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1 Reference datasets

Additional file 1: Table S1 briefly summarizes each reference dataset, including the platform(s) on which

scRNA-seq measurements were obtained, organism and tissue type, as well as the dataset’s size (number of

genes and cells), complexity (e.g. how many clusters, batches, whether batches are biological or technical

replicates etc.) and (if applicable) how data were filtered or preprocessed. For more details, we refer readers

to the associated publication(s). The subset(s) drawn from each dataset are summarized in Additional file

1: Table S2; these serve as references for simulation.

Dataset Description Preprocessing Batches Clusters Features Observations Source

CellBench

three human lung adenocarcinoma cell lines (HCC827, H1975,

H2228) mixed in equal proportions and sequenced across three

different platforms (CEL-Seq2, Drop-Seq, Chromium)

– 3 3 13575 1401 GSE118767

Gierahn17
human HEK293 (embryonic kidney cells) cell line sequenced with

Seq-Well
– – – 24187 1453 GSE92495

Ding20

two mouse cortex snRNA-seq experiments (Cortex1 and Cortex2),

each comprising 4 technologies (10x Chromium, DroNc-seq, sci-

RNA-seq, Smart-Seq2)

retaining only first experiment

(Cortex1) and cells that received

a type annotation

4 8 28692 4523 SCP425

Kang18
droplet-based scRNA-seq data of PBMCs from eight patients,

each measured before and after 6h treatment with IFN-β

retaining untreated samples

only, removing multiplets and

cells that did not receive a type

annotation

8 8 17198 12315 GSE96583

Koh16
in vitro cultured H7 human embryonic stem cells (WiCell) and

H7-derived downstream early mesoderm progenitors
– – 9 60483 498 GSE85066

MCA20
Mouse Cell Atlas (MCA) dataset of Microwell-seq data from >28

tissues (2-4 replicates each) and cultures

retaining only features that are

shared across all replicates (of a

given tissue), and observations

for which metadata was available

1-4 170 >10,000 >1,200,00 GSE108097

Mereu20

PBMC data from 13 platforms (Chromium, Chromium(sn), in-

Drop, C1HT-small and -medium, CEL-Seq2, ddSEQ, Drop-Seq,

ICELL8, MARS-Seq, Quartz-Seq2, mcSCRB-Seq, and Smart-

Seq2)

– 13 9 23381 20237 GSE133549

Oetjen18
Droplet-based scRNA-seq of bone marrow mononuclear cells from

20 healthy donors of different sex and age (25 samples in total)

removal of replicated samples

(Ck, C1, C2, Sk1, Sk2, S1, S2)
18 – 33694 72241 GSE120221

panc8

eight human pancreatic islet cell datasets from five technolo-

gies (CEL-Seq, CEL-Seq2, inDrop (four replicates), Fluidigm C1,

SMART-Seq2)

retaining the inDrop (technical)

replicate with the highest num-

ber of cells

5 13 23600 10963

GSE81076,

GSE85241,

GSE86469,

E-MTAB-5061

TabulaMuris
droplet-based scRNA-seq data from Mus musculus (8 male and

female mice) across 20 organs and tissues
– 10 13 23341 17404 GSE109774

Tung17
triplicated Fluidigm’s C1 data of induced pluripotent stem cell

(iPSC) lines of three individuals (9 samples in total)
– – 3 20327 864 GSE77288

Zheng17
droplet-based scRNA-seq data of PBMCs from a single healthy

individual

T cell subpopulations merged

into CD4+ and CD8+
– 9 32738 68579 10x Genomics

Table S1: Overview of reference datasets. Each entry specifies the dataset identifier, a brief description of the

measurement technology and cell and/or tissue type, how data were filtered or preprocessed (if applicable), the

number of batches (biological or technical replicates), clusters, features (genes or transcripts) and observations (cells),

and the data source (E-X = ArrayExpress, GSE = Gene Expression Omnibus, SCP = Broad Institute’s Single Cell

Portal).
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Dataset Subset(s) Type Batch(es) Cluster(s)

CellBench 7 b,k 3 3

H2228 b 3 H2228

celseq k sc celseq 3

Ding20 7 b,k 4 8

10x.InhibNeuron n 10x Chromium Inhibitory neuron

ExcitNeuron b 4 Excitatory neuron

DroNcSeq k DroNc-seq 5

Gierahn17 3 n 0 0

Kang18 7 b,k 8 8

1015 k 1015 6

B n 1015 B cells

NK n 1015 NK cells

Koh16 3 k 0 7

MCA20 7 b,k 13 9

gland.AT2 b 4 T cell Cd8b1 high

lung.AT2 b 4 AT2 Cell

Mereu20 7 b,k 13 9

CD4T b 13 CD4 T cells

ddSeq k ddSeq 9

Oetjen18 3 b 18 0

R n R 0

panc8 7 b,k 5 9

inDrop1.beta n indrop1 beta

inDrop.ductal b indrop1-4 ductal

SmartSeq2 k smartseq2 7

TabulaMuris 7 b,k 10 31

limb.MSCs n Limb Muscle mesenchymal stem cell

spleen k Spleen 4

Tung17 3 b 3 0

NA19101 n NA19101 0

Zheng17 3 k 0 7

HSCs n 0 HSCs CD34+

Monocytes n 0 Monocytes CD14+

Table S2: Overview of data subsets drawn to serve as references for simulation. Each entry specifies the dataset and

subset identifier, type (n, b or k), and the number or identity of the retained batch(es) and cluster(s) after filtering.

Header rows list the dataset’s original number of batches and clusters, and 3 / 7 indicate whether the complete

dataset was included as a reference. In total, there are 10, 8, and 8 subsets of type n, b, and k, respectively.
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2 Quality control summaries

Let X(Y/Z)G×C denote the count (expression) matrix of a reference or simulated dataset with genes G =

{g1, . . . , gG} and cells C = {c1, . . . , cC} from batches b = 1, ..., B and clusters k = 1, ...,K. Here, B is the

number of batches, K is the number of clusters, Y and Z correspond to log1p-transformed counts per million

(CPM) and log-library size normalized counts obtained with scater ’s calculateCPM and logNormCounts,

respectively. For principal component-(PC-)based summaries, we ran scran’s modelGeneVar (on Z) and

getTopHVGs to select the n = 500 most highly variable features, and scater ’s calculatePCA to compute their

first ncomponents = 50 PCs. The same set of inputs specified below were used to compute the respective

summaries for all reference and simulated datasets.

Summary Description/Interpretation Formula/Implementation

mean of logCPM expression mean µ = 1
C

∑C
c=1 Ygc

variance of logCPM expression variance σ = 1
C−1

∑C
c=1(Ygc − µ)2

coefficient of variation expression variability relative its mean
√
σ/µ

gene detection frequency
fraction of cells with non-zero count

(for a given gene)
1
C

∑C
c=1 1(Xgc 6= 0)

gene-to-gene-correlation
expression association

between pairs of genes

cov(Yg,Yg′ )

σgσg′

log-library size log1p-transformed total counts log(1 +
∑G
g=1 Xgc)

cell detection frequency
fraction of detected genes

(for a given cell)
1
G

∑G
g=1 1(Xgc 6= 0)

cell-to-cell-correlation
expression association

between pairs of cells
cov(Yc,Yc′)/(σc · σc′)

local density factor

relative measure of a cell’s local density

compared to those within its neighbourhood

(in PCA space)

custom wrapper of functions

from the CellMixS package

with PCs of Z as input

cell-to-cell distance
expression (dis)similarity

between pairs of cells
Euclidean distance in PCA space of Z

KNN occurences
number of times a cell is a

k-nearest neighbor (KNN)

RANN ’s nn2 function on PCs

of Z with k set to 5% of cells

percent variance explained
fraction of expression variance

accounted for by batch/cluster

variancePartition’s fitExtractVarPartModel

function with Z as input

silhouette width
similarity of a cell to its own group

(batch/cluster) compared to others

cluster ’s silhouette function on

Euclidean distances in PCA space of Z

cell-specific mixing score

probability of being in an equally ‘mixed’

(same batch/cluster) neighborhood

(in PCA space)

CellMixS ’s cms function

with PCs of Z as input

Table S3: Overview of scRNA-seq data summaries used to compare reference and simulated data. Summaries are

grouped by type: gene-, cell-level and global. For each summary, a brief description or possible interpretation is

provided, as well as how it is computed (theoretically) or implemented (in R).
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3 Method parameters

Estimation Simulation

BASiCS BASiCS MCMC with MCMC sampler parameters N = 4000 iterations, thin-

ning period Thin = 10 , and burn-in period Burn = 2000 ; joint prior formula-

tion for mean and over-dispersion (Regression = TRUE); and, using batches

to estimate technical variability (WithSpikes = FALSE).

BASiCS Sim with Mu spikes = Phi = NULL, and other parameters passed

from estimation.

ESCO escoEstimate with default parameters, using raw counts as input, and cell

group labels set to batch/cluster identifiers for type b/k.

escoSimulate with parameters passed from estimation, type = “single” for

type n, and “group” otherwise.

hierarchicell filter counts with cells randomly split into two groups for type n

and genethresh = cellthresh = 0 (i.e., retaining all genes and cells);

compute data summaries with Raw = “raw” using raw counts as input; num-

ber of non-control groups and cells n cases = cells per case = 1 (required,

but removed prior to simulation); ncontrols and cells per control set to

the number of reference batches and reference cells per batch, respectively;

ncells variation type = “Fixed” (i.e., fixed number of cells per individual).

simulate hierarchicell with parameters passed from estimation, and filtering

for cells with Status == “Control” (i.e., removing non-control cells).

muscat prepSim with min size = NULL (i.e., retaining all subpopulation-sample

combinations), and otherwise default parameters.

simData with dd = FALSE (i.e., no differentially distributed genes), and oth-

erwise default parameters.

POWSC Est2Phase with default parameters, using raw counts as input; called once

for references of type n, and separately on each cluster for type k.

For type n, Simulate2SCE with perDE = 0 (i.e., no differentially expressed

genes), and parameter estimates passed to both estParas1 and estParas2 (i.e.,

equivalent parameters for either group); for type b/k, SimulateMultiSCEs

with multiProb set to the number of cells per batch/cluster in the reference,

and parameter estimates passed to estParas set .

powsimR estimateParam with raw counts as input; RNAseq = “singlecell”,

Protocol = “UMI ”, Distribution = “NB”, Normalisation = “scran”,

GeneFilter = 0 and SampleFilter = Inf (i.e., retaining all genes and cells

for normalization and parameter estimation); number of group 1 cells n1 set

to the number of reference cells, and of group 2 cells n2 = 2 (required, but

removed prior to simulation); pDE = pLFC = 0 (no differential expression);

nsims = 1 (one simulation replicate).

simulateDE with Normalisation = “scran” and DEmethod = “DESeq2”,

Counts = TRUE (i.e., input data corresponds to raw counts), and remov-

ing group 2 cells from the simulated count matrix.

scDD preprocess with scran norm = TRUE and condition set to a mock variable

to randomly split reference cells into two groups; number differentially dis-

tributed genes nDE = nDP = nDM = nDB = nEP = 0 and nEE = 1 (i.e.,

only equivalently expressed genes); and, numSamples set to half the number

of reference cells (since two groups are simulated).

simulateSet with parameters passed from estimation.

scDesign – design data with total number of RNA-seq reads S set to the overall sum of

reference counts, ncell set to the number reference cells, and ngroup = 1 (i.e.,

one cell state only).

scDesign2 fit model scDesign2 with default parameters, using raw counts as input; cell

identifiers set to cluster assignments for type k and a (unique) mock identifier

for type n.

simulate count scDesign2 with n cell new set to the number of reference

cells, and cell type prop set to the frequency of each reference cluster.

SCRIP For type n, splatEstimate with default parameters, using raw counts as input;

no additional estimation for type b and k.

For type n, SCRIPsimu with parameters passed from estimation; for type b/k,

simu cluster with CTlist set to unique reference batch/cluster identifiers; for

all types, mode = “GP-trendedBCV ”.

SPARSim SPARSim estimate parameter from data with default parameters, using

both raw (raw counts) and library size normalized counts (norm data) as

input; conditions set to batch identifiers for type b, and a mock variable

(unique identifier for each cell) for type n.

SPARSim simulation with parameters passed from estimation and

output batch matrix = TRUE , extracting the result list’s element

count matrix as output.

splatter splatEstimate with default parameters. splatSimulate with parameters passed from estimation.

SPSimSeq – SPsimSeq with n.genes/tot .samples set to the number of reference

genes/cells, and model .zero.prob = genewiseCor = TRUE ; for type n; batch

set to a mock variable (1 for every cell) and batch.config = 1 ; for type b,

additional filtering for genes with a total count of at least 10 in all batches

(to prevent parameter estimation failure), batch set to reference cell batch

assignments, and batch.config set to the frequency of each reference batch.

SymSim BestMatchParams with raw counts as input, tech = “UMI ”, n optimal = 1 ,

and ngenes, ncells total , nbatch set to the number of genes, cells, batches, in

the reference.

SimulateTrueCounts with parameters passed from simulation and

randseed = 1234 ; True2ObservedCounts with true counts and meta cell

passed from SimulateTrueCounts’s output, and gene len sampled from the

package’s internal gene len pool data (uniformly and with replacement);

for type n/k, DivideBatches with nbatch set to the number of reference

batches/clusters and observed counts res set to True2ObservedCounts’s

output.

ZINB -WaVE zinbFit with default parameters, and model matrix formula ∼ batch/cluster

for type b/k.

zinbSim with parameters passed from estimation.

zingeR getDatasetZTNB with raw counts as input, reference cells randomly split into

two groups, and pUp = 0 (i.e., no differentially expressed genes).

NBsimSingleCell with parameters passed from estimation.

Table S4: Overview of method functions and argument settings used for parameter estimation and data simulation.

Dashes indicate that the corresponding method does not have a separate estimation step.
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4 Evaluation statistics

To evaluate how similar simulations are to the underlying (real) reference dataset, we compute both one- and

two-dimensional tests on the similarity between quality control summaries (or pairs thereof) obtained from

each reference-simulated dataset pair.

4.1 One-dimensional

For every reference-simulation pair, we perform two tests on the similarity of summary distributions; these

are briefly described below. Thus, we obtain one statistic per test, summary, method and reference dataset.

The Kolmogorov–Smirnov (KS) test is a non-parametric test that may be used to quantify the

distance between a pair of cumulative distribution functions (CDFs). Here, for each quality control summary,

we compared the CDF obtained from reference (F ) against simulated data (G). The KS statistic is defined

as the largest absolute distance between F and G, i.e.:

D(F,G) = supx|F (x)−G(x)|

Similar to the KS test, the Wasserstein distance (w) describes the distance between two distributions,

where smaller/larger values correspond to more/less similarity; its exact value, however, is generally not

straight-forward to interpret. The 1st Wasserstein metric is defined as:

W (F,G) =

(∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣2 du) 1

2

where F and G denote the cumulative distribution function (CDF) of the reference and simulated dataset,

respectively, and F−1 and G−1 their corresponding quantile functions.

KS tests were performed using the ks.test function with alternative = ‘two.sided ‘ (i.e. under the null

hypothesis, F and G are equal). In general, a KS statistic of ≈ 0 suggests that reference and simulation are

very similar; hence, smaller values correspond to better method performance.

To compute W , we used the wasserstein metric function of the waddR package, which provides a (faster)

Rcpp re-implementation of the original wasserstein1d function from the transport package.

4.2 Two-dimensional

The two-dimensional KS test was performed using the peacock2 function of the Peacock .test package.

To compute the Earth mover’s distance (EMD) between a pair of quality control summaries p and

q obtained from reference x and simulated data y, we estimated a two-dimensional kernel density over the

range of observed values, i.e. [min(px, py),max(px, py)] and [min(qx, qy),max(qx, qy)], using MASS ’ kde2d

function with n = 25 grid points. The EMD was then computed using emdist ’s emd2d function, and divided

by n to make results independent of the number of evaluations points.

Both, the two-dimensional KS test and EMD were computed for each relevant pair of summaries, resulting

in nine statistics per test, method, and reference dataset. Cell-to-cell distance and correlation, as well as

gene-to-gene correlation were excluded from two-dimensional evaluations because they were computed for a

random subset of gene- and cell-pairs, respectively. Similarly, the PVE, LDF, CMS and silhouette width

were not included because they aim to capture global structure, and are expected to be unrelated to other

metrics. Thus, we consider the following pairs of summaries:
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average of logCPM 3 3 3

variance of logCPM 3 3

gene detection frequency 3

log-library size 3 3

cell detection frequency 3

5 Downstream

If not mentioned otherwise, all functions were run using default parameters. Throughout, K corresponds to

the ‘true’ number of clusters; logcounts correspond to log-transformed library size normalized counts obtained

with scater ’s normalizeCounts function; and, principal component analysis and principal components are

abbreviated with PCA and PCs, respectively.

5.1 Integration

Integration methods were implemented as in a previous benchmark study, including ComBat , Harmony ,

fastMNN and mnnCorrect , limma, and Seurat . To evaluate method performances, cell-specific mixing scores

(CMS) and the difference in local density factors (∆LDF) were computed using the cms and ldfDiff function,

respectively, of the CellMixS package.

To make metrics comparable, we: i) subtracted 0.5 to center CMS at 0 (denoted CMS*); and, ii) centered

(at 0) and scaled (to range 1) ∆LDF (denoted ∆LDF*). From these, we computed the Batch Correction Score

(BCS) as the sum of |CMS*| and |∆LDF*|. Thus, for all three metrics, a value of 0 indicates ‘good’ mixing for

a given cell. When aggregating results (e.g., for heatmap visualizations), metrics were first averaged across

cells within each batch and, secondly, across batches, in order to give equal weight to each batch independent

to its size and complexity.

5.2 Clustering

Clustering methods were implemented as in a previous benchmark study, including CIDR, hierarchical clus-

tering (HC) and k-means (KM) on PCA, pcaReduce, SC3 , Seurat , TSCAN , and KM on t-SNE. If applicable,

the number of clusters was set to match the number of true (annotated respective simulated) clusters. To

evaluate the performance of each method, we matched true and predicted cluster labels using the Hungarian

algorithm, and computed cluster-level recall, precision, and F1 score (the harmonic mean of precision and

recall):

recall =
TP

FP + FN

precision =
TP

TP + FP

F1 score =
2 · TP

2 · TP + FP + FN
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6 Computational workflow

For this benchmark, we designed a Snakemake workflow that: i) reproducibly retrieves publicly available

scRNA-seq datasets; ii) runs a set of simulation methods on subsets drawn from each reference dataset;

iii) computes various global, gene- and cell-level quality control summaries; iv) compares summaries and

relevant pairs thereof between reference and simulated data; v) quantifies parameter estimation and data

simulation runtimes; vi) compares performance of methods for integration and clustering between reference

and simulated data; and, vii) generates a variety of visualizations to consolidate results. The Snakemake is

structured as follows:

• config.yaml specifies the R library and version to use

• code/ contains all R scripts used in the workflow

• data/ contains raw, subsetted, filtered and simulated scRNA-seq datasets,

as well as simulation parameter estimates

• meta/ contains two .json files that specify simulation method (methods.json)

and reference subset (subsets.json) configurations

• outs/ contains all results from computations (as .rds files), typically data.frames

• plts/ contains all visual outputs (as .pdf files), and corresponding ggplot objects

(as .rds files) for subsequent arrangement into ‘super’-figures

• figs/ contains figures (as .pdf files) that combine various content-related .rds objects from plts/

6.1 Preprocessing

6.1.1 Retrieval

We retrieved each reference dataset from a publicly accessible source, e.g., GitHub, Bioconductor’s

ExperimentHub or the Gene Expression Omnibus (GEO) database, using a self-contained and reproducible

R script. Raw data are initially formatted into SingleCellExperiment objects, but left unprocessed otherwise.

In rare cases (for example, Kang18 ), we apply some filtering to, e.g., remove unassigned cells, multiplets,

and samples that have undergone experimental treatment (see Additional file 1: Table S1).

6.1.2 Filtering

As insufficient numbers of cells and low-quality observations can interfere with estimation of simulation

parameters, we filter each reference dataset to: i) remove group-instances with fewer than 50 cells (here,

groups correspond to batches or clusters, depending on the reference dataset’s complexity); ii) retain genes

with a count greater than 1 in at least 10 cells; and, iii) retain cells with at least 100 detected genes, i.e.

non-zero counts.

6.1.3 Subsetting

Finally, we draw various subsets from each reference dataset according to a configuration file

(meta/subsets.json) that specifies, for each subset, which groups (i.e. batches or clusters) to retain, and

(optionally) the number of genes and cells to downsample to. This gives rise to a set of subsets that serve as

references for simulation (see Additional file 1: Table S2).

The number of drawn subsets may vary from dataset to dataset, and is dependent on how many batches

and/or clusters the reference provides. In general, we retain one subset per type for each reference, i.e., a

type n, b and/or k subset (if there are multiple batches and/or clusters). For complex datasets (large number

of genes/cells, batches/clusters), we preferably select for large and cleanly annotated groups.
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6.2 Simulation

Using a separate configuration file (meta/methods.json), we tag methods according to the features they

can accommodate, i.e., one or many of batches (b), clusters (k), or neither (n). Each method is then run

on all references that match the supported type(s). Thus, from each (real) reference dataset, we obtain

corresponding simulated data for each method (see Table 1).

6.3 Quality control

For each dataset, we compute the quality control summaries detailed in Additional file 1: Table S3, giving

rise to a set of global, gene- and cell-level summaries per (reference and simulation) dataset-method pair.

6.4 Performance evaluation

Next, we perform one- (and two-dimensional) tests on the similarity of reference-simulation summary pairs

(and relevant pairs of summaries), resulting in a corresponding set of 14 and 9 statistics (per test) for one-

and two-dimensional comparisons, respectively.

6.5 Consolidation of results

6.5.1 Filtering

All gene-level summaries as well as cell-level summaries that include pairwise computations (i.e., cell-to-cell

distance and correlation) or capture global structure (i.e., local density factor and KNN occurrences) are

dependent on the subset of cells they are computed on. Thus, we retain both group-level (per batch/cluster)

as well as global (all cells) results for these summaries with one exception: gene-to-gene correlation was

evaluated globally only (since we expect gene-to-gene correlation to be most interpretable across all cells in

a dataset). For all other gene- and cell-level summaries, only group-level results are retained. Thus, we keep

the following statistics for evaluation and visualization (◦ = not computed):
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global 3 3 3 3 3 7 7 3 3 3 3 3 3 3

group-level 3 3 3 3 7 3 3 3 3 3 3 ◦ ◦ ◦

6.5.2 Averaging

When aggregating results (e.g., heatmaps), we first average statistics across global and/or group-level results

(depending on the summary) with equal weights. Secondly, in order to weight datasets equally (independent

of the number of drawn subsets), we first average statistics across subsets and, lastly, across datasets.

6.5.3 Ranking

Methods/summaries are ranked according to their average statistic across summaries/methods, with equal

weights given to all variables. For all statistics, lower values indicate better performance (i.e., 0 = best, 1 =

worst).
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7 Supplementary data

7.1 QC summaries

obj -qc ref /sim.rds are data.frames containing gene-, cell-level, and global quality control (QC) summaries

across all references and methods. Specifically, these include:

• datset , subset : reference dataset and subset identifier

• metric: gene-, cell-level, or global quality control summary

• method : simulation method used (‘ref’ for the non-synthetic reference dataset)

• group: cell grouping used (one of ‘global’, ‘batch’, or ‘cluster’)

• id : cell group identifier, e.g., the batch or cluster annotation (‘foo’ when ‘group’ is ‘global’)

• value: summary value for a given feature (gene-level), cell (global and cell-level),

or pair thereof (e.g., correlations)

7.2 1/2D statistics

obj -stat 1 /2d .rds are data.frames containing one-/two-dimensional test statistics results across all datasets,

methods, and summaries (or relevant pairs thereof). In particular, these comprise:

• method : simulation method used to generate the data

• stat1 /2d : test statistic used for comparing reference and simulation summary (or summaries)

(‘ks(2)‘ for (2D) Kolmogorov-Smirnov, ‘ws’ for Wasserstein metric, ‘emd’ for earth mover’s distance)

• datset , subset : reference dataset and subset identifier

• metric(1 , 2 ): gene-, cell-level, or global quality control summary (or summaries)

• group: cell grouping used (one of ‘global’, ‘batch’, or ‘cluster’)

• id : cell group identifier, e.g., the batch or cluster annotation (‘foo’ when ‘group’ is ‘global’)

• stat : value of the test statistic

7.3 Integration results

obj -batch res.rds is a data.frame containing integration results for reference and simulated data across all

type b datasets and methods, and integration methods. Specifically, it includes the following columns:

• datset , subset : reference dataset and subset identifier

• method : simulation method used (‘ref’ for the non-synthetic reference dataset)

• batch method : integration method used to correct for batch effects

• batch: ground-truth cell batch label

• ldf , cms: cell-specific difference in local density factor and mixing score

7.4 Clustering results

obj -clust res.rds is a data.frame containing clustering results for reference and simulated data across all type

k datasets and methods, and clustering methods. Specifically, it includes the following columns:

• datset , subset : reference dataset and subset identifier

• method : simulation method used (‘ref’ for the non-synthetic reference dataset)

• clust method : clustering method used to predict cell cluster assignments

• cluster : ground-truth cell cluster annotation

• pr , re,F1 : cluster-level precision, recall, and F1 score
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7.5 Runtimes

obj -rts.rds is a data.frame containing timings of parameter estimation and data simulation across all methods,

and 5 replicates each for various random gene- and cell-subsets of one dataset per type. It includes:

• method : simulation method used

• datset , subset : reference dataset and subset identifier

• reftyp: reference dataset type (one of ‘n’, ‘b’, ‘k’, or ‘g’)

• ngs,ncs: number of genes/cells samples (‘NA’ if no downsampling)

• est , sim: runtime (in seconds) for parameters estimation and data simulation

(‘Inf’ when estimation/simulation failed, ‘est’ is ‘NA’ when there is no separate estimation step)
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