coating	No material	0.00	-	<0.001+
	BSA	0.04	-1.04, 1.11	
	FBS	0.06	-1.01, 1.11	
Coating	No material	-6.86	-7.96, -5.75	
	BSA	-7.00	-8.41, -5.59	
	FBS	-2.11	-3.25, 0.97	

*Adjusted for coupon material and contact time (minutes) *For interaction

Supplemental table 6. Application of the antimicrobial coating on tray tables and an armrest. The efficacy of the antimicrobial coating was evaluated in the presence or absence of FBS as an interfering material. A significant three-way interaction was found for the train part, antimicrobial coating application and interfering material variables. The average log₁₀ reduction associated with the antimicrobial coating was significantly higher on side B compared to side A of the tray table and significantly lower for both sides when FBS was present, with no difference detected between the two materials. The presence of FBS did not significantly affect the average log₁₀ counts on tray tables when no antimicrobial coating was present. In comparison with the tray table, average log₁₀ counts on the armrest were lower but the application of the antimicrobial coating did not lead to significant reductions on this train part. A further significant interaction between days after application and coating was also found, with the per seven day decrease without a coating significant while that with a coating showed a non-significant increase, although both well within one log₁₀. These results are likely to reflect the differences in survival of $\phi 6$ on different experiment days and a slight loss of efficacy of the antimicrobial coating with time.

	Variable		Coeff*	95% CI*	p-value
Train part	Antimicrobial	Interfering			
	coating	material			
	application				
Tray table	No coating	No material	0.00	-	<0.001+
(Side B-CSS)		FBS	0.12	-0.33, 0.57	
	Coating	No material	-4.32	-5.49, -3.15	
		FBS	-0.67	-1.24, -0.09	
Tray table	No coating	No material	0.06	-0.37, 0.49	
(Side A- HPL)		FBS	0.17	-0.27, 0.61	
	Coating	No material	-2.92	-3.95, -1.88	
		FBS	-0.61	-1.20, -0.02	
Armrest	No coating	No material	-1.08	-1.53, -0.63	
(Terluran		FBS	-0.67	-1.10, -0.24	
22)	Coating	No material	-0.67	-1.10, -0.24	
		FBS	-1.04	-1.62, -0.47	
Days after a	application of	Antimicrobial			
antimicro	bial coating	coating			
		application			
4-27	7 days	No coating	-0.15 per	-0.25, -0.04	0.001+
			week		
			increase in		
			days after		
			application		
		Coating	0.04 per	-0.12, 0.21	
			week		
			increase in		
			days after		
			application		

*Adjusted for time (minutes) +For interaction

Supplemental table 7. Application of the antimicrobial coating on a hand pole. The efficacy of the antimicrobial coating was evaluated in the presence or absence of FBS as an interfering material. A significant interaction was found between the antimicrobial coating application and the interfering material. There was a significant reduction on log₁₀ counts when the coating was applied but not when FBS was subsequently applied as an interfering material. FBS did not significantly impact log₁₀ counts when no antimicrobial coating was present. There appeared to be no significant relationship between days after application of the antimicrobial coating and the log₁₀ count.

Variable		Coeff*	95% CI*	p-value	
Train part	Antimicrobial coating application	Interfering material			
Hand pole	No coating	No material	0.00	-	< 0.001+
		FBS	0.13	-0.65, 0.91	
	Coating	No material	-3.87	-5.30, -2.44	
		FBS	-0.09	-0.82 <i>,</i> 0.65	
	Days after application of antimicrobial coating				
	7	7		-	0.3
	20	0	0.39	-0.40, 1.17	

*Adjusted for time (minutes) *For interaction

Supplemental table 8. Effect of wiping on efficacy of the antimicrobial coating on a train tray table in the presence of FBS as an interfering material. The impact of wiping depended on whether the material had been coated and whether FBS was present. When FBS was present, wiping did not impact the log₁₀ counts. Wiping significantly reduced the average log₁₀ counts when the coating was present but there was no interfering material. No significant difference was found for days after application of the antimicrobial coating or between the two sides of the tray table.

Variable		Coeff*	95% CI*	p-value	
Antimicrobial coating	Interfering material	Wiping			
application					
No coating	No material	No wiping	0.00	-	<0.001+
		10 wipes	-0.04	-0.35, 0.27	
		40 wipes	-0.44	-0.83, -0.05	
	FBS	No wiping	0.00	-0.27, 0.27	
		10 wipes	0.07	-0.26, 0.39	
		40 wipes	-0.17	-0.65, 0.31	
Coating	No material	No wiping	-3.38	-4.26, -2.49	
		10 wipes	-1.25	-1.89, -0.60	
		40 wipes	-1.34	-1.86, -0.81	
	FBS	No wiping	-0.10	-0.35, 0.15	
		10 wipes	-0.10	-0.40, 0.20	
		40 wipes	-0.10	-0.40, 0.20	
Days after application of coating					
	1		0.00	-	0.8
2		0.10	-0.30, 0.51		
	9		0.10	-0.46, 0.67	

10	-0.22	-0.94, 0.50	
11	-0.16	-0.88, 0.57	
Train part			
Tray table (Side B-CSS)	0.00	-	0.18
Tray table (Side A- HPL)	0.38	-0.18, 0.94	