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1. A toy example for the module attention mechanism

An example of module attention mechanism is illustrated in the toy example shown in Figure S1,
demonstrates how attention mechanism works and why it improves on learning. In the left
two-dimension Cartesian coordinate system, green vectors A, B, and C are gene expression
module vectors, and yellow vectors D, E, F, and G are DNA methylation module vectors. In
this example, gene expression module A and DNA methylation module D, and gene expression
module B and DNA methylation modules E and F have high similarities. The similarity score
represents cosine similarity between the gene expression and DNA methylation modules. Each
gene expression module vector was computed as the weighted sum according to the similarity
with each DNA methylation module. Also, the weight sum of each DNA methylation module
vector was calculated according to the similarity to the gene expression module. The red vectors
in the two-dimensional coordinate system on the green background represent the modified gene
expression module vectors, and the red vectors on the orange background represent the modified
DNA methylation vectors. Through the module attention mechanism, we could pay attention to
modules with high similarity between the two data modules.
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Fig. S1. Toy example to illustrate the module attention. In a two-dimensional Cartesian coordi-
nate system, green vectors A, B, and C are gene expression module vectors, yellow vectors D,
E, E and G are DNA methylation vectors. In this case, the similarity is high between vectors A
and D and between vectors E, B and F, respectively. After calculating cosine similarity scores
between the gene expression and DNA methylation modules, attention is given to the modules
with the high similarity.



2. Our Proposed Multi-task Attention Learning Algorithm for gene expression and
DNA methylation data

In the main script, we applied MOMA with gene expression and DNA methylation data.

A. MOMA algorithm on two different datasets

Given a training sample {x!, x2, y}, where x! and x? denote the sample under the gene expression
and DNA methylation profile, and y is the corresponding label. Let f,,,;. denotes the module
encoder. The module vector of each omics data is defined as follows:

module

1
M (xl) = f;}mﬂlule <X1;91 ) € RY XD’
20,2 2 2.pn2 N2xD
M (x ) :fmodule (X ’emodule) €RY "7,

where f,,04u1. consists of the fully connected layer and unit vector normalization, 6,4, denotes
the weights of f,,4ule, D is the dimension of the module vector, N! and N? are the number of
gene expression modules and number of DNA methylation modules, respectively, and M! and
M2 are the module vectors of gene expression and DNA methylation, respectively.

We devised a module attention mechanism that focuses on modules with high similarity
between the gene expression module and the DNA methylation module. We used cosine similarity
to measure relevance. We defined the attention matrix Att! and Att? according to the softmax
axis as follows:

exp cos (M) o exp (cos (M, M)
2 7
T, exp (cos (M, MZ))

Atth (x) = = ,
) T, exp (cos (M, M)

where M = M(x) for short, M; denotes I-th module of the module vector. Each element of Att
stores the relation information with possible dependence between the I-th module from one omics
data and the k-th module from another omics data module.

To highlight the important modules, the module vectors are multiplied by the attention matrix.
The fully connected layers are then applied, which flattens the multi-dimensional vectors and
yields the final probabilities for each label. Loss L is set to the cross-entropy error between the
gold label and task-specific outputs:
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where M = M(x) for short, C represents the total number of classes, y. denotes a labeling of c, f} ’
and f%c consist of multiple fully connected layers, 6. denotes the weights of f, and W denotes

the weight. A L2-norm penalty was used to the optimization to avoid overfitting of the module
encoders and the multiple connected layers.

B. Hyperparameters list for nested lidation

We proceeded to performance measurements under the 5-fold outer cross-validation (CV) (Fig-
ure S2). Given data were split into training and test data with a 4:1 ratio. In the training data,
the optimal hyperparameters of the model were determined using grid search by inner 3-fold
CV in training data. Table S1 and Table S2 show the grid search results for MOMA on ROSMAP
datasets.

Hyperparameters are as follows for each model. For XGBoost, the parameters of ‘the max depth’
from the set {3, 5, 7, 9}, ‘the regularization lambda’ from the set {100, 10, 1, 0.1, 0.01}, and ‘the learn-
ing rate” from the set {0.3, 0.2, 0.1, 0.01} were optimized. For DNN, the parameters of ‘the number
of layers’ from the set {3, 5, 7}, ‘the learning rate’ from the set {5 x 1073,5 x 107¢,5 x 10_7},
‘the weight decay’ from the set {1072,107%,107°,0}, and ‘the early stopping patience’ from the
set {10, 30, 50, 100} were optimized. All hidden layers are equipped with ReLU activation and
the final layer is with sigmoid or softmax functions. For MORONET!, the parameters of ‘the
threshold of affinity values” from the set {2, 4, 6, 8, 10}, ‘the learning rate for pretraining’ from

Wang, Tongxin, et al. "MORONET: Multi-omics Integration via Graph Convolutional Networks for Biomedical Data
Classification." bioRxiv (2020).
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Fig. S2. Illustration of the nested cross-validation used in this study.

the set {5 x 1073,5 x 107}, ‘the learning rate for graph convolutional network’ from the set
{5 x 1073,5 x 10_4}, ‘the learning rate for classifier’ from the set {5 x 1073,5 x 10_4}, and ‘the
number of significant features for each omics data type’ from the set {200, 400} were used. MOFA?

was used for integrating multi-omics data, and the performance was measured with support vec-
tor machine (SVM) based on the extracted factors. The parameters of ‘the number of factors’ from
the set {32, 64, 128, 256} (with less than the sample size) was optimized. For SVM, the parameters
of 'Regularization parameter’ from set {0.001,0.01,0.1,1,10}, and the parameters of "kernel” from
the set {linear and radial basis function} were used. For SMSPL3, the parameters of ‘the parameter
for adjusting influence from other modalities” from the set {0.66,0.1,0.01}, ‘the age parameter’ from
the set {(0.66,0.66), (0.1,0.1), (0.01,0.01) }, “the size of increasing the age parameter with each
iteration’ from the set {0.01,0.02,0.04,0.08}, and ‘The size to increase the selected sample for each
iteration” from the set {2, 4} were optimized. In TCGA 34 class classification, due to the enormous
computation cost (5 X 3 x 72 x 3 days) of adopting the inner CV strategy, the parameters were
directly adjusted. For P-NET#, the network structure made up of biological entities was used,
and ’the drop rate’, ‘the drop interval’, and "the epoch’ required for learning were tuned from the
set {(0.1,100,300), (0.1,200, 500), (0.25, 100, 500), (0.25,200, 1000), (0.5, 100, 500), (0.5,200,1000) }.
In TCGA 34 class classification, we used cross entropy instead of binary cross entropy and applied
a softmax function to the last layer. "the drop rate’, ‘the drop interval’, and "the epoch” were opti-
mized from the set {(0.1,100,300), (0.1,200, 500), (0.25,100, 500), (0.25,200, 1000), (0.5, 100, 500),

(0.5,200,1000), (0.75,200,1000), (0.75,200,2000), (0.75, 1000, 5000), (0.75,1500,7500) }. And, it
was selected whether to combine or intersect each feature group in multi-omics data for optimiza-
tion.

C. Analysis
Table S3 shows performance comparison in terms of average precision (AP) in addition to other
metrics in Table 2 in the main manuscript. MOMA demonstrated the best AP in the ROSMAP
cohort. In the TCGA early- and late-stage classification, MOMA showed the best AP performance
in 8 of 18 data sets. In addition, we performed a two-tailed paired t-test between other methods
and MOMA for 5 s x 20 Tasks (including ROSMAP normal (NL)/Alzheimer’s disease (AD)
classification, TCGA 34 classes classification, and Early- and late-stage classification of 18 cancer
types) (Table S4) to show the significance of performance improvement.

We compared the computational time, the number of parameters, memory usage, and GPU
memory usage of XGBoost, DNN, MORONET, MOFA, SMSPL, P-NET, and MOMA (Table S5)
on a 10-core Intel i9-10900X CPU and an NVIDIA TITAN RTX GPU. We counted the number of

Argelaguet, Ricard, et al. "Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data
sets." Molecular systems biology 14.6 (2018): e8124.

Yang, Ziyi, et al. "SMSPL: Robust Multimodal Approach to Integrative Analysis of Multiomics Data." IEEE Transactions on
Cybernetics (2020).

Elmarakeby, Haitham A., et al. "Biologically informed deep neural network for prostate cancer discovery." Nature 598.7880
(2021): 348°352.
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parameters for the neural network-based models. XGBoost and SMSPL only used the CPU. In
MOFA, the resources were estimated for the MOFA model, not including the resources used for
SVM for classification.

3. Our Proposed Multi-task Attention Learning Algorithm for MRI, PET, and gene ex-
pression data

We applied MOMA with new three datasets to predict Alzheimer’s disease and control on the
ADNI-TADPOLE® data: two bioimaging datasets (MRI ROIs and AV45 PET ROIs) and gene
expression data.

A. MOMA algorithm on three different datasets

Given a training sample {x!, x?, x3, y}, where x!, x2, and x® denote the sample under the PET

profile, the MRI profile, and the gene expression profile, and y is the corresponding label. Let
fmodute denotes the module encoder. The module vector of each datasets is defined as follows:
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where f,,04u1. consists of the fully connected layer and unit vector normalization, 6,4, denotes
the weights of f,,,o4u10, D is the dimension of the module vector, N!, N2, and N? are the number of
PET modules, the number of MRI modules and number of gene expression modules, respectively,
and M1, M2, and M3 are the module vectors of PET, MRI, and gene expression, respectively. We
devised a module attention mechanism that focuses the relationship between the three modules.
We devised 3P, attention matrices.
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where M = M(x) for short, M; denotes I-th module of the module vector. Each element of Atty;
stores the relation information with possible dependence between the I-th module from one
dataset and the k-th module from another dataset module. Modules with high similarity to the
other two data sets were focused and used for prediction. Loss L is set to the cross-entrophy error
between the gold label and task-specific outputs:

L=- é <yc -log <f}c ((A*tl("))Tle (A”3(x))TMl"9}C>)
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T T
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where M = M(x) for short, C represents the total number of classes, y. denotes a labeling of ¢,
f} » f}c, and f;’ . consist of multiple fully connected layers, 6. denotes the weights of fr., and

W denotes the weight. A L2-norm penalty with a regularization parameter A was used to the
optimization to avoid overfitting.

Jack Jr, Clifford R., et al. "The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods." Journal of Magnetic
Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine 27.4 (2008): 685-691



Table S1. The results of the grid search for CV1, CV2, and CV3 on ROSMAP NL/AD classifica-
tion task.

Early . - Early . - Early . -
Outer #of Learning | Weight Outer #of Learning | Weight Outer #of Learning | Weight
CV | Module 'S,‘:(z’r:zg Rate Decay AUC CV | Module 'S,‘:J;F:Z: Rate Decay AUC CV [ Module i':u‘):,:z: Rate Decay AUC
1 32 50 [ 5.E-07 | 0.E+00 | 0.78015 2 32 50 | 5.E-07 | 0.E+00 | 0.73584 3 32 50 | 5.E-07 | 0.E+00 [0.76411

32 50 | 5.E-07 | 1.E-07 | 0.7912
32 50 | 5.E-07 | 1.E-05 |0.77847
32 50 [ 5.E-07 | 1.E-03 | 0.75049
32 50 | 5.E-06 | 0.E+00 | 0.80132
32 50 | 5.E-06 | 1.E-07 | 0.78764
32 50 | 5.E-06 | 1.E-05 |0.79101
32 50 | 5.E-06 | 1.E-03 | 0.787

32 100 | 5.E-07 [ 0.E+00]0.79516
32 100 | 5.E-07 | 1.E-07 | 0.78287
32 100 | 5.E-07 | 1.E-05 | 0.79167
32 100 | 5.E-07 [ 1.E-03 | 0.77334
32 100 | 5.E-06 | 0.E+00 | 0.78366
32 100 | 5.E-06 | 1.E-07 | 0.79824
32 100 | 5.E-06 [ 1.E-05]0.77645
32 100 | 5.E-06 | 1.E-03 | 0.77381
64 50 [ 5.E-07 | 0.E+00 | 0.79463
64 50 | 5.E-07 | 1.E-07 | 0.76707
64 50 | 5.E-07 | 1.E-05 |0.77448
64 50 | 5.E-07 | 1.E-03 | 0.81526
64 50 | 5.E-06 | 0.E+00 | 0.79809
64 50 | 5.E-06 | 1.E-07 | 0.781

64 50 [ 5.E-06 | 1.E-05 | 0.78015
64 50 | 5.E-06 | 1.E-03 | 0.78873
64 100 | 5.E-07 [ 0.E+00]0.80313
64 100 | 5.E-07 [ 1.E-07 | 0.7817
64 100 | 5.E-07 | 1.E-05 | 0.7921

64 100 | 5.E-07 [ 1.E-03 | 0.78599
64 100 | 5.E-06 | 0.E+00 | 0.80546
64 100 | 5.E-06 | 1.E-07 | 0.78343
64 100 | 5.E-06 [ 1.E-05]0.77942
64 100 | 5.E-06 | 1.E-03 | 0.79872
128 50 | 5.E-07 | 0.E+00 | 0.78609
128 50 | 5.E-07 | 1.E-07 | 0.7888
128 50 | 5.E-07 | 1.E-05 |0.77888
128 50 | 5.E-07 | 1.E-03 | 0.79576
128 50 | 5.E-06 | 0.E+00 | 0.80557
128 50 | 5.E-06 | 1.E-07 |0.78851
128 50 [ 5.E-06 | 1.E-05 | 0.79403
128 50 | 5.E-06 | 1.E-03 |0.79167
128 100 | 5.E-07 | 0.E+00 | 0.78608
128 100 | 5.E-07 [ 1.E-07 | 0.78847
128 100 | 5.E-07 | 1.E-05 | 0.79956
128 100 | 5.E-07 [ 1.E-03 | 0.80263
128 100 | 5.E-06 | 0.E+00 | 0.7951

128 100 | 5.E-06 [ 1.E-07 | 0.7909
128 100 | 5.E-06 [ 1.E-05 | 0.79269
128 100 | 5.E-06 | 1.E-03 | 0.79343

32 50 | 5.E-07 | 1.E-07 | 0.74689
32 50 | 5.E-07 | 1.E-05 | 0.76896
32 50 [ 5.E-07 | 1.E-03 | 0.75362
32 50 | 5.E-06 | 0.E+00 | 0.7723
32 50 | 5.E-06 | 1.E-07 | 0.74739
32 50 | 5.E-06 | 1.E-05 |0.75683
32 50 | 5.E-06 | 1.E-03 | 0.74124
32 100 | 5.E-07 [ 0.E+00]0.75316
32 100 | 5.E-07 | 1.E-07 | 0.76737
32 100 | 5.E-07 | 1.E-05 | 0.75567
32 100 | 5.E-07 [ 1.E-03 | 0.77456
32 100 | 5.E-06 | 0.E+00 | 0.76921
32 100 | 5.E-06 | 1.E-07 | 0.75129
32 100 | 5.E-06 [ 1.E-05]0.75825
32 100 | 5.E-06 | 1.E-03 | 0.78148
64 50 [ 5.E-07 | 0.E+00 | 0.75962
64 50 | 5.E-07 | 1.E-07 | 0.75712
64 50 | 5.E-07 | 1.E-05 | 0.76868
64 50 | 5.E-07 | 1.E-03 | 0.77296
64 50 | 5.E-06 | 0.E+00 | 0.76444
64 50 | 5.E-06 | 1.E-07 [0.76441
64 50 | 5.E-06 | 1.E-05 [0.76371
64 50 | 5.E-06 | 1.E-03 | 0.74992
64 100 | 5.E-07 [ 0.E+00 | 0.75609
64 100 | 5.E-07 [ 1.E-07 | 0.76176
64 100 | 5.E-07 [ 1.E-05 | 0.75431
64 100 | 5.E-07 [ 1.E-03 | 0.76369
64 100 | 5.E-06 | 0.E+00 | 0.76819
64 100 | 5.E-06 | 1.E-07 | 0.77012
64 100 | 5.E-06 [ 1.E-05 | 0.769

64 100 | 5.E-06 | 1.E-03 | 0.77517
128 50 | 5.E-07 | 0.E+00 | 0.76187
128 50 [ 5.E-07 | 1.E-07 | 0.76789
128 50 | 5.E-07 | 1.E-05 |0.76013
128 50 | 5.E-07 | 1.E-03 | 0.75842
128 50 | 5.E-06 | 0.E+00 | 0.77455
128 50 | 5.E-06 | 1.E-07 [ 0.7594
128 50 | 5.E-06 | 1.E-05 [0.75971
128 50 | 5.E-06 | 1.E-03 | 0.77038
128 | 100 | 5.E-07 | 0.E+00 | 0.7739
128 | 100 [ 5.E-07 | 1.E-07 [0.76741
128 | 100 | 5.E-07 | 1.E-05 | 0.76746
128 [ 100 [ 5.E-07 | 1.E-03 | 0.77596
128 | 100 | 5.E-06 | 0.E+00 | 0.7529
128 | 100 | 5.E-06 | 1.E-07 |0.75918
128 | 100 | 5.E-06 [ 1.E-05 | 0.75844
128 | 100 | 5.E-06 | 1.E-03 | 0.76722

32 50 | 5.E-07 | 1.E-07 | 0.76033
32 50 | 5.E-07 | 1.E-05 |0.76643
32 50 | 5.E-07 | 1.E-03 | 0.7776
32 50 | 5.E-06 | 0.E+00 | 0.77533
32 50 | 5.E-06 | 1.E-07 | 0.71794
32 50 | 5.E-06 | 1.E-05 | 0.75641
32 50 | 5.E-06 | 1.E-03 | 0.76363
32 100 [ 5.E-07 | 0.E+00 | 0.7609
32 100 | 5.E-07 | 1.E-07 |0.77717
32 100 | 5.E-07 | 1.E-05 |0.77276
32 100 [ 5.E-07 | 1.E-03 | 0.76823
32 100 | 5.E-06 | 0.E+00 | 0.77851
32 100 | 5.E-06 | 1.E-07 | 0.78613
32 100 | 5.E-06 | 1.E-05 | 0.79264
32 100 | 5.E-06 | 1.E-03 [0.77251
64 50 | 5.E-07 | 0.E+00 [0.79161
64 50 | 5.E-07 | 1.E-07 | 0.78826
64 50 | 5.E-07 | 1.E-05 | 0.79433
64 50 | 5.E-07 | 1.E-03 [0.79331
64 50 | 5.E-06 | 0.E+00 | 0.77278
64 50 | 5.E-06 | 1.E-07 [ 0.75814
64 50 | 5.E-06 | 1.E-05 | 0.78425
64 50 | 5.E-06 | 1.E-03 | 0.77224
64 100 [ 5.E-07 | 0.E+00 | 0.7729
64 100 [ 5.E-07 | 1.E-07 | 0.77539
64 100 | 5.E-07 | 1.E-05 | 0.7701

64 100 | 5.E-07 | 1.E-03 | 0.77676
64 100 | 5.E-06 | 0.E+00 | 0.78651
64 100 | 5.E-06 | 1.E-07 | 0.77586
64 100 | 5.E-06 | 1.E-05 | 0.77232
64 100 | 5.E-06 | 1.E-03 | 0.78252
128 50 | 5.E-07 | 0.E+00 | 0.78048
128 50 | 5.E-07 | 1.E-07 | 0.7925
128 50 | 5.E-07 | 1.E-05 | 0.78025
128 50 | 5.E-07 | 1.E-03 [0.76891
128 50 | 5.E-06 | 0.E+00 | 0.77706
128 50 | 5.E-06 | 1.E-07 [0.78213
128 50 | 5.E-06 | 1.E-05 [0.79041
128 50 | 5.E-06 | 1.E-03 |0.79413
128 | 100 | 5.E-07 | 0.E+00 | 0.76442
128 [ 100 [ 5.E-07 | 1.E-07 | 0.78628
128 | 100 | 5.E-07 | 1.E-05 |0.78573
128 [ 100 [ 5.E-07 | 1.E-03 | 0.77989
128 | 100 | 5.E-06 | 0.E+00 | 0.78387
128 | 100 | 5.E-06 | 1.E-07 [0.76381
128 | 100 [ 5.E-06 | 1.E-05 | 0.7844
128 | 100 | 5.E-06 | 1.E-03 | 0.78252

(SN ENE ENE ENY ENY EN) FRY FOR RN ENR ENY ENY UNR SRR ER ECR ENY FNY FN) ) IR FNR ENY ENY ENY FRY FOY ENR ENY ENY ENY UNY FOR ER ENY NN ENY FNY Y FO) FNR ENY EXY ENY ENY FRR RN
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Table S2. The results of the grid search for CV4 and CV5 on ROSMAP NL/AD classification
task.

Early X - Early §

Outer | #of Learning | Weight Outer | #of ? | Learning | Weight
Stopping AUC Stopping AUC

CV | Module Patience Rate Decay CV | Module Patience Rate Decay
4 32 50 | 5.E-07 | 0.E+00 | 0.6945 5 32 50 | 5.E-07 | 0.E+00 | 0.8271

32 50 | 5.E-07 | 1.E-07 [ 0.7151

32 50 | 5.E-07 | 1.E-05 [ 0.7135
32 50 | 5.E-07 | 1.E-03 [0.69261
32 50 | 5.E-06 | 0.E+00 | 0.6882
32 50 | 5.E-06 | 1.E-07 | 0.72246
32 50 | 5.E-06 | 1.E-05 | 0.71966
32 50 | 5.E-06 | 1.E-03 |0.73126
32 100 | 5.E-07 | 0.E+00 | 0.71821
32 100 [ 5.E-07 | 1.E-07 | 0.72505
32 100 | 5.E-07 | 1.E-05 | 0.74258
32 100 [ 5.E-07 | 1.E-03 | 0.72475
32 100 [ 5.E-06 | 0.E+00 [ 0.71271
32 100 | 5.E-06 | 1.E-07 | 0.73879
32 100 | 5.E-06 | 1.E-05 |0.72145
32 100 [ 5.E-06 | 1.E-03 | 0.73635
64 50 | 5.E-07 | 0.E+00 | 0.73149
64 50 | 5.E-07 | 1.E-07 | 0.72359
64 50 | 5.E-07 | 1.E-05 |0.71524
64 50 | 5.E-07 | 1.E-03 | 0.71944
64 50 | 5.E-06 | 0.E+00 [0.71931
64 50 | 5.E-06 | 1.E-07 | 0.72226
64 50 | 5.E-06 | 1.E-05 | 0.75134
64 50 | 5.E-06 | 1.E-03 | 0.72675
64 100 | 5.E-07 | 0.E+00 | 0.72736
64 100 [ 5.E-07 | 1.E-07 | 0.73682
64 100 | 5.E-07 | 1.E-05 |0.71975
64 100 | 5.E-07 | 1.E-03 | 0.74369
64 100 [ 5.E-06 | 0.E+00 | 0.72949
64 100 | 5.E-06 | 1.E-07 | 0.72526
64 100 | 5.E-06 | 1.E-05 | 0.73535
64 100 | 5.E-06 | 1.E-03 [0.73051
128 50 | 5.E-07 | 0.E+00 | 0.72785
128 50 | 5.E-07 | 1.E-07 | 0.72667
128 50 | 5.E-07 | 1.E-05 |0.72747
128 50 | 5.E-07 | 1.E-03 | 0.73758
128 50 [ 5.E-06 | 0.E+00 | 0.72502
128 50 | 5.E-06 | 1.E-07 | 0.73003
128 50 | 5.E-06 | 1.E-05 | 0.74665
128 50 | 5.E-06 | 1.E-03 | 0.73274
128 | 100 | 5.E-07 | 0.E+00 | 0.72785
128 [ 100 [ 5.E-07 | 1.E-07 | 0.73505
128 [ 100 [ 5.E-07 | 1.E-05 | 0.71253
128 | 100 | 5.E-07 | 1.E-03 | 0.73953
128 | 100 | 5.E-06 | 0.E+00 | 0.73391
128 | 100 | 5.E-06 | 1.E-07 | 0.73565
128 | 100 | 5.E-06 | 1.E-05 | 0.72856
128 [ 100 [ 5.E-06 | 1.E-03 | 0.71842

32 50 | 5.E-07 | 1.E-07 | 0.8012
32 50 | 5.E-07 | 1.E-05|0.77812
32 50 | 5.E-07 | 1.E-03 | 0.78914
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Table S4. P-value for two-tailed t-tests compard with the MOMA (5CVs x 20 Tasks). Bold text
indicate statistical significance with p < 0.05.

MORONET MOFA+SVM  SMSPL P-NET

ACC 9.99.E-01 9.99.E-01 9.62.E-01 6.52.E-01
F1 1.11.E-03 1.11.E-03 1.82.E-17 5.80.E-02
AUC 4.82.E-02 4.82.E-02 1.34.E-07 2.58.E-02
MCC 1.01.E-11 1.01.E-11 3.45.E-07 7.88.E-09
AP 3.36.E-07 3.36.E-07 7.32.E-03 2.04.E-04

Table S5. Computational time, the number of parameters, memory usage, and GPU memory
usage to train each model on the ROSMAP NL/AD classification task.

XGBoost DNN MORONET MOFA SMSPL P-NET Ensem-MOMA

Computational time (s) 20 325 37 1038 177 115 697
Number of parameters - 63947 K 576 K - - 132K 3857 K
Memory usage (MB) 509 3443 2432 4834 1099 1883 3286
GPU memory usage (MB) - 2833 607 1627 - 525 1449

B. Experiment

We compared our model with XGBoost, MOFA, MORENET, and SMSPL. Nested 5x3 CV was
used for hyperparameter tuning and evaluation. For XGBoost, the parameters of ‘the max
depth’ from the set {3, 5, 7, 9}, ‘the regularization lambda’ from the set {100, 10, 1, 0.1, 0.01},
and ‘the learning rate” from the set {0.3, 0.2, 0.1, 0.01} were optimized. For MORONET, the
parameters of ‘the threshold of affinity values’ from the set {2, 4, 6, 8, 10}, ‘the learning rate
for pretraining’ from the set {5 x 1073,5 x 10_4}, ‘the learning rate for graph convolutional
network’ from the set {5 x 1073,5 x 107*}, ‘the learning rate for classifier’ from the set {5 x
1073,5 x 10_4}, and ‘the number of significant features for each omics data type’ from the set
{200, 400} were used. MOFA was used for integrating multi-omics data, and the performance was
measured with SVM based on the extracted factors. For SVM, the parameters of 'Regularization
parameter” from set {0.001,0.01,0.1,1,10}, and the parameters of "kernel” from the set {linear
and radial basis function} were used. For SMSPL, the parameters of ‘the parameter for adjusting
influence from other modalities” from the set {0.66, 0.1, 0.01}, ‘the age parameter’ from the set
{(0.66,0.66,0.66), (0.1,0.1,0.1), (0.01,0.01,0.01) }, “the size of increasing the age parameter with
each iteration” from the set {0.01,0.02,0.04,0.08}, and “The size to increase the selected sample for
each iteration’ from the set {2, 4} were optimized. For MOMA, the parameters of ‘the number of
modules’ from the set {16, 32, 64, 128}, ‘the learning rate’ from the set {1 x 107%,1 x 107°}, ‘the
weight decay’ from the set {1073,107°,0}, and ‘the early stopping patience’ from the set {500,
1000} were optimized. Ensem-MOMA indicates the stacking ensemble approach using the results
of each task of MOMA. Table S6 shows that our model outperformed other methods with the
three data sets.

4. Our proposed multi-task attention learning algorithm for single-cell multi-omics
data

We applied MOMA with single-cell multi-omics data. We used mouse embryonic stem cells
(mESCs) datasets preprocessed from the previous study °. The mESCs datasets are composed of

Argelaguet, Ricard, et al. "Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data
sets." Molecular systems biology 14.6 (2018): e8124.



Table S6. Classification performance of different methods with MRI, PET, and gene expression
(GE) data of the ADNI cohort.

Model Datasets ACC F1 AUC MCC
XGBoost MRI 0.849 0.675 0.897 0.587
XGBoost PET 0.871 0.742 0.944 0.661
XGBoost GE 0.727 0.104 0.594 0.078
MORONET MRIPET,GE 0.591 0.698 0.577 0.078

MOMA(32)+SVM MRLPET,GE 0.773 0482 0.776 0.357
MOMA (64)+SVM MRLPET,GE 0.795 0.530 0.801 0.420
MOMA(128)+SVM  MRLPETGE 0.792 0490 0.794 0.397
MOMA((256)+SVM  MRLPET,GE 0.776 0451 0.783 0.344

SMSPL MRLPET,GE 0.894 0.786 0.844" 0.722
MOMA MR 0.894 0.782  0.958 0.726
PET! 0905 0.819 0.960 0.761
GE' 0902 0.809 0.958 0.750
Ensem-MOMA MRLPET,GE 0913 0.837 0.961 0.782

(') denotes the number of factors.

* In SMSPL, predictor is categorical. AUC is computed by categorical values.

* The data set used for the performance measurement (a task data set) was specified.
Bold text indicate the best performance.

Table S7. Classification performance of different methods on mouse embryonic stem cells
multi-omics data.

ACC H AUC MCC AP

XGBoost (sc-RNA)  0.948 0947  0.990 0.808 0.998
XGBoost (sc-DM) 0.844 0.781  0.866 0.137  0.959

MORONET 0.831 0908  0.987 0.000 0.997
MOFA+SVM 0.871 0929  0.992 0.291 0.999
SMSPL 0.875 0928 0.683°  0.555 0.938
Ensem-MOMA 0948 0.969  1.000 0.820 1.000

() denotes the dataset used for training.

* In SMSPL, predictor is categorical. AUC is computed by categorical values.
Bold text indicate the best performance.



64 serum-grown cells and 13 cells cultured in "2i’ media with the single-cell RNA-seq (sc-RNA)
and the single-cell DNA-methylation (sc-DM). We performed 2i/serum condition classification
experiment in 3-fold CV. For all models, we used the hyperparameter set with the highest average
validation performance in ROSMAP NL/AD classification task. Table S7 shows that our model is
applicable to single-cell multi-omics datasets and outperformed other methods.

5. Further Analysis

We compared the performance of the module attention turning on and off according to various
hyperparameter sets through inner CV results. Figures S3 - S7 shows the results of each inner CV
on the TCGA cohort; each point shows a different set of hyperparameters.

Figure S8 shows that the ROSMAP samples were well clustered in the heatmap of similarity
score. Figure S9 also shows the well-separated clustering results of the similarity score across the
training and test dataset for the TCGA 34 class classification. Figures S10 - S11 show clustering
results of the similarity score and enrichment analysis for early- and late-stage classification
on KIRC and KIRP, which have the high-performance and large samples. For module analysis,
only genes with a Z-score greater than the threshold Z-score (empirically set to gene expression
threshold percentile = 95, DNA methylation threshold percentile = 99.99) were selected to be part
of a module.

We identified cancer-specific module using the TCGA 34 classes classification model. The
attention matrix was calculated based on the input values for each cancer type. For each module
of one omics data, the similarity score with all modules of another omics data was averaged.
And, we identified which module had the highest averaged similarity score for each cancer type.
In this experiment, we used MOMA model trained in CV1. Figure S12 shows cancer-specific
modules and NL-specific modules. All three examples have a high similarity score between
the gene expression module and the DNA methylation module. The similarity score between
BRCA-cancer-specific gene expression module 31 and DNA methylation module 19 was 0.944, the
similarity score between UCEC-cancer-specific gene expression module 2 and DNA methylation
module 14 was 0.976, and the similarity score between NL-specific gene expression module 10 and
DNA methylation module 29 was 0.991. Figure S12 D shows the results of Kyoto Encyclopedia of
Genes and Genomes pathway enrichment analysis and shows that different modules tend to be
enriched in different pathways.
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Fig. S3. Comparison of module attention turning On/Off on ACC, BLCA, BRCA, and COAD.
Every inner cross validation result is reported along with the area under the receiver operat-
ing characteristic curve (AUC). Every point shows a different set of hyperparameters. Each
columns shows the results of gene expression classification, the results of DNA methylation
classification and the average results, respectively. P-values for a paired t-test for the AUC
difference between turning on and off is shown, and p-values with a higher average AUC at
turning off are marked in red.
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Fig. S4. Comparison of module attention turning on and off on ESCA, HNSC, KICH, and
KIRC. Every inner cross validation result is reported along with the area under the receiver
operating characteristic curve (AUC). Every point shows a different set of hyperparameters.
Each column shows the results of gene expression classification, the results of DNA methyla-
tion classification and the average results. P-values for a paired ¢-test for the AUC difference
between turning on and off is shown, and p-values with a higher average AUC at turning off
are marked in red.
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Fig. 5. Comparison of module attention turning on and off on KIRP, LIHC, LUAD, and LUSC.
Every inner cross validation result is reported along with the area under the receiver operat-
ing characteristic curve (AUC). Every point shows a different set of hyperparameters. Each
column shows the results of gene expression classification, the results of DNA methylation
classification and the average results. P-values for a paired t-test for the AUC difference be-
tween turning on and off is shown, and p-values with a higher average AUC at turning off are
marked in red.
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Fig. S6. Comparison of module attention turning on and off on MESO, READ, SKCM, and
STAD. Every inner cross validation result is reported along with the area under the receiver
operating characteristic curve (AUC). Every point shows a different set of hyperparameters.
Each column shows the results of gene expression classification, the results of DNA methyla-
tion classification and the average results. P-values for a paired ¢-test for the AUC difference
between turning on and off is shown, and p-values with a higher average AUC at turning off
are marked in red.
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Fig. S7. Comparison of module attention turning on and off on THCA and UVM. Every inner
cross validation result is reported along with the area under the receiver operating characteris-
tic curve (AUC). Every point shows a different set of hyperparameters. Each column shows the
results of gene expression classification, the results of DNA methylation classification and the
average results. P-values for a paired t-test for the AUC difference between turning on and off
is shown, and p-values with a higher average AUC at turning off are marked in red.
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Fig. S8. Heatmap of hierarchical clustered similarity scores of the MOMA model on the
ROSMAP cohort. Cosine similarity scores between the gene expression and DNA methyla-
tion modules of each sample were extracted from the each fold.
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Fig. S11. (A) Heatmap of hierarchical clustered similarity scores of MOMA model for discrimi-

nating early- and late-stage of KIRP. (B) The Kyoto Encyclopedia of Genes and Genomes path-
way and Gene Ontology term enrichment analysis results (P-value < 0.005).
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Fig. S12. (A) BRCA-cancer-specific gene expression (GE) module 31 and BRCA-cancer-specific
DNA methylation (DM) module 19. (B) UCEC-cancer-specific GE module 2 and BRCA-cancer-
specific DM module 14. (C) NL-specific GE module 10 and NL-specific DM module 29. (D)
The Kyoto Encyclopedia of Genes enrichment analysis results of BRCA-cancer-specific GE and
DM module, UCEC-cancer-specific GE and DM module,and NL-specific GE and DM module

(P-value < 0.05).
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