Supporting information

Rediscovery of tetronomycin as a broadspectrum and potent antibiotic against drugresistant gram-positive bacteria

Aoi Kimishima^{1,2‡}, Iori Tsuruoka^{1‡}, Hiroki Kanto¹, Hayama Tsutsumi^{1,2}, Naoaki Arima³, Kazunari Sakai³, Miho Sugamata^{1,2}, Hidehito Matsui^{1,2}, Yoshihiro Watanabe^{1,2}, Masato Iwatsuki^{1,2}, Masako Honsho^{1,2}, Kamrun Naher², Yuki Inahashi^{1,2}, Hideaki Hanaki^{1,2,3}, Yukihiro Asami^{1,2*}

¹ Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.

² Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.

³ Tokyo New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo, 189-0022, Japan

[‡]These authors contributed equally to this work.

Table of Contents

Figure S1. ¹ H NMR spectrum of 23
Figure S2. ¹³ C NMR spectrum of 24
Figure S3. HSQC spectrum of 25
Figure S4. COSY spectrum of 26
Figure S5. HMBC spectrum of 27
Figure S6. Decoupling experiments of 2
Figure S7. COSY, decoupling, and HMBC analyses of tetronomycin sodium salt (2)9
Figure S8. ¹ H NMR spectrum of 310
Figure S9. ¹³ C NMR spectrum of 311
Figure S10. ¹ H NMR spectrum of 412
Figure S11. ¹³ C NMR spectrum of 413
Figure S12. ¹ H NMR spectrum of 514
Figure S13. ¹³ C NMR spectrum of 515
Figure S14. ¹ H NMR spectrum of 616
Figure S15. ¹³ C NMR spectrum of 617
Figure S16. ¹ H NMR spectrum of 718

igure S17. ¹³ C NMR spectrum of 719
igure S18. Comparison of biosynthetic gene clusters of tetronomycin
etween <i>Streptomyces</i> sp. K20-0247 and <i>Streptomyces</i> sp. NRRL 11266 19
able S1. Annotation of biosynthetic gene cluster of tetronomycin in
<i>treptomyces</i> sp. K20-0247 20
igure S19. Determination of Ca ²⁺ ionophobic activity of 1 and 421
Cable S2. Results of activity evaluation of tetronomycin and its derivatives. 22

 Table S3. Information of strains used in this study.

Figure SI.⁰¹_{Na} NMR (CDCl₃, 400 MHz) spectrum of tetronomycin sodium salt (2).

Figure S2. ¹³C NMR (CDCl₃, 100 MHz) spectrum of tetronomycin sodium salt (2).

Figure S3. HSQC (CDCl₃, 400 MHz) spectrum of tetronomycin sodium salt (2).

Figure S4. COSY (CDCl₃, 400 MHz) spectrum of tetronomycin sodium salt (2).

Figure S5. HMBC (CDCl₃, 400 MHz) spectrum of tetronomycin sodium salt (2).

Figure S6. Decoupling experiments of tetronomycin sodium salt (2).

Figure S7. COSY, decoupling, and HMBC analyses of tetronomycin sodium salt (2).

Figure S8. ¹H NMR (CDCl₃, 500 MHz) spectrum of tetronomycin thioacetal derivative

(3).

Figure S9. ¹³C NMR (CDCl₃, 125 MHz) spectrum of tetronomycin thioacetal derivative

(3).

Figure S10. ¹H NMR (CDCl₃, 500 MHz) spectrum of reducted tetronomycin (4).

Figure S11. ¹³C NMR (CDCl₃, 125 MHz) spectrum of reducted tetronomycin (4).

Figure S12. ¹H NMR (CDCl₃, 500 MHz) spectrum of acetyl tetronomycin (5).

Figure S13. ¹³C NMR (CDCl₃, 125 MHz) spectrum of acetyl tetronomycin (5).

Figure S14. ¹H NMR (CDCl₃, 500 MHz) spectrum of propynoic tetronomycin (6).

Figure S15. ¹³C NMR (CDCl₃, 125 MHz) spectrum of propynoic tetronomycin (6).

Figure S16. ¹H NMR (CDCl₃, 500 MHz) spectrum of pivaloyl tetronomycin (7).

Figure S17. ¹³C NMR (CDCl₃, 125 MHz) spectrum of pivaloyl tetronomycin (7).

Figure S18. Comparison of biosynthetic gene clusters of tetronomycin between *Streptomyces* sp. K20-0247 and *Streptomyces* sp. NRRL 11266

Similar genes are connected by the line and line color indicates the identity between translation products

gene	annotation	Amino acids	identity (%)
tmn3	LuxR family transcriptional regulator	935	99.3*
tmn4	PLP-dependent oxidase	180	100
tmn-1	hypothetical protein	82	98.8**
tmn5	LuxR family transcriptional regulator	887	99.7
tmn6	a/b hydrolase	263	99.2
tmn7a	acyl carrier protein	75	100
tmn7	2-oxo acid dehydrogenase subunit E2	292	99.3
tmnAI	type I polyketide synthase	4943	97.7
tmn10	DedA family membrane protein	223	100
tmn8	putative ribosomal protein L15P	196	100
tmn9	FAD-dependent monooxygenase	500	97.6
tmnVI	type I polyketide synthase	1574	97.5
tmnB	NTF2 family protein	141	99.3
tmn12	methyltransferase	300	100
tmnAII	type I polyketide synthase	1658	98.8
tmnAIII	type I polyketide synthase	3408	98.9
tmnAIV	type I polyketide synthase	5657	97.3
tmnAV	type I polyketide synthase	5963	97.9
tmnC	FAD-dependent epoxidase	473	99.3
tmn14a	ferredoxin	80	97.5
tmn14	cytochrome P450	400	100
tmn15	3-oxoacyl-(acyl-carrier-protein) synthase III	346	99.4
tmn16	HAD-IIIC family phosphatase	633	99.5
tmn17	a/b hydrolase	345	99.7
tmn-2	no hit	109	-

Table S1. Annotation of biosynthetic gene cluster of tetronomycin in *Streptomyces* sp.

K20-0247 (The GenBank accession number: OP903461)

tmn18	SARP family transcriptional regulator	256	99.6
tmnDII	type I polyketide synthase	1508	99.5
tmnDI	type I polyketide synthase	2488	98.9
tmn20	acyltransferase	584	100
tmn21	TetR family transcriptional regulator	232	100
tmn22	membrane protein	367	98.1
tmn23	phosphopantetheinyl transferase	530	99.6
tmn24	ATP-grasp domain-containing protein	415	98.8
tmn25	hypothetical protein	663	98.8
tmn26	hypothetical protein	235	99.1

*Because an amino acid sequence of Tmn3 deposited in MiBiG was shortened, alignment was conducted using a short Tmn3 sequence.

**Because *tmn-1* shows no similarity to known genes in *tmn* cluster of *Streptomyces* sp. NRRL 11266, similarity to WP_220189144.1 derived from *Streptomyces* sp. PIP175 was shown in this table.

Figure S19. Determination of Ca^{2+} ionophobic activity of 1 and 4.

Test strain: MRSA (ATCC43300)								
Medium: Mueller hinton agar 1 1								
Compound (µg/disc)	3	1	0.3	0.1	0.03	0.01	0.003	0.001
Compound 3	N.T.	11.86	10.38	8.43	7.57	7.25	0	0
Tetronomycin	N.T.	26.72	23.73	19.47	12.09	7.62	unclear	0
VCM	12.00							
Compound 4	18.77	15.98	10.23	0	0	0	0	0
Tetronomycin	25.91	24.78	21.65	19.93	15.47	12.73	6.78	D
VCM	10.23							
Compound 5	21.93	20.95	18.16	15.39	12.21	8.69	0	0
Tetronomycin	27.18	25.78	22.15	20.60	14.98	12.32	10.42	unclear
VCM	10.63							
Compound 6	N.T.	19.09	15.14	10.15	7.22	۵	0	0
Tetronomycin	N.T.	26.16	22.91	18.58	15.03	11.35	8.11	0
VCM	10.55							
Compound 7	25.03	20.06	17.38	11.27	9.97	7.83	0	0
Tetronomycin	25.30	23.26	20.45	17.68	15.11	12.32	11.86	0
VCM	10.47							

Table S2. Results of activity evaluation of tetronomycin and its derivatives using 6 mm paperdiscs (stopping circle diameter: mm)

VCM: Vancomycin

N.T. : not tested I : No inhibition

Table S3. Information of strains used in this study.

No	Strains	Source	Characteristic	Reference No.
1	Staphylococcus aureus	ATCC 6538P	MSSA	
2	Staphylococcus aureus	ATCC 19636	MSSA	
3	Staphylococcus aureus ISP217	Clinical isolate, laboratory stock	MSSA, macrolide resistant	1
4	Staphylococcus aureus KUB854	Clinical isolate, laboratory stock	MRSA (N315-derived strain)	
5	Staphylococcus aureus KUB855	Clinical isolate, laboratory stock	MRSA	
6	Staphylococcus aureus KUB856	Clinical isolate, laboratory stock	MRSA	
7	Staphylococcus aureus	ATCC700699	VISA	
8	Staphylococcus aureus KUB877	Clinical isolate, laboratory stock	LZD resistant	2
9	Staphylococcus epidermidis KUB795	Clinical isolate, laboratory stock		3
10	Kocuria rhizophila	ATCC9341		
11	Enterococcus faecalis	ATCC29212	Vancomycin-susceptible	
12	Enterococcus faecalis	NCTC12201	VRE, vanA	4
13	Enterococcus faecalis KUB7012	Clinical isolate, laboratory stock	VRE, vanB	
14	Enterococcus faecium	NCTC12204	VRE, vanA	
15	Enterococcus faecium KUB7013	Clinical isolate, laboratory stock	VRE, vanB	
16	Enterococcus gallinarum KUB 7014	Clinical isolate, laboratory stock	VRE, vanC	
17	Escherichia coli	NIHJ JC-2		
18	Citrobacter freundii	ATCC8090		
19	Klebsiella pneumoniae	NCTC9632		
20	Proteus vulgaris	ATCC8427		
21	Morganella morganii	IID 602		
22	Serratia marcescens	IFO12648		
23	Enterobacter cloacae	IFO13535		
24	Klebsiella aerogenes	NCTC10006		
25	Pseudomonas aeruginosa 46001	Clinical isolate, laboratory stock		4
26	Pseudomonas aeruginosa E-2	Clinical isolate, laboratory stock		5
27	Acinetobacter calcoaceticus	IFO12552		

The laboratory stock strains of KUB854, 855, 856, 877, 7012, 7013, and 7014 were clinically isolated at the hospitals in Japan.

References

- 1. Matsuoka M, et al. Localization of a determinant mediating partial macrolide resistance in *Staphylococcus aureus*. *Microbiol. Immunol.* 1990, **34**, 643-652.
- 2. Ikeda-Dantsuji Y et al. Linezolid-resistant Staphylococcus aureus isolated from 2006 through 2008 at six hospitals in Japan. *J. Infect. Chemother.* 2011, **17**, 45-51.
- 3. Matsui H, et al. Immunochromatographic detection of the group B streptococcus antigen from enrichment cultures. *Clin. Vaccine Immunol.* 2013, **20**, 1381-1387.
- 4. Yamazaki H, et al. Novel cephalosporins 1. Synthesis of 3-benzothiopyranylthiovinyl cephalosporins and antibacterial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant *Enterococcus faecalis*. J. Antibiot. 2000, **53**, 546-550.
- Saito M, et al. Studies on the combination action of sisomicin, gentamicin and piperacillin, cefmetazole against *Pseudomonas aeruginosa* and *Serratia marcescens. Jpn. J. Antibiot.* 1983, 36, 37-46.