Supporting Information 1 of

SARS-CoV-2 ORF8 protein induces endoplasmic reticulum stress-like responses and facilitates virus replication by triggering Calnexin: an unbiased study

Xuefeng Wang^{1,a}, Wenqi Wang^{2,3,a}, Tiecheng Wang^{1,2,4}, Jianzhong Wang⁵, Yuhang Jiang^{1,6}, Xue Wang^{1,2}, Ze Qiu^{1,2}, Na Feng¹, Weiyang Sun¹, Chang Li¹, Songtao Yang¹, Xianzhu Xia^{1,4}, Hongbin He^{2,*} and Yuwei Gao^{1,*}

¹Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China, 130122

²Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China, 250014

³College of life sciences, Northeast Normal University, Changchun, China, 130021

⁴Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases

and Zoonoses, Yangzhou University, Yangzhou, China, 225009

⁵College of Veterinary Medicine, Jilin Agricultural University, Changchun, China, 130118

⁶Collage of Veterinary Medicine, Northwest A&F University, Xianyang, China, 712100

^aThese authors contributed equally to the work.

*Correspondence: yuwei0901@outlook.com (YG) and hongbinhe@sdnu.edu.cn (HH)

Fig S1. ORF8 signal peptide includes its N-terminal 1-15 amino acids. (A) Prediction of ORF8 signal peptide using Signal 5.0. (B) Identified peptides of ORF8-Flag by mass spectrometry. Immunoprecipitation products of ORF8-Flag (protein sequence and the C-terminal Flag as indicated) overexpressing 293T cells were analyzed by mass spectrometry. Each identified peptide of ORF8 is demonstrated by a green line segment with inside modifications (if exist) in red. The recognized signal peptidase cleavage site between the indicated amino acids (indicated with enlarged black texts) is demonstrated by a red arrow.

Fig S2. ORF8 fails to function as an immune antagonist. (A) ORF8 from mammalian cells fails to form a stable disulfide-linked homodimer. Lysates of ORF8-Flag overexpressing 293T cells were analyzed by anti-Flag WB after tricine gel electrophoresis in either reduced or non-reduced condition. (B-C) ORF8 fails to suppress IFN production, demonstrated by NDV-GFP assay (B) although both NS1 (in C, black arrow) and ORF8 (in C, red arrow) are well-expressed. Scale bars in (B) and (D): 300 μm. (D-E) ORF8 fails to suppress IFN signaling, demonstrated by NDV-GFP assays (D) and ISRE responses (E). (F-G) ORF8 fails to inhibit MHC-I expression. (F) ORF8 was overexpressed in 293T for 60 hours cells, and lysates were analyzed by WB. (G) Cells in (F) were analyzed by flow cytometry. (H) ORF8-EGFP fails to co-localize with Calnexin. ORF8-Flag and

ORF8-EGFP overexpressing 293T cells were analyzed by multi-immunofluorescence. Left row: ORF8 signals in green; middle row: Calnexin signals in green; right row: merge signals of left and middle with nucleus in blue. Scale bar: 15 μ m. (I) ORF8 fails to inhibit ubiquitination. Lysates of ORF8 overexpressing or TAK treated 293T were analyzed by WB. (J) ORF8 mutants Delat16 and HexA were expressed in low levels. Lysates of ORF8 WT and mutant overexpressing 293T cells were analyzed by WB after tricine gel electrophoresis.

Fig S3. ORF8 leads to stress-like responses in human but not in mouse cells. (A) ORF8 induces HSPA5 upregulation via neither PERK nor ATF6 branch. 293T cells were transfected with ORF8 and lysates were obtained at the indicated time post transfection and analyzed by WB. In anti-ATF6

WB results (A), (B) and (D), full-length ATF6 is marked by black arrows and ATF6(N) is marked by red arrows. (B) Tg induces ER stress of three branches. As is in (A) but using Hela cells treated by Tg. (C) A tiny amount of ORF8 is able to induce stress-like response. 293T cells in 6-well plates were transfected with 0, 100, 200, 1000, 2500 and 5000 ng ORF8 (from left to right lanes), respectively, and lysates were obtained at 60 hours post transfection and analyzed by WB. (D) EGFP overexpression fails to induce HSPA5 upregulation in 293T cells. (E) ORF8 fails to activate PERK or ATF6 branch of ER stress in MEF cells. As is in (A) but using MEF cells. (F) ORF8 fails to activate IRE1 branch of ER stress in MEF cells. As is in Figure 5B but using MEF cells. (G-I) Influence of ORF8 overexpression in 293T cells (G), or MEF cells (H-I). As is in Figure 5D. Not significant: n.s..

Fig S4. ORF8 siRNAs fail to knockdown ORF8. (A) Designs of 6 ORF8 specific siRNAs according to the sequence of ORF8 sgmRNA. (B) Successful transfection of siORF8. Scale bar: 400 μm. (C) ORF8 siRNAs fail to knockdown ORF8. Hela^{ACE2+} cells were transfected using each siORF8/siNC for 48 hours, and infected by SARS-CoV-2 at an MOI of 1. WB analyses were performed at 24 hpi.

Table S1. Details for ORF8-Calnexin docking

Name	Distance	Category	Types	From	From Chemistry	То	To Chemistry
A:LYS90:HZ1 - B:ASP107:OD2	2.26938	Hydrogen Bond; Electrostatic	Salt Bridge; Attractive Charge	A: LYS90:HZ1	H-Donor; Positive	B:ASP107:OD2	H-Acceptor; Negative
A:ARG221:NH2 - B:GLU19:OE2	4.93241	Electrostatic	Attractive Charge	A: ARG221:NH2	Positive	B:GLU19:OE2	Negative
A:GLY195:H - B:ILE39:O	2.89138	Hydrogen Bond	Conventional Hydrogen Bond	A: GLY195:H	H-Donor	B:ILE39:O	H-Acceptor
A:HIS201:HE2 - B:GLU110:OE1	2.25439	Hydrogen Bond	Conventional Hydrogen Bond	A:HIS201:HE 2	H-Donor	B:GLU110:OE1	H-Acceptor
B:HIS40:HE2 - A:GLU159:OE2	2.94436	Hydrogen Bond	Conventional Hydrogen Bond	B:HIS40:HE2	H-Donor	A:GLU159:OE2	H-Acceptor
B:HIS40:HE1 - A:GLU159:OE2	3.09197	Hydrogen Bond	Carbon Hydrogen Bond	B:HIS40:HE1	H-Donor	A:GLU159:OE2	H-Acceptor
A:ARG221:NH2 - B:HIS112	4.26075	Electrostatic	Pi-Cation	A: ARG221:NH2	Positive	B:HIS112	Pi-Orbitals
A:ASP192:OD1 - B:PHE104	4.24739	Electrostatic	Pi-Anion	A: ASP192:OD1	Negative	B:PHE104	Pi-Orbitals
A:ASP197:OD2 - B:HIS112	3.36826	Electrostatic	Pi-Anion	A: ASP197:OD2	Negative	B:HIS112	Pi-Orbitals
B:GLU110:OE2 - A:TYR164	4.20693	Electrostatic	Pi-Anion	B: GLU110:OE2	Negative	A:TYR164	Pi-Orbitals
B:GLU110:OE2 - A:HIS201	3.24915	Electrostatic	Pi-Anion	B: GLU110:OE2	Negative	A:HIS201	Pi-Orbitals

A:CYS160:SG - B:PHE104	4.36697	Other	Pi-Sulfur	A:CYS160:SG	Sulfur	B:PHE104	Pi-Orbitals
A:CYS194:SG - B:PHE104	5.21006	Other	Pi-Sulfur	A:CYS194:SG	Sulfur	B:PHE104	Pi-Orbitals
B:HIS40 - A:CYS160	4.66622	Hydrophobic	Pi-Alkyl	B:HIS40	Pi-Orbitals	A:CYS160	Alkyl
B:HIS40 - A:MET429	4.82283	Hydrophobic	Pi-Alkyl	B:HIS40	Pi-Orbitals	A:MET429	Alkyl
B:PHE41 - A:CYS194	4.39346	Hydrophobic	Pi-Alkyl	B:PHE41	Pi-Orbitals	A:CYS194	Alkyl

Table S2. Primer applications and sequences

Primer applications	Primer sequences (5' to 3')		
RT_PCR for Human XBP_1 splicing	CCTTGTAGTTGAGAACCAGG		
KI-I CK för Human XDI -I spheng	GGGGCTTGGTATATATGTGG		
aRT_PCR for Human CHOP	ACCTCCTGGAAATGAAGAGGAAG		
	GCTCTGACTGGAATCTGGAGAG		
aRT-PCR for Human EDEM	TATCTCCTCTACCAGGCAACCA		
	GGACTTGTCAATGACGTGATGC		
aRT_PCR for Human HSPA 5	CAACGCCAAGCAACCAAAGA		
	GTTCTTCTCCCCCTCCTCT		
aRT-PCR for Human PDIA4	AGCAGGGCTCCACCCA		
	CCTGGTGTAGCGCTTAGCAT		
RT_PCR for Mouse XBP-1 splicing	GAACCAGGAGTTAAGAACACG		
RTT OR IOI Mouse ADT T spiteling	AGGCAACAGTGTCAGAGTCC		
aRT-PCR for Mouse CHOP	CCCAGGAAACGAAGAAGAAGAA		
	CTCTGACTGGAATCTGGAGAGC		
aRT-PCR for Mouse EDEM	TATCTCCTCTACCAGGCAACCA		
	TCTATGACGTGATGCAGCGTAG		
site-directed mutagenesis to construct nCAGGS-Flag-Ston	ACGACGATAATATTCGAGCTCATC		
she dheeted mulugenesis to construct per 1000 Thig Stop	CATCCTTGTAATCCATGG		
PCR to linearize pCAGGS-Flag-Stop	GATTACAAGGATGACGACGATAAG		
	GATGAGACAGCACAACAACCAG		

RT_PCR to construct ORE8-Flag	TTGTGCTGTCTCATCATGAAATTTCTTGTTTTCTTAGG
KI-I CK to construct OKI 6-1 lag	GTCATCCTTGTAATCGATGAAATCTAAAACAACACGAAC
subcloned PCR to construct ORE8-EGEP	GGCGCTAGCATGAAATTTCTTGTTTTCTTAGGAATCATC
subcioned I CR to construct ORI 6-LOI I	CTTGGATCCCGGATGAAATCTAAAACAACACGAACG
site_directed mutagenesis to construct OPF8_T12P	TGTTTTCTTAGGAATCATCACAAGAGTAGCTGCATTTCACCAAGAATG
site-directed mutagenesis to construct OKI 6-112K	CATTCTTGGTGAAATGCAGCTACTCTTGTGATGATTCCTAAGAAAACA
site_directed mutagenesis to construct OPF8_V13A	ATTCTTGGTGAAATGCAGCTGCAGTTGTGATGATTCCTAAG
site-directed indiagenesis to construct OKI 6- V ISA	CTTAGGAATCATCACAACTGCAGCTGCATTTCACCAAGAAT
site-directed mutagenesis to construct ORF8-A15R	CTGTAAACTACATTCTTGGTGAAATCTAGCTACAGTTGTGATGATTCCTAAG
she-directed indiagenesis to construct OKI 6-ATSK	CTTAGGAATCATCACAACTGTAGCTAGATTTCACCAAGAATGTAGTTTACAG
site directed mutagenesis to construct OPER V13P	CTTGGTGAAATGCAGCTCTAGTTGTGATGATTCCTAAGAAAACAAGAAATTT
she-directed indiagenesis to construct OKI 6- v 15K	AAATTTCTTGTTTTCTTAGGAATCATCACAACTAGAGCTGCATTTCACCAAG
site-directed mutagenesis to construct ORF8- \triangle SR	ACGACGATAATATTCGAGCTCATC
	CATCCTTGTAATCCATGG
site-directed mutagenesis to construct ORF8-SR (1st round)	TATATTAGAGTAGGAGCTAG
she directed mangemests to construct off o SR (1st round)	TTCTTGGTGAAATGCAGC
site-directed mutagenesis to construct ORE8-SR (2nd round)	GATTACAAGGATGACGAC
she dheeted multipliesis to construct orth o ort (2nd round)	AGGTAAACAGGAAACTGTATAATTAC
site-directed mutagenesis to construct ORF8-N780	CGATATCGGTCAATATACAGTTTCCTG
	ATGTACTGAATGGGTGATTTAG
RT-PCR to construct HSPA 5-HA	TAAAAGCTTATTATGAAGCTCTCCCTGGTGGC
	TCTCGAGCAACTCATCTTTTTCTGCTGTATCC
RT-PCR to construct Calnexin-HA	ATTGGATCCATTATGGAAGGGAAGTGGTTGCTGT

	TCTCGAGCTCTCTTCGTGGCTTTCTGTTTCTT
RT_PCR to construct TUBR_HA	ATCAAGCTTATTATGGACTCTGTTCGCTCAGGTCCTT
	TCTCGAGGGCCTCCTCTCGGCCTCCTC
PT DCP to construct TUPA 1P HA	ATTGGATCCATTATGCGTGAGTGCATCTCCATCC
KI-I CK to construct I ODAID-IIA	TCTCGAGGTATTCCTCCTCCTTCTTCCTCACCC
RT-PCR to construct PDIA6-HA	TTCAAGCTTATTATGATCTTAGGTCTGGTGAGCTGTA
	TCTCGAGCAACTCATCTTTCCCTAAGTCATCA
RT_PCR to construct EFE1A1-HA	ATTGGATCCATTATGGGAAAAGGAAAAGACTCATATCA
	TCTCGAGTTTAGCCTTCTGAGCTTTCTGGG
site-directed mutagenesis to construct Calnexin-AGlobular	CTGCTCAATGACATGACTC
(1st round)	GAGCTTTGTAAGTAACCTTG
site-directed mutagenesis to construct Calnexin-AGlobular	AAGAAAGCTGCTGATGGG
(2nd round)	AGGTTCCAGATCTTCAAAG
site-directed mutagenesis to construct Calneyin-AArm	TTCAGAATGACTCCTTTTAG
	ATTTCCACTATTCACCAC
site-directed mutagenesis to construct Calneyin-ACtem	CTCGAGTCTAGAGGGCCC
she-directed indiagenesis to construct CameAm-Acterin	CAGGCCCCATCCATCATTG
site-directed mutagenesis to construct Calnexin-Arm (1st	ATAGAATTCGCCACCATGGAAGGGAAGTG
round)	GTGAAGGATTTACAGGATCAATCACATCATCATCATGTCCATCATG
site-directed mutagenesis to construct Calnexin-Arm (2nd	TGATGATGTGATTGATCCTGTAAATCCTTCACGTGAAATTGAGG
round)	AGGTTCCAGATCTTCAAAGAAATCTGGATTTGCTCGAGATA
homologous recombination to construct Calnexin-Ctem (N-	AATGAATTCGCCACCATGGAAGGGAAGTGGTTGCTG
terminal part)	TCTCGAGATCAATCACATCATCATGTCCA

homologous recombination to construct Calnexin-Ctem (C-	ATGATGATGATGATGATAAGAAAGCTGCTGATGGGGGC
terminal part)	TAGGGCCCTCTAGACTCGAGCTCTCTTCGTGGCTTTCTGT
homologous recombination to construct Calnexin-Globular	AATGAATTCGCCACCATGGAAGGGAAGTGGTTGCTG
(N-terminal part)	TCTCGAGATTTCCACTATTCACCACAGATTGG
homologous recombination to construct Calnexin-Globular	CTGTGGTGAATAGTGGAAATTTCAGAATGACTCCTTTTAG
(C-terminal part)	TAGGGCCCTCTAGACTCGAGCAGGCCCCATCCATCATTGG
site-directed mutagenesis to construct HSPA 5-ANBD	CAAGATACAGGTGACCTG
site-uncetted indiagenesis to construct fist AS-ANDD	CTTCTTGTCCTCCTC
site-directed mutagenesis to construct HSPA5-ASBD	AAACTCTATGGAAGTGCAGGCCCTC
	TACATCAAGCAGTACCAGGTCACCTG
site-directed mutagenesis to construct HSPA5-AN	AAACCATACATTCAAGTTGATATTGGAGGTGGGCAAACAAA
	CTCCTCGGCCCGCGCCGC
site-directed mutagenesis to construct HSPA5-Acore NBD	GACAATAGAGCTGTGCAGAAACTCCGG
	AGTTTTCTTTTCAACCACCTTGAACGGC
site-directed mutagenesis to construct HSPA5-Acore SRD	TTTGAGATAGATGTGAATGG
	TACATCAAGCAGTACCAG

Antibody Name	Vendor	Application	
Anti-HA	Biolegend	WB	
Anti-Flag	Sigma	WB	
Anti-eIf2a	Cell Signaling	WB	
Anti-p eIf2α	Cell Signaling	WB	
Anti-Calneixn	Cell Signaling	WB	
Anti-Calnexin	Abcam	IP/IF	
Anti-HSPA5	Proteintech	WB/IP/IF	
Anti-beta tubulin	Cell Signaling	WB/IF	
Anti-GAPDH	Cell Signaling	WB	
Anti-GM130	Abcam	IF	
Anti-ATF6	Novus	WB	
Anti-MHC I	Abcam	WB	
Anti-CD63	Santa Cruz	WB	
Anti-Ubiquitin	Cell Signaling	WB	

Table S3. Antibodies information

Name	Sequences (5' to 3')		
siORF8-1	sense	UUCUCUAAACGAACAUGAAAUdTdT	
	antisense	AUUUCAUGUUCGUUUAGAGAAdTdT	
siORF8-2	sense	UCUAAACGAACAUGAAAUUUUCdTdT	
	antisense	GAAAUUUCAUGUUCGUUUAGAdTdT	
siORF8-3	sense	CUCUAAACGAACAUGAAAUUUdTdT	
	antisense	AAAUUUCAUGUUCGUUUAGAGdTdT	
siORF8-4	sense	UGUUCUCUAAACGAACAUGAAAUdTdT	
	antisense	AUUUCAUGUUCGUUUAGAGAACAdTdT	
siORF8-5	sense	UCUAAACGAACAUGAAAUUUCUUdTdT	
	antisense	AAGAAAUUUCAUGUUCGUUUAGAdTdT	
siORF8-6	sense	UUCUCUAAACGAACAUGAAAUUUdTdT	
	antisense	AAAUUUCAUGUUCGUUUAGAGAAdTdT	
siCalnexin-1	sense	CACCAGAACUCAACCUGGAUCAGUU	
	antisense	AACUGAUCCAGGUUGAGUUCUGGUG	
siCalnexin-2	sense	UGUGGUGGUGCCUAUGUGATT	
	antisense	UCACAUAGGCACCACCACUU	
siNC	Sense	UUCUCCGAACGUGUCACGUTT	
	antisense	ACGUGACACGUUCGGAGAATT	

Table S4. siRNA information