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Supplemental Methods 
 
The approach to identifying non-coding RNAs is split into two phases: training 
(LearnNonCoding) and searching (FindNonCoding). In the first phase, four patterns are learned 
from a multiple sequence alignment provided as input. The quality of the multiple sequence 
alignment is therefore important for accurate pattern recognition. Multiple sequence 
alignments can be constructed with DECIPHER using the AlignSeqs function with unaligned 
sequences as input. However, a higher-quality alignment can sometimes be obtained by 
aligning sequences to the Rfam seed alignment one-by-one using AlignProfiles and then 
removing the seed sequences from the final alignment. This approach is preferred when a large 
(> 100 sequences) seed alignment is available. 
 
The goal of LearnNonCoding is to calculate parameters for a log-odds model of the form: 
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Where score is the reported log-odds score for a putative hit, features is the set of extracted 
patterns representing a non-coding RNA family, foreground is the prevalence of a feature 
among training representatives from that family, and background is the feature's prevalence in 
random sequence. 
 
In stage 1, LearnNonCoding identifies conserved sequence motifs represented in the form of a 
position weight matrix. Candidate motifs are found by applying a center point moving average 
to the entropy at each position in the multiple sequence alignment (with fewer than 50% gaps), 
and recording regions with average entropy less than 1.8 bits. To lower the chance candidate 
motifs will fail to match new sequences, regions are split when they are too long or when more 
than 5% of training sequences have a different length in the region due to insertions or 
deletions. 
 
Each candidate motif is searched in the input sequences and in random background sequences 
of the same base composition (i.e., fraction of A, C, G, and U nucleotides). Log-odds scores are 
recorded for each position weight matrix hit, where the foreground is the probability of 
observing a base at a position in the motif, and the background is a uniform distribution (i.e., 
25% of each nucleotide). Scores are discretized by binning into up to 10 bins that are uniformly 
distributed among observed scores. The resulting motifs are ranked by their discerning power, 
defined as the sum of absolute values of log-odds scores assigned to each bin multiplied by the 



relative frequency of observing each bin, and up to the top 20 are kept (by default). This results 
in a set of sequence motifs (i.e., position weight matrices) defined by the 10th and 90th 
percentile of their positions relative to the beginning and end of the input sequences. 
 
For example, the tRNA (RF00005) motifs look like: 
 
   begin_low begin_high end_low end_high             motif          pwm     minscore   prevalence   background 
1          0          0      56       69  GsssssgTrGCtcAry 0.042959.... 0, 4.875.... 0.020442.... 0.989092.... 
2         16         17      53       65               GGt 0.004460.... 0.768894.... 0.108749.... 0.863800.... 
3         19         21      45       57           AraGCrc 0.870938.... 1.015461.... 0.150488.... 0.885651.... 
4         27         29      38       50            gSmyTb 0.208338.... 1.517247.... 0.146883.... 0.858252.... 
5         34         36      31       43            tAAkSc 0.229318.... 1.938167.... 0.369712.... 0.914679.... 
6         41         45      28       38               kaG 0.200282.... 1.562279.... 0.614610.... 0.777599.... 
7         45         54      26       29                 T 0.033929....       0, Inf 0.184573.... 0.366546.... 
8         46         58      22       24              CGbg 0.020719.... 1.276844.... 0.348993.... 0.661977.... 
9         50         63      17       17             GGTTC 0.129566.... 0, 4.855.... 0.001602.... 0.987247.... 
10        55         68       0        0 GArTCCygyysssssCr 0.221396.... 0, 5.887.... 0.003134.... 0.993409.... 
 
In stage 2, LearnNonCoding identifies conserved secondary structure patterns in the input 
multiple sequence alignment. First, unless one is provided by the user, a consensus secondary 
structure is predicted using the PredictDBN function within DECIPHER. Second, all possible 
palindromes are recorded with a minimum stem length of four nucleotides, minimum loop 
length of three nucleotides, a maximum loop length of 500 nucleotides (by default), and up to 
one mismatch where wobble base pairs (i.e., G/U and U/G) are not considered mismatches. 
Free energy of all palindromes is predicted with RNA/RNA nearest neighbor parameters. For 
each input sequence, the stem loop with lowest free energy overlapping each predicted base 
pairing in the alignment is recorded. 
 
This process typically results in a large set of hairpins and their positions relative to the 
beginning and end of the sequences. Next, steps are taken to rank hairpins relative to their 
discerning power and remove redundant hairpins covering overlapping positions in the input 
sequence alignment. The set of free energies for hairpins spanning two positions in the 
alignment are binned into up to 10 bins, and log-odds scores are determined based on the 
prevalence of each bin relative to a random background. Unlike motifs, hairpins are defined by 
two of three possible positions: their 10th and 90th percentiles of distances relative to the 
beginning of the sequences, end of the sequences, or the total number of nucleotides they span 
(i.e., width). The two distances are selected that have the smallest percentile range to minimize 
the likelihood the hairpin is observed by chance. 
 
For example, the tRNA (RF00005) hairpins capture three of four hairpins in the canonical clover 
leaf secondary structure: 
 
  begin_low begin_high end_low end_high width_low width_high length_low length_high           dG   prevalence   background 
1        -4          0      -3        1        71         92          8          14 -Inf, -1.... 0.109306.... 0.002576.... 
2        24         27      28       40        17         21          7           9 -Inf, -9.... 0.096349.... 0.006896.... 
3        47         60       8       10        15         17          6           7 -Inf, -6.... 0.122790.... 0.010533.... 
 
In stage 3, LearnNonCoding records the frequencies of k-mers in the input sequences. The value 
of k (between 1 and 4) is determined automatically from the diversity of input sequences such 
that all k-mers are observed at least 10 times. These k-mer frequencies are later used as the 
foreground in scoring, with the background being drawn from a window of up to 10,000 
nucleotides centered around each position in the genome. This allows the background k-mer 



distribution to vary across the length of the genome and avoids assigning too high of scores to 
k-mers in regions with GC-content more closely matching the input training sequences. 
 
In stage 4, LearnNonCoding fits a sigmoidal function to the cumulative distribution of input 
sequence lengths. Care is taken to fit a smooth sigmoid, rather than a square wave, when the 
distribution of input sequences is very narrow. The probability density function is derived from 
the derivative of this sigmoid, and represents the expected distribution of foreground sequence 
lengths. The background is assumed to be a uniform distribution between 0.5 and 2.0 times the 
length of the shortest and longest input sequence, respectively. This sets the upper and lower 
bound of sequence lengths that can be detected. 
 
In stage 5, LearnNonCoding calibrates the log-odds scores of the model so that they will be 
consistent across models and account for any dependencies that violate the assumption of 
independence among features. This is performed by searching random sequence with 
FindNonCoding and recording the scores of any hits. This process is repeated until a minimum 
number of observations are recorded, a maximum number of iterations is reached, or the 
observed scores of random hits fall well under the expected number (i.e., the false discovery 
rate of a high score should be less than e-score). The right tail of the score distribution is fit to a 
censored log-normal distribution using maximum likelihood estimation. This results in two 
calibration parameters (i.e., the mean and standard deviation) that are used to transform 
reported scores for a NonCoding model. 
 
FindNonCoding is designed to quickly find the beginning and ending position of hits in an input 
sequence (i.e., genome). To accomplish this, it first searches for each motif in the input 
sequence (and its reverse complement) and adds scores to each position of two numeric 
vectors: one for the beginning and one for the end position of matches. Log-odds scores for a 
motif hit are distributed between the beginning and ending positions of a candidate match 
relative to their span. For example, the first tRNA motif (above) starts at position zero relative 
to the beginning of the sequences and ends 56 to 69 positions from the end of the sequences. 
Therefore, the beginning has a span of 1 and the end has a span of 14 positions. Hits to this 
motif would have 14/15ths of their score added to the "begin" vector at position zero from the 
start of the hit and 1/15th of their score added to the "end" vector at positions 56 to 69 from 
the end of the hit. The remaining positions (i.e., those without any hits) are given a negative 
score according to the log-odds of not having observed the motif. 
 
The resulting score vector is assessed for matches to the non-coding RNA family by adding the 
start and end scores at pairs of positions between the minimum and maximum length of the 
sequence (i.e., defined in stage 4 above). The combined score is calculated from the addition of 
the motif score, k-mer score, and length score. To carry forward, at least 60% of the desired 
minimum score must come from the combined score and 40% from the motif score at this 
point. Candidate matches that carry forward are searched for hairpins in the next phase. The 
observation of a hairpin is given a log-odds score based on its free energy (i.e., defined in stage 
2 above) and the absence of an expected hairpin is given a negative score. These scores are 
added to the combined score and transformed by the calibration (i.e., see stage 5 above) to 



report the final total score. In the last phase, the best scoring hit is selected when multiple hits 
are significantly overlapping, unless indicated otherwise by the user.



Table S1. Comparison of FindNonCoding and StructRNAfinder on the genome of Chlamydia trachomatis (NC_000117). 
 

StructRNAfinder FindNonCoding 
 

Name From To Score E-value Name From To Score Notes 

SSU_rRNA_bacteria-RF00177 854124 855676 1541 0 rRNA_16S-RF00177 854124 855676 169  

SSU_rRNA_archaea-RF01959 854129 855674 1031 0     Taxonomy = Archaea 

LSU_rRNA_archaea-RF02540 855924 858861 1809 0     Taxonomy = Archaea 

LSU_rRNA_bacteria-RF02541 855925 858862 2702 0 rRNA_23S-RF02541 855924 858861 208  

LSU_rRNA_eukarya-RF02543 856085 858850 1229 0     Taxonomy = Eukarya 

SSU_rRNA_bacteria-RF00177 876170 877722 1541 0 rRNA_16S-RF00177 876170 877722 169  

SSU_rRNA_archaea-RF01959 876175 877720 1031 0     Taxonomy = Archaea 

LSU_rRNA_archaea-RF02540 877970 880906 1821 0     Taxonomy = Archaea 

LSU_rRNA_bacteria-RF02541 877971 880907 2714 0 rRNA_23S-RF02541 877970 880906 211  

LSU_rRNA_eukarya-RF02543 878131 880895 1235 0     Taxonomy = Eukarya 

SSU_rRNA_microsporidia-RF02542 854129 855671 744 3.50E-227     Taxonomy = Microsporidia 

SSU_rRNA_microsporidia-RF02542 876175 877717 744 3.50E-227     Taxonomy = Microsporidia 

SSU_rRNA_eukarya-RF01960 854129 855671 696 1.20E-209     Taxonomy = Eukarya 

SSU_rRNA_eukarya-RF01960 876175 877717 696 1.20E-209     Taxonomy = Eukarya 

RNaseP_bact_a-RF00010 457003 457408 222 8.50E-72 RNase_P_class_A-RF00010 457003 457408 70  

tmRNA-RF00023 21082 20663 150 8.80E-44 tmRNA-RF00023 21082 20663 88  

PK-G12rRNA-RF01118 858256 858363 115 9.60E-30     Overlaps LSU rRNA 

PK-G12rRNA-RF01118 880302 880409 115 9.60E-30     Overlaps LSU rRNA 

tRNA-RF00005 752671 752743 77 5.80E-18 tRNA-Arg 752671 752746 67  

tRNA-RF00005 775336 775264 76 1.00E-17 tRNA-Lys 775336 775262 65  
tRNA-RF00005 202414 202341 73 1.30E-16 tRNA-Ile 202414 202339 69  

tRNA-RF00005 202492 202420 71 2.90E-16 tRNA-Ala 202492 202418 60  

tRNA-RF00005 363281 363210 70 5.90E-16 tRNA-Thr 363281 363207 60  

tRNA-RF00005 368396 368468 70 6.40E-16 tRNA-Met 368396 368471 77  



StructRNAfinder FindNonCoding 
 

Name From To Score E-value Name From To Score Notes 

5S_rRNA-RF00001 858982 859096 74 9.00E-16 rRNA_5S-RF00001 858982 859096 106  

5S_rRNA-RF00001 881027 881141 74 9.00E-16 rRNA_5S-RF00001 881027 881141 105  
tRNA-RF00005 853628 853555 69 1.10E-15 tRNA-His 853628 853554 83  

tRNA-RF00005 42801 42730 69 1.40E-15 tRNA-Asn 42801 42727 70  

tRNA-RF00005 158662 158734 69 1.60E-15 tRNA-Thr 158662 158736 56  

tRNA-RF00005 778661 778591 68 3.20E-15 tRNA-Gly 778661 778590 61  
tRNA-RF00005 250442 250370 67 3.50E-15 tRNA-Val 250442 250368 62  

tRNA-RF00005 682286 682214 67 5.90E-15 tRNA-Arg 682286 682211 58  

tRNA-RF00005 984330 984414 66 6.60E-15 tRNA-Ser 984330 984417 69  
tRNA-RF00005 68995 68921 66 7.10E-15 tRNA-Pro 68995 68920 79  

tRNA-RF00005 814611 814540 65 1.40E-14 tRNA-Gly 814611 814539 77  

tRNA-RF00005 409238 409324 65 2.10E-14 tRNA-Ser 409238 409327 59  

tRNA-RF00005 234447 234375 64 2.70E-14 tRNA-Met 234447 234372 59  
RNaseP_bact_b-RF00011 457007 457397 55 3.00E-14     Overlaps RNaseP (Bact A) 

tRNA-RF00005 574985 574897 64 3.20E-14 tRNA-Ser 574985 574894 65  

tRNA-RF00005 490055 489983 64 3.30E-14 tRNA-Phe 490056 489982 82  
tRNA-RF00005 485330 485244 64 4.10E-14 tRNA-Ser 485330 485242 89  

tRNA-RF00005 979594 979521 63 4.90E-14 tRNA-Val 979594 979520 55  

tRNA-RF00005 543862 543935 63 5.20E-14 tRNA-Arg 543862 543937 64  
RNaseP_arch-RF00373 457004 457403 53 6.70E-14     Taxonomy = Archaea 

tRNA-RF00005 773399 773471 63 8.10E-14 tRNA-Thr 773399 773471 61  

tRNA-RF00005 250362 250289 62 9.10E-14 tRNA-Asp 250362 250288 64  

tRNA-RF00005 541063 541145 62 9.10E-14 tRNA-Leu 541062 541146 58  
tRNA-RF00005 361939 361867 62 9.50E-14 tRNA-Trp 361939 361865 51  

tRNA-RF00005 888006 887936 62 1.20E-13 tRNA-Cys 888006 887935 80  

tRNA-RF00005 158744 158826 61 1.60E-13 tRNA-Tyr 158744 158827 52  



StructRNAfinder FindNonCoding 
 

Name From To Score E-value Name From To Score Notes 

tRNA-RF00005 1018111 1018192 61 2.50E-13 tRNA-Leu 1018111 1018195 60  

tRNA-RF00005 234356 234283 61 2.60E-13 tRNA-Met 234356 234281 70  
tRNA-RF00005 937062 937133 61 2.90E-13 tRNA-Gln 937062 937135 71  

tRNA-RF00005 582069 581987 60 4.10E-13 tRNA-Leu 582069 581985 41  

tRNA-RF00005 725508 725436 59 6.90E-13 tRNA-Ala 725508 725434 77  

tRNA-RF00005 718303 718376 58 1.70E-12 tRNA-Pro 718303 718378 76  
tRNA-RF00005 775427 775353 56 5.00E-12 tRNA-Glu 775425 775352 61  

tRNA-RF00005 605752 605835 54 1.50E-11 tRNA-Leu 605752 605837 56  

Bacteria_small_SRP-RF00169 286644 286546 53 2.30E-11 SmallSRP-RF00169 286644 286547 20  
tRNA-RF00005 546070 545989 51 1.40E-10 tRNA-Leu 546070 545987 63  

tRNA-Sec-RF01852 752670 752743 44 8.10E-08     Overlaps tRNA 

tRNA-Sec-RF01852 582070 581987 41 5.10E-07     Overlaps tRNA 

tRNA-Sec-RF01852 984330 984413 39 1.10E-06     Overlaps tRNA 

tRNA-Sec-RF01852 541063 541144 38 2.40E-06     Overlaps tRNA 

tmRNA-RF00023 202492 202417 27 2.90E-06     Overlaps tRNA 

Bacteria_large_SRP-RF01854 286647 286545 45 3.20E-06     Overlaps small SRP 

tRNA-Sec-RF01852 368395 368468 37 3.50E-06     Overlaps tRNA 

tRNA-Sec-RF01852 409238 409323 37 5.00E-06     Overlaps tRNA 

tRNA-Sec-RF01852 778661 778592 36 5.90E-06     Overlaps tRNA 

tRNA-Sec-RF01852 158744 158825 35 1.30E-05     Overlaps tRNA 

tRNA-Sec-RF01852 682286 682215 34 2.00E-05     Overlaps tRNA 

tRNA-Sec-RF01852 485330 485245 34 2.40E-05     Overlaps tRNA 

tRNA-Sec-RF01852 574985 574898 34 2.40E-05     Overlaps tRNA 

tRNA-Sec-RF01852 234446 234377 33 3.50E-05     Overlaps tRNA 

tRNA-Sec-RF01852 543861 543935 33 5.40E-05     Overlaps tRNA 

U1-RF00003 939656 939817 24 9.00E-05     Taxonomy = Eukarya 



StructRNAfinder FindNonCoding 
 

Name From To Score E-value Name From To Score Notes 

tRNA-Sec-RF01852 888006 887937 32 0.0001     Overlaps tRNA 
 



 
 
Figure S1. FindNonCoding and Infernal have similar search times on average. The plot shows 
the time required to search each million base pairs (Mbp) of 2,774 genomes (points). Although 
Infernal had a wider distribution of search times, on average it took 1.15 seconds per Mbp, 
whereas FindNonCoding took 1.04 seconds per Mbp. Both programs were forced to use a single 
processor in this comparison. 
  



 
 
Figure S2. Analysis of sensitivity versus specificity using synthetic genomes. A single test 
sequence was randomly drawn from each Rfam family consisting of up to 1000 non-coding 
RNAs identified by Infernal. All sequences above 60% sequence identity to the test sequence 
were removed from the Rfam family before training with LearnNonCoding. The resulting 
NonCoding model was used to search 10 million random DNA nucleotides of even base content, 
within which the representative sequence was embedded. FindNonCoding hits were recorded 
with a log-odds score of at least 16 (i.e., the end point on each curve), corresponding to a 
maximum predicted false discovery rate of 0.1 per 106 nucleotides (i.e., e-16). This process was 
repeated ten times per non-coding RNA family to determine true and false positive rates under 
the assumption that all the original representative sequences (found by Infernal) actually 
belong to the non-coding RNA family.  



 
 
Figure S3. Distributions of scores for predicted non-coding RNAs. The distribution of scores are 
shown for false (red; left) and true (green; right) positive non-coding RNAs identified in 
bacterial genomes. Only non-coding RNA families with more than 10 false positives in 2,774 
genomes are shown, with the distributions normalized to the maximum density of true and 
false positives in each non-coding RNA family. Only a small subset of false positives (i.e., non-
coding RNA sequences overlapping with protein coding genes) had high scores.  



 
 
Figure S4. Relative number of true and false positives per genome. On average, Infernal 
identified more non-coding RNAs that do not significantly overlap with protein coding genes 
(left), although there are also some putative non-coding RNAs only identified by 
FindNonCoding. The color scale shows the difference in the number of assigned hits as a 
fraction of true or false positive hits per genome. Both programs yielded the same number of 
true and false positive hits in the vast majority of cases. Infernal is excellent at discriminating 
coding from non-coding sequence and identified fewer false positives than FindNonCoding 
(right). Only differences in the number of true or false positives of up to five per genome are 
shown because discrepancies beyond five were relatively rare (< 0.3%). 


