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Supplementary Note 1: Model used for Case studies 
The model used for the optimization of the hyperparameters and for the case studies was trained on 
positive ionization mode mass spectra from GNPS (https://gnps-
external.ucsd.edu/gnpslibrary/ALL_GNPS) downloaded on the 15th of November 2021, 20:00 CET. The 
version of MS2Query used for the training of this model was version 0.3.2, the main difference with this 
version is that the training of the models was done in notebooks, instead of having a fully automatic 
pipeline.  

The same training workflow was used as for the k-fold cross-validation except for the sizes of the test 
sets and validation set split used. The “analogue test set” for this model was generated by randomly 
selecting 250 unique 2D molecules from the library and selecting all corresponding spectra. The “exact 
matches test set” for this model was generated by randomly selecting 3000 spectra from the library with 
at least one 2D structure match in the training spectra.  

In addition, a validation test set was used. This was used for optimizing hyperparameters of MS2Query 
and to decide which features to include in the Random Forest model. The validation test set for 
MS2Query consisted of all spectra of 50 unique 2D structures and 600 spectra with at least one 2D 
structure match in the training spectra.  

The model was trained in the same way as the k-fold validation but the number of training pairs was 
slightly different. For generating the training spectrum pairs for the random forest model of MS2Query a 
set of spectra was used containing all spectra of 200 unique 2D structures and 2400 spectra with at least 
one 2D structure match in the training spectra.  

When aiming for a recall of 35%, the MS2Query threshold for this test set is 0.633 and results in an 
average Tanimoto score of 0.67 (Supplementary Figure 3 shows a detailed Tanimoto score distribution).  

 
Supplementary Figure 1: Performance of the model used for the case studies. Source data are 
provided as a Source Data file. A: The ‘analogues test set’ is used with spectra that have no exact 
match in the library, therefore the best possible match is always an analogue. For MS2Deepscore, 
cosine score and modified cosine score, library spectra are first filtered on a mass difference of 100 
Da. The relationship between recall and average Tanimoto score (chemical similarity) is plotted. For 
each threshold the average over the Tanimoto scores between the correct molecular structure and 
the predicted analogues is calculated. B: The ‘exact match test set’ is used, all these test spectra 
have at least 1 exact structural match in the reference library. For MS2Deepscore and modified 
cosine score, library spectra are first filtered on a mass difference of 0.25 Da, while MS2Query does 
not use any pre-filtering on mass difference, and uses the exact same settings as for the analogue 
search. The percentage of true positives is given. A match is marked as true positive if the 2D 
structure is correct. 

  

a b 
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Supplementary Figure 2: The distribution of Tanimoto scores between the correct match and the 
best found match. The “Analogues test set” is used with spectra that have no exact match in the 
library, therefore the best possible match is always an analogue. The minimal threshold for 
MS2Query, MS2Deepscore and Modified cosine is set to result in a recall of 35% for this test set. A 
histogram is plotted to show the number of spectra in each subset. Source data are provided as a 
Source Data file. 

Supplementary Figure 3: Distribution of Tanimoto scores between the true structure and the best 
possible match in the reference library for the “Analogues test set”. Source data are provided as a 
Source Data file. 
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Supplementary Note 2: Feature importance 
The resulting mean squared error (MSE) for the MS2Query random forest model predicting Tanimoto 
scores is 0.0282 for the training data and 0.0255 for the validation data. The feature importance of the 
different features is given in Table S1. This method is based on an impurity-based feature importance, 
also known as the Gini importance1. As an alternative method for assessing the impact the features have 
on the model performance, random forest models were trained lacking one of the features, to determine 
the difference in performance for these models (Table S2). Replacing the average MS2Deepscore of 
multiple library structures with the MS2Deepscore between 1 library spectrum and the query spectrum 
increased the MSE from 0.0255 to 0.0337 for the validation data set. This clearly demonstrates that 
using the average of multiple similar library spectra significantly improves the performance of the 
random forest model. Removing any of the other features also decreased the performance of the model. 

Supplementary Table 1: Feature importance for the 5 features used by the random forest.  

Feature Feature 
Importance 

Average of MS2Deepscore of 
multiple similar library 
spectra 

0.62 

Precursor m/z difference 0.18 

Query spectrum m/z 0.13 

Spec2Vec score 0.05 

Average Tanimoto score for 
similar library spectra 

0.02 

 

Supplementary Table 2: The effect on the MSE, when the random forest model is trained without 
one of the features.  

Removed feature Training 
MSE 

Validation 
MSE 

No feature removed 0.0282 0.0255 

Average MS2Deepscore of 
multiple library structures 

0.0339 0.0331 

Precursor m/z difference 0.0311 0.0283 

Query precursor m/z 0.0300 0.0265 

Spec2Vec 0.0290 0.0272 

Average Tanimoto score 
of similar library 
structures 

0.0283 0.0259 
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Rationale behind precursor m/z difference 
One of the newly introduced feature of MS2Query is using precursor m/z difference as an input feature 
for the random forest model. Current implementations of an analogue search often start with a 
preselection on precursor m/z followed by selecting spectra above a predefined threshold for the used 
similarity score2. A predefined precursor m/z threshold does not differentiate between precursor m/z 
differences as long as the mass difference falls within the set threshold. However, certain specific mass 
differences will be more likely than others. By using the precursor m/z difference as an input feature, the 
random forest can learn specific mass differences that are more likely to correspond to a good analogue 
or exact match. This approach has similarities to the analogue search implementation by Stephen E. 
Stein and colleagues: in their approach, they limit the analogues to a predefined list of precursor m/z 
differences of commonly observed losses3. This is an interesting approach; however, this limits the 
analogues only to known losses and does not allow for analogues that have a substructure substituted by 
another substructure. Our random forest model is more flexible and can learn the mass differences that 
are an indication of a good analogue, even if these are not known mass differences. 

Supplementary Note 3: Testing additional features for MS2Query 
random forest model 
Five features were used as input for the current random forest model. However, multiple other features 
and variations of the current features were tested to select the features that contain information to 
predict chemical similarity. The performance of multiple models with different feature sets is compared. 
The feature importance is calculated for each model and used as a first guide for selecting important or 
relevant features, followed by training a new model with the selected features, to make sure the 
performance does increase. The performance of a model is measured by the mean squared error for the 
training and validation dataset. The code used to calculate these other features can be found in the 
branch https://github.com/iomega/ms2query/tree/add_cosine_to_features on the MS2Query Github 
repository, the notebooks for the generation of the random forest models can be found on 
https://github.com/iomega/ms2query/blob/add_cosine_to_features/notebooks/Analysis_with_dataset_G
NPS_15_12_2021/test_features_for_RF/test_random_forest_with_49_features.ipynb. Below, alternative 
possible MS2Query input features are discussed in detail. 

Modified cosine score and cosine score 
Both cosine scores and modified cosine scores were added as features for training random forest models 
to explore if they would notably contribute to the model predictions. However, the feature importance 
was always 0 for these scores, indicating that the model does not use the (modified) cosine score for the 
prediction at the set tree depth of 5. This suggests that the (modified) cosine score does not provide  
additional predictive power when MS2Deepscore and Spec2Vec are part of the model as well. Therefore, 
it was decided to not incorporate the (modified) cosine score in the workflow of MS2Query.  

Weighting of the average of multiple library structures 
The multiple library spectra were selected from the 10 library structures that are chemically most similar 
to the structure of interest, based on the Tanimoto scores. For all spectra belonging to these 10 selected 
library spectra, we compute the MS2Deepscore towards the query spectrum. To find a good, reliable 
method for taking an average and for weighting each of these selected spectra, we tried different 
approaches and selected the method with the best performance. To assess which method works best the 
MSE was compared for two models having different approaches for this feature, while the other 4 
features stayed constant (precursor m/z difference, query precursor m/z, spec2vec_score, and 
MS2Deepscore). 

There are two approaches that we assessed for calculating the average of the calculated MS2Deepscores. 
The first method just takes the average over all selected spectra regardless of which library structure it 
belongs to and the second method first calculates the average MS2Deepscore for each selected library 
structure, followed by taking the average of the 10 average scores for each library structure. Since for 
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one InChIKey the number of library spectra differs, the two methods result in a different way of 
weighting the spectra. 

The model using the feature that first calculates the average MS2Deepscore for each selected library 
structure, followed by taking the average of the 10 average scores for each library structure performed 
the best. This method had an MSE of 0.0283 for the training set and 0.0257 for the validation set. The 
model using the feature where the average is just taken over all spectra had an MSE of 0.0301 for the 
training data and an MSE for the validation data of 0.0286. Therefore, the first method of selecting the 
average was selected.   

Weighting based on Tanimoto score 
In the comparison done in S2.2 each library structure is weighted equally. In practice, however, we see 
variations in how chemically similar the 10 closest structures are (all measured using Tanimoto). To 
explore if this has any notable negative impact on our model performance, we tested a weighted 
average. This should give more importance to library molecules that are more similar. We hence 
weighted each score by the Tanimoto score and further also tested different powers of this weighting. A 
higher power will result in more extreme weight to spectra of more similar library structures and a low 
power will have less effect.  

As weight, the Tanimoto score to the power of 1-3 was tested. In Table S3 the performance of the 
different models are shown. This shows that using weighting of the different structures based on the 
Tanimoto score did not improve the overall performance of the model. Therefore, no weighting is used 
for calculating the feature using multiple library structures.  

Supplementary Table 3: Training and validation MSE for different weighting methods for the 
average MS2Deepscore of multiple library structures. 

Method of weighting Training MSE Validation MSE 

No weighting 0.0283 0.0257 

Tanimoto score 0.0284 0.0260 

Tanimoto score2 0.0286 0.0262 

Tanimoto score3 0.0290 0.0265 

 

Mass spectrometer instrument type 
The mass spectra in the GNPS library are measured on a wide variety of mass spectra instruments. We 
tested if we could use this information to improve the performance of the random forest model, since it is 
conceivable that some features are influenced by the instrument type or by whether or not the two 
spectra of interest were measured on different instruments. To this end we used metadata of spectra to 
classify the query and library spectra as a mass spectrometer using “ToF”, “Quadrupole”, “Ion Trap”, or 
“Orbitrap” setup. Instruments that were not given or used a system that could not be classified as one of 
the 4 mentioned techniques were not classified. For both the query spectrum and the library spectrum a 
binary feature is created for each of these mass spectrum instrument types. Thus, this resulted in 4 
features to indicate the type of the query spectrum and 4 features to indicate the type of the library 
spectrum: a total of 8 features. The value was set to 1 if it was measured on this instrument type and 0 
if it was not measured on this instrument type. If the instrument type could not be classified, all features 
were set to 0.  

The feature importance of training a random forest model including these features always resulted in a 
feature importance of 0. This shows that with this setup, the random forest model was not able to use 
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this information to increase the prediction quality of MS2Query. Therefore, this feature was left out in the 
current MS2Query workflow. 

Supplementary Note 4: Performance of an analogue search for 
different mass ranges 
increased performance for larger metabolites 
Many tools for MS2 spectrum annotation do not perform equally well for low and high query masses4-6. 
For MS2Query the performance for different masses is tested by splitting the ‘analogues test set’ with 
spectra without an exact match in the library into three mass ranges; 0-300 Da, 300-600 Da and > 600 
Da. Figure 3 displays the Tanimoto score distributions of the suggested analogues for these three mass 
ranges. This analysis reveals that MS2Query performs best for large metabolites (>600 Da) where it 
detected analogues with an average Tanimoto score of 0.85 and has a recall of 63%. A better 
performance for larger metabolites can also be observed when using MS2Deepscore, cosine or modified 
cosine score. The plots showing optimal and random results show the same results, suggesting that at 
least part of this improved performance for larger masses is an artifact of the spectral libraries or the 
Tanimoto score. However, the increase for the large masses seems to be more pronounced for the 
analogue search methods compared to the random search. A possible explanation why analogue 
searching is more accurate for larger metabolites, is that larger metabolites will often produce a higher 
number of characteristic fragments. In practice, the observed high analogue similarity for larger 
molecules is interesting, since it is complementary to currently existing methods relying on 
fragmentation tree-based approaches. Fragmentation tree-based methods perform well for smaller 
metabolites <500 Da, but perform less well for larger metabolites, both in terms of computational time 
and reliability4, 6, 7. This shows the potential for combining the two approaches and using the best of both 
for optimal performance.  
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Supplementary Figure 4: Recall vs quality plots, with test sets split on mass bins. These are the 
same test sets used for the “analogue test set” in the k-fold cross-validation, but here each test set 
is split on the precursor m/z of the test spectrum. The mean of these 20 test sets are shown and 
the standard deviation is highlighted. Source data are provided as a Source Data file. 
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Supplementary Note 5: Justification for method of selecting training 
data 
Pairs of spectra were used for the training data of the random forest. If the spectra pairs would have 
been picked at random, the resulting Tanimoto scores would be very low on average8. To prevent 
overfitting to low Tanimoto scores, it is important that a more equal distribution of Tanimoto scores is 
used for training. To achieve this, the spectrum pairs were picked by selecting the top 100 highest 
scoring library spectra for MS2Deepscore for a set of training spectra. This method for selecting spectrum 
pairs of spectra for training is similar to the workflow for running MS2Query and results in a relatively 
equal distribution of Tanimoto scores between these spectra, preventing a bias towards predicting lower 
Tanimoto scores. 

 

Supplementary Figure 5: Comparison of the distribution of Tanimoto scores between spectral pairs 
in the library and the distribution for the used training data. Source data are provided as a Source 
Data file. a: Distribution of Tanimoto scores when selecting random spectral pairs. Spectral pairs 
are selected by making a pair between the training spectra and all InChiKeys in the library. b: 
Distribution of Tanimoto scores between the pairs of spectra used for training the random forest 
model. These spectral pairs were selected by calculating MS2Deepscore between each training 
spectrum and the reference library and making pairs with the 100 highest scoring library spectra.  

 	

a b 
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Supplementary Note 6: Additional analysis case study GNPS 
The GNPS analogue search was run for case studies 1-3 using a mass window of 200 Da, a cosine score 
threshold of 0.6, minimum matched peaks set to 3, the ion mass tolerance set to 0.25 Da and a 
fragment Ion Mass Tolerance of 0.01 Da.  

A molecular network was created with the Feature-Based Molecular Networking (FBMN) workflow 
(Nothias et al., 2020) on GNPS (https://gnps.ucsd.edu, (Wang et al., 2016). The feature quantification 
table and MS2 spectral summary file were uploaded to GNPS. The data were filtered by removing all MS2 
fragment ions within +/- 17 Da of the precursor m/z. MS2 spectra were window filtered by choosing only 
the top 6 fragment ions in the +/- 50 Da window throughout the spectrum. The precursor ion mass 
tolerance was set to 0.02 Da and the MS2 fragment ion tolerance to 0.02 Da. A molecular network was 
then created where edges were filtered to have a cosine score above 0.7 and more than 3 matched 
peaks. Further, edges between two nodes were kept in the network if and only if each of the nodes 
appeared in each other’s respective top 10 most similar nodes. Finally, the maximum size of a molecular 
family was set to 100, and the lowest scoring edges were removed from molecular families until the 
molecular family size was below this threshold.  

The jobs can be publicly accessed at:  

Blood plasma LTR analogue search: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=5d4577850dae44758da85c6ee3b77e89 

Urine LTR analogue search: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=303ee7013d994074b27de8b86fd3bbad  

Blood plasma NIST 1950 analogue search: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6f0c60c689bb4facb64e96fac968ff0d  

Anammox bacteria molecular networking: 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=250044393bf44654ad72b7cebebba478  

The results of the analogue searches are merged with the annotated csv files. Despite our efforts, it is 
challenging to judge for a case study what method performs better, due to the relatively low number of 
(tentatively) validated spectra and the fact that judging the quality of analogues is somewhat subjective. 
However, for case study 1 a relatively high number of case study spectra could be validated. In total, for 
67 spectra, the precursor m/z and retention time could be linked to an in-house reference. Both the 
results predicted by GNPS and MS2Query were compared to the reference standards. The biggest 
difference was in the spectra that we were not able to validate, which makes it challenging to directly 
compare the performance of GNPS analogue search with GNPS for this case study.  

Supplementary Table 4: Results of manual validation of results of MS2Query and GNPS analogue 
search for the NIST blood plasma case study. 
 

MS2Query GNPS 
Correct 9 6 
Good analogue 31 40 
Analogue 16 11 
Bad analogue 4 4 
Wrong 1 0 
Unknown 14 29 
Unannotated 28 13 
Total 103 103 
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Supplementary Note 7: Performance without precursor m/z 
preselection 
Benchmarking with Cosine score, Modified cosine score and MS2Deepscore was done with a preselection 
on mass difference between a query and library molecule of 100 Da. In Supplementary Figure 7, we 
compare the difference in performance with and without a preselection on mass difference. These results 
show that performance is slightly better when using prefiltering on a mass difference of 100 Da, when 
using MS2Deepscore and the cosine score. When using the modified cosine score the results are a bit 
better for low recall settings, when no preselection on mass difference is done, however this comes at 
the cost of a large increase in runtime.  

In addition a new MS2Deepscore model was trained that already includes the precursor m/z during 
training. The performance of this model is slightly better, but still MS2Query performs better.  

 

 

Supplementary Figure 6: Comparisons of performance for variants of the reference benchmarking 
used in Figure 2. Source data are provided as a Source Data file. a: Modified Cosine score with a 
preselection on a mass difference of 100 Da performs slightly better at low recall. The first test set 
of the 20-fold cross-validation was used. b: Cosine score with a preselection on a mass difference 
of 100 Da performs slightly better than the cosine score without any preselection on mass 
difference. The first test set of the 20-fold cross-validation was used. c: MS2Deepscore with 
preselection on a mass difference of 100 Da performs slightly better than MS2Deepscore without 
any preselection on mass difference. The same 20-fold cross-validation test sets are used as in the 
main text. The mean of these 20 test sets are shown and the standard deviation is highlighted. d: 
MS2Deepscore model trained including precursor m/z. This model performs slightly better than the 
MS2Deepscore model trained without this feature, however MS2Query still performs better 
compared to this model. The first test set of the 20-fold cross-validation was used. 

a b 

c d 
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Supplementary Note 8: Cosine score and Modified Cosine score 
The cosine score and modified cosine score are used as reference benchmarking. The Cosine score and 
modified cosine score both calculate spectral similarity by directly comparing spectral peaks. The score is 
calculated by finding the best possible matches between peaks of two spectra and subsequently 
calculating a cosine score between the resulting vectors.  

For the comparison of a spectrum S to another spectrum S’ a peak p is considered as an eligible match 
for the cosine score if mz(p)-mz(p’) < t, where t is the tolerance. The tolerance used was 0.05 Da.  

For the modified cosine score a peak is also considered as an eligible match if mz(p)-mz(p’) < t, but also 
if mz(p) + M - mz(p’) < t, where M=PM(S’)-PM(S). M is the modification mass and PM is the Precursor 
mass.  
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Supplementary Note 9: Methods details listed in Tables	
Supplementary Table 5: Lipid standard mixture. 

Lipid Stock conc. (mg/mL) Conc. (µg/mL) in Lipid Mix 

LPC(9:0) 0.5 0.25 

PC(11:0/11:0) 0.1 0.25 

FA(17:0) 0.1 2.50 

PG(15:0/15:0) 0.01 1.00 

PE(15:0/15:0) 0.01 0.25 

PS(17:0/17:0) 0.1 6.00 

PA(17:0/17:0) 0.1 1.00 

Cer(d18:1/17:0) 0.1 0.05 

DG(19:0/19:0) 0.2 12.00 

PC(23:0/23:0) 0.1 0.25 

TG(15:0/15:0/15:0) 0.1 2.50 

TG(17:0/17:0/17:0) 0.1 2.50 
 

Supplementary Table 6: HILIC MR and IS mixture 

Compound MR/IS Conc. in MR or IS 
solution (µM) 

L-Phenylalanine-13C,15N9 MR 2400 

Adenine-2d1 MR 192 
Taurine-15N MR 2400 

Creatine-d3 H2O MR 240 
L-Arginine-13C6 MR 2400 

L-Tryptophan-d5 MR 2400 
Uracil-2-13C,15N2 MR 2400 

N-Benzoyl-d5-glycine IS 4800 
Adenosine-2-d-1 IS 384 
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Supplementary Table 7. RP MR and IS mixture 

Compound MR/IS Conc. in MR or IS 
solution (µM) 

L-Glutamic Acid-13C5 MR 2000 
L-Isoleucine-13C6,15N MR 7500 

L-Leucine-13C6 MR 7500 
L-Tryptophan-13C11,

15N2 MR 1500 
Octanoic Acid-13C8 MR 1000 
L-Glutamine-13C5 MR 12500 

Creatinine-Methyl-d3 MR 10000 
Cytidine-5,6-d2 MR 4000 
Citric Acid-13C6 MR 5000 

Benzoic Acid-Ring-13C6 MR 2000 
L-Phenylalanine-13C9,15N IS 600 

(N-Benzoyl-d5-Glycine) Hippuric Acid-d5 IS 500 
 

Supplementary Table 8. RPC lipid profiling LC gradient elution program 

LC Gradient 
# Time (min) Flow 

(mL/min) 
% A % B Curve 

1 Initial 0.6 99.0 1.0 Initial 

2 0.10 0.6 99.0 1.0 6 

3 2.00 0.6 70.0 30.0 6 

4 11.50 0.6 10.0 90.0 6 

5 12.00 1.0 0.1 99.9 6 

6 12.50 1.0 0.1 99.9 6 

7 12.55 0.9 35.0 65.0 6 

8 12.65 0.8 70.0 30.0 6 

9 12.75 0.7 99.0 1.0 6 

10 12.95 0.6 99.0 1.0 6 

11 13.25 0.6 99.0 1.0 6 
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Supplementary Table 9. HILIC profiling LC gradient elution program 

Gradient 
# Time (Mins) Flow (ml/min) % A % B Curve 
1 Initial 0.600 5.0 95.0 Initial 
2 0.1 0.600 5.0 95.0 6 
3 4.6 0.600 20.0 80.0 6 
4 5.5 0.600 50.0 50.0 6 
5 7.0 0.600 50.0 50.0 6 
6 7.1 0.605 5.0 95.0 6 
7 7.2 0.610 5.0 95.0 6 
8 7.3 0.620 5.0 95.0 6 
9 7.4 0.650 5.0 95.0 6 
10 7.5 0.700 5.0 95.0 6 
11 7.6 0.800 5.0 95.0 6 
12 7.7 0.900 5.0 95.0 6 
13 7.8 1.000 5.0 95.0 6 
14 12.50 1.000 5.0 95.0 6 
15 12.65 0.600 5.0 95.0 6 

 
Supplementary Table 10. RPC urine profiling LC gradient elution program 

Gradient 

# Time (Mins) Flow (ml/min) % A % B Curve 
1 Initial 0.600 99.0 1.0 Initial 

2 0.10 0.600 99.0 1.0 6 

3 10.00 0.600 45.0 55.0 6 

4 10.15 0.610 35.0 65.0 6 

5 10.30 0.630 25.0 75.0 6 

6 10.45 0.670 15.0 85.0 6 

7 10.60 0.750 5.0 95.0 6 

8 10.70 0.800 0.0 100.0 6 

9 11.00 1.000 0.0 100.0 6 

10 11.55 1.000 0.0 100.0 6 

11 11.65 1.000 99.0 1.0 6 

12 11.70 0.900 99.0 1.0 6 

13 11.80 0.800 99.0 1.0 6 

14 11.90 0.700 99.0 1.0 6 

15 12.00 0.650 99.0 1.0 6 

16 12.10 0.610 99.0 1.0 6 

17 12.15 0.600 99.0 1.0 6 

18 12.65 0.600 99.0 1.0 6 
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