Supplementary Information

Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice

Nana Yan^{1,7}, Hu Feng^{1,7}, Yongsen Sun^{1,7}, Ying Xin^{1,2,7}, Haihang Zhang^{1,7}, Hongjiang Lu^{1,2}, Jitan Zheng^{1,3}, Chenfei He¹, Zhenrui Zuo¹, Tanglong Yuan¹, Nana Li^{1,2}, Long Xie¹, Wu Wei^{4,5}*, Yidi Sun⁶*, Erwei Zuo¹*

¹Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

²Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan China.
³State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China.

⁴CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.

⁵Lingang Laboratory, Shanghai, China

⁶Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.

⁷These authors contributed equally: Nana Yan, Hu Feng, Yongsen Sun, Ying Xin, Haihang Zhang

*Corresponding author.

Email: wuwei@lglab.ac.cn (W.W.); ydsun@ion.ac.cn (Y.S.); zuoerwei@caas.cn (E.Z.)

The PDF includes: Supplementary Figures 1-11 Supplementary Tables 1-7

Supplementary Fig. 1 | Generation and identification of GFP, BE3, YE1-BE3-FNLS, ABE7.10^{F148A} transgenic mice. **a**, Schematics show the plasmids used for generating transgenic mice. **b**, Electrophoresis of agarose gel to confirm integration sites. The number below electrophoretic bands (left: 5 arm terminal; right: 3 arm terminal) represent corresponding integration sites in three individuals of GFP, BE3, YE1-BE3-FNLS or ABE7.10^{F148A} transgenic mice. **c**, Chromosome location of *PB* insertions in GFP, BE3, YE1-BE3-FNLS and ABE7.10^{F148A} transgenic mice. **d**, Electrophoresis of agarose gel to identify single or biallelic integration in each integration site. **e**, Transposon copy number of GFP, BE3, YE1-BE3-FNLS and ABE7.10^{F148A} transgenic mice. Data are presented as means \pm SEM (n = 3). *P* values were calculated by two-sided, unpaired *t*-test. **f**, Western blot analysis showing the protein expression levels of BE3, YE1-BE3-FNLS and ABE7.10^{F148A} in the corresponding transgenic mice compared with WT and GFP mice. Source data are provided as a Source Data file.

Supplementary Fig. 2 | H&E staining of the indicated tissues in WT, GFP, BE3, YE1-BE3-FNLS and ABE7.10^{F148A} mice and flow cytometry plots used for sorting GFP⁺tdTomato⁺ liver cells. a, H&E images showed no morphological difference between WT and the transgenic mice. b, Representative of the FACS gating strategy in the identification of GFP⁺ and tdTomato⁺ cells for on-target editing efficiency evaluation.

Supplementary Fig. 3 | WGS analysis in muscles of the GFP, BE3, YE1-BE3-FNLS and ABE7.10^{F148A} transgenic mice. a, The numbers of DNA SNVs detected in the WT mice with the transgenic mice as control from WGS data. b, Distribution of mutation types in muscles of GFP, BE3, YE1-BE3-FNLS and ABE7.10^{F148A} mice. The number indicates the percentage of a certain type of SNVs among all SNVs. c, The numbers of DNA indels detected in muscles of GFP, BE3 YE1-BE3-FNLS and ABE7.10^{F148A} mice. d, The numbers and distribution of DNA SVs in muscles of GFP, BE3 YE1-BE3-FNLS and ABE7.10^{F148A} mice. Data are presented as mean \pm SEM (n = 3). *P* values were calculated by two-sided unpaired *t*-test. Source data are provided as a Source Data file.

Supplementary Fig. 4 | WGS analysis for *de novo* off-target SNVs in the offspring of BE transgenic mice. **a**, The allele frequency distribution of *de novo* SNVs in the GFP and BE transgenic mice. **b**, Distributions of off-target RNA SNVs on chromosomes of the transgenic mice. **c**, Comparison of *de novo* SNV numbers in the offspring of different transgenic mice in the six indicated mutation types. Data are

presented as mean \pm SEM, n = 4, 5, 5 and 6 for GFP, BE3, YE1-BE3-FNLS or ABE7.10^{F148A} group, respectively. *P* values were calculated by two-sided unpaired *t*-test. Source data are provided as a Source Data file.

Supplementary Fig. 5 | RNA SNVs in various tissues of GFP, BE3, YE1-BE3-FNLS and ABE7.10^{F148A} mice. a, Comparison of RNA SNV numbers in brain, lung, heart, liver, kidney, ovary, muscle, and adipose tissues of the GFP and BE transgenic mice. Data are presented as mean \pm SEM (n = 3). *P* values were calculated by twosided unpaired *t*-test. **b**, Comparison of expression levels for genes containing the

overlapped off-target RNA SNVs and randomly simulated genes in muscles of the BE3 and YE1-BE3-FNLS mice. *P* values were calculated by two-sided unpaired *t*-test. The center line indicates the median, and the bottom and top lines of the box represent the first quartile and third quartile of the values, respectively. Tails extend to the minimum and maximum values. **c**, Distribution of mutation types in the indicated tissues of the GFP, BE3, YE1-BE3-FNLS and ABE7.10^{F148A} mice. The number indicates the percentage of a certain type of SNVs among all SNVs. Source data are provided as a Source Data file.

Supplementary Fig. 6 | Sanger sequencing chromatograms show that the C-to-U RNA SNVs were only observed in RNA but not DNA in the muscles of the GFP and BE3 mice. Single nucleotide conversions are indicated by red arrows. Primers were listed in Supplementary Table 5.

Supplementary Fig. 7 | The fertility and development phetotype monitoring of transgenic mice. a-c, Comparison of pups per litter (a), total number of pups (b) and

sex ratio (c) between GFP and BE transgenic mice. Three breeding pairs of the four transgenic mouse lines were mated for 6 months and the numbers of pups were recorded. Box-and-whisker plots: the center line indicates median, box represents first and third quantiles, and whiskers indicate maximum and minimum values. **d**, Comparison of body weights between WT (n = 46), GFP (n = 48) and BE3 (n = 74), YE1-BE3-FNLS (n = 64) and ABE7.10^{F148A} (n = 63) transgenic mice from birth to 3 weeks. **e**, **f**, Comparison of body weights between WT (n > 13 for males and > 11 for females), GFP (n > 12 for males and > 9 for females) and BE3 (n > 22 for males and > 16 for females), YE1-BE3-FNLS (n > 20 for males and > 12 for females) and ABE7.10^{F148A} (n > 22 for males and > 21 for females) transgenic male (**e**) and female (**f**) mice from 4 to 66 weeks. Data are presented as mean \pm SEM, **P* < 0.01, ***P* < 0.01, ****P* < 0.001, *****P* < 0.001 by two-sided unpaired *t*-test. *P* values are listed in Supplementary Data 1. Source data are provided as a Source Data file.

Supplementary Fig. 8 | **RNA-seq analysis for adipose tissues between 30-week-old BE3 and GFP mice. a,** Principal Component Analysis (PCA) analysis of transcriptome-wide gene expression levels between 30-week-old GFP and BE3 male mice. **b,** Volcano plot of the DEGs in adipose tissues between BE3 and GFP mice. **c,** GO analysis of downregulated genes and upregulated genes.

Supplementary Fig. 9 | Body weight, copy number, integration sites, WGS and RNAseq analysis of BE3 transgenic mice showing obesity and with normal weight phenotype. a, GO enrichment analysis for DNA SNVs in 30-week-old male mice from BE3 groups. b, Body weight of BE3 transgenic mice showing obesity and with normal weight phenotype. c, BE3 copy number in obesity and normal weight mice. d, Chromosome location of BE3 insertions in obesity and normal weight mice. e, The BE3

mRNA expression levels in obesity and normal weight mice. FPKM, Fragments Per Kilobase Million. **f-j**, GO enrichment analysis and KEGG pathway enrichment analysis for unique RNA SNVs detected in liver of obesity mice. Data are presented as mean \pm SEM (n = 3). *P* values were calculated by two-sided unpaired *t*-test. Source data are provided as a Source Data file.

Supplementary Fig. 10 | WGS analysis of two dead BE3 mice with developmental delay. a, The numbers of DNA SNVs and indels in the dead BE3 mice (n = 2) compared

with the GFP group (n = 3). **b**, GO analysis of genes with DNA mutations in the two

dead BE3 mice. Source data are provided as a Source Data file.

Supplementary Fig. 11 | Comparison of transgene copy numbers and off-target RNA SNVs in the YE1-BE3-FNLS transgenic mice and in mice with AAVdelivered YE1-BE3-FNLS. a, Schematic diagram of dual-split YE1-BE3-FNLS for AAV package. b, Schematic showing the experimental procedure for delivery of dualsplit YE1-BE3-FNLS through AAV8 into mice by tail-vein injection. c, Deep sequencing analysis of the C-to-T base editing efficiency at the Hpd target site in mice after 3 weeks of AAV injection. d, DdPCR detection of YE1-BE3-FNLS copy numbers per diploid cells in the liver of transgenic mice (at 8 weeks old) and AAV-delivered mice (at 1-, 2-, and 3-week post-injection). e, Expression levels of transgenes in the

liver of transgenic mice and AAV-delivered mice (at 3-week post-injection). **f**, Numbers of RNA SNVs in the liver of transgenic mice and AAV-delivered mice (at 3week post-injection). Data are presented as mean \pm SEM (n = 3). *P* values were calculated by two-sided unpaired *t*-test. Source data are provided as a Source Data file.

Sm	nlementary	Table 1	Primes for	genatyning
Su	ppiemental y	Lanc I.	1 111165 101	genotyping.

Fragment name	Primers	Sequence
CED	Forward primer	cctacagatccttaattaagcgacg
ULL	Reverse primer	gtagcggctgaagcactgca
DE2	Forward primer	tgctaaccatgttcatgccttc
DEJ	Reverse primer	taccttctccgagcggttcg
VE1 DE2 ENI S	Forward primer	accatgttcatgccttcttc
IEI-DEJ-FINLS	Reverse primer	cataggttttcagccgttcc
1 A 2 A DE2	Forward primer	tgctaaccatgttcatgccttc
ПАЗА-ВЕЗ	Reverse primer	taccttctccgagcggttcg
	Forward primer	tgctaaccatgttcatgccttc
ADE/.10	Reverse primer	taccttctccgagcggttcg
ADE7 10F148A	Forward primer	tgctaaccatgttcatgccttc
ADE/.10	Reverse primer	taccttctccgagcggttcg
$T_{\rm ME} \circ \sigma {\rm DNA}$	Forward primer	tcaagaactctgtagcaccgcc
I yr Sgrina	Reverse primer	tgacgtcaatggaaagtccc

Supplementary Table 2. Insert locations of GFP, BE3, YE1-BE3-FNLS and ABE7.10^{F148A} mice in corresponding transgenic mouse lines.

Mouse lines		Insertion name	Integration site	Location
GFP	11.1	GFP-insert 1	chr1:172468937-172468938	Gm7804 Intronic
	#1	GFP-insert 2	chr1:179249731-179249732	Smyd3 Intronic
		GFP-insert 1	chr1:172468937-172468938	Gm7804 Intronic
	#2	GFP-insert 2	chr1:179249731-179249732	Smyd3 Intronic
	#3	GFP-insert 1	chr1:172468937-172468938	Gm7804 Intronic
		GFP-insert 2	chr1:179249731-179249732	Smyd3 Intronic
		GFP-insert 3	chr11:23139312-23139313	Gm12059 1700061J23Rik Intergenic
	#1	BE3-insert 1	chr11:23139312-23139313	Gm12059 1700061J23Rik Intergenic
		BE3-insert 2	chr12:102836616-102836617	Btbd7 Intronic
		BE3-insert 3	chr1:8155815-8155816	Gm38216 Gm38024
		BE3-insert 4	chr6:106085816-106085817	Cntn4 Intronic
E1	#2	BE3-insert 5	chr7:122759154-122759155	Cacng3 Intronic
BI		BE3-insert 2	chr12:102836616-102836617	Btbd7 Intronic
		BE3-insert 6	chr18:87054755-87054756	Gm5971 Gm5234 Intergenic
		BE3-insert 7	chr1:179249731-179249732	Smyd3 Intronic
	#3	BE3-insert 8	chr7:44299731-44299732	Gm18307 Gm7238 Intergenic
		BE3-insert 2	chr12:102836616-102836617	Btbd7 Intronic
		BE3-insert 9	chr13:54600579-54600580	Cltb Intronic
	#1	YE1-BE3-FNLS-insert 1	chr2:143578196-143578197	Pcsk2 Intronic
		YE1-BE3-FNLS-insert 2	chr6:130690506-130690507	Gm27013 Intronic
		YE1-BE3-FNLS-insert 3	chr9:23270781-23270782	Bmper Intronic
ILS		YE1-BE3-FNLS-insert 4	chr13:54600579-54600580	Cltb Intronic
E-	#2	YE1-BE3-FNLS-insert 1	chr2:143578196-143578197	Pcsk2 Intronic
BE3		YE1-BE3-FNLS-insert 2	chr6:130690506-130690507	Gm27013 Intronic
11-E		YE1-BE3-FNLS-insert 3	chr9:23270781-23270782	Bmper Intronic
YE		YE1-BE3-FNLS-insert 4	chr13:54600579-54600580	Cltb Intronic
		YE1-BE3-FNLS-insert 1	chr2:143578196-143578197	Pcsk2 Intronic
	#3	YE1-BE3-FNLS-insert 2	chr6:130690506-130690507	Gm27013 Intronic
		YE1-BE3-FNLS-insert 3	chr9:23270781-23270782	Bmper Intronic
	#1	ABE7.10 ^{F148A} -insert 1	chr3:139126962-139126963	Rap1gds1 Gm4862 Intergenic
¹ 148/		ABE7.10 ^{F148A} -insert 1	chr3:139126962-139126963	Rap1gds1 Gm4862 Intergenic
10^{f}	#2	ABE7.10 ^{F148A} -insert 2	chr5:89060403-89060404	Slc4a4 Intronic
E7.		ABE7.10 ^{F148A} -insert 3	chr18:4283951-4283952	Gm10557 Gm7400 Intergenic
AB	#3	ABE7.10F148A-insert 1	chr3:139126962-139126963	Rap1gds1 Gm4862 Intergenic
Ł	"5	ABE7.10F148A-insert 3	chr18:4283951-4283952	Gm10557 Gm7400 Intergenic

Locus	Target sequences	Primers	Sequence
	caacccagaaggtcaccgag	Outer forward primer	gaaatgtcttaggaggttagcc
Und		Outer reverse primer	ggttccaaagtgccagtcct
пра		Inner forward primer	agatgggagcagggtgagtc
		Inner reverse primer	ctcgcactagccaatcccag
		Outer forward primer	ccattgcattctaggtcatgag
Drad	ataataggggacgaacaggg	Outer reverse primer	ctgacaggaagcagcacaac
Dma		Inner forward primer	ggcctatagagttcctgtatcc
		Inner reverse primer	cttatgcaagtaacctgctgtc
		Outer forward primer	gtctgtgacactcattaacc
Tur	acctcagttccccttcaaag	Outer reverse primer	aaatgtggctgctgaagtac
<i>1 yr</i>		Inner forward primer	gtattgccttctgtggagtt
		Inner reverse primer	ctgctgaagtaccagtcttt

Supplementary Table 3. sgRNA sequences and primers for Sanger sequencing.

Locus	group	Primers	Sequence
	CED #1	Forward primer	tgctcaacgaatgctgcccaccatggat
	017-#1	Reverse primer	gtggtaaaacttacagtttccgcagttg
	GED #2	Forward primer	ctacgaaagaatgctgcccaccatggat
	011-#2	Reverse primer	gtggtaaaacttacagtttccgcagttg
	GEP_#3	Forward primer	gtcaacccgaatgctgcccaccatggat
	011-#3	Reverse primer	gtggtaaaacttacagtttccgcagttg
	BE3_#1	Forward primer	tagttatcgaatgctgcccaccatggat
	DE5-#1	Reverse primer	gtggtaaaacttacagtttccgcagttg
Hnd	BE3_#2	Forward primer	gaaaaactgaatgctgcccaccatggat
пра	DE3-#2	Reverse primer	gtggtaaaacttacagtttccgcagttg
	BE3 #3	Forward primer	gagcgtttgaatgctgcccaccatggat
	DE5-#5	Reverse primer	gtggtaaaacttacagtttccgcagttg
	VE1 DE2 ENI C #1	Forward primer	tcgctgaagaatgctgcccaccatggat
	TET-DE5-FILS-#1	Reverse primer	gacacaagacttacagtttccgcagttg
	VE1 DE2 ENI C #2	Forward primer	gaaaaactgaatgctgcccaccatggat
	TET-DE5-FILS-#2	Reverse primer	gacacaagacttacagtttccgcagttg
	VE1 BE3 ENI S #3	Forward primer	gagcgtttgaatgctgcccaccatggat
	TET-DE5-TILS-#5	Reverse primer	gacacaagacttacagtttccgcagttg
	GFP_#1	Forward primer	atcacgagggccctcttgccccttaac
	011-#1	Reverse primer	acagtggaatgcagagttaatacacacg
	CED #2	Forward primer	cgatgtagggccctcttgccccttaac
	011-112	Reverse primer	acagtggaatgcagagttaatacacacg
	CED #3	Forward primer	ttaggcagggccctcttgccccttaac
	011 #5	Reverse primer	acagtggaatgcagagttaatacacacg
Dmd	ABE7.10 ^{F148A} -#1	Forward primer	atcacgagggccctcttgccccttaac
		Reverse primer	gccaatgaatgcagagttaatacacacg
	ADE7 10F148A #2	Forward primer	cgatgtagggccctcttgccccttaac
	ABE/.10 ¹⁴⁰⁷ -#2	Reverse primer	gccaatgaatgcagagttaatacacacg
		Forward primer	tgaccaagggccctcttgccccttaac
	ABE/.10 ^{11-0A} -#4	Reverse primer	gccaatgaatgcagagttaatacacacg

Supplementary Table 4. Primers for targeted deep sequencing.

Supplementary Table 5. Primers for verification of random selected RNA SNVs in BE3 muscle.

Locus	Primers	Sequence
	Outer forward primer	atagetggeetgaetaatea
NC 000067 6-93508362	Outer reverse primer	tcactgaaaaggggaagagt
110_000001.0 95500502	Inner forward primer	tgcttactagaattgaagtcaca
	Inner reverse primer	caaccctgaaatcctgcttt
	Outer forward primer	gtattcccaaggtaccagga
NC 000070 6-15285798	Outer reverse primer	ttaacaggtgtgatgctgtg
110_00007010 10200770	Inner forward primer	ccacctagttttcaatctggt
	Inner reverse primer	tccaacaatgagacttgataaca
	Outer forward primer	tgggtctcagtgataagctt
NC 000076.6-33367128	Outer reverse primer	agcettttgtagtteceaaa
110_00007010 00007120	Inner forward primer	tgtgaagctaaaggaatggtc
	Inner reverse primer	gttcttacttaacttatgtgcagt
	Outer forward primer	gagcagcggattttgagata
NC 000082.6-64766215	Outer reverse primer	aaaatgtgcgtcttctcctc
	Inner forward primer	ggaccgcaataagttctcag
	Inner reverse primer	aagaagctgcagaaacaaca
	Outer forward primer	tgagcetteaacaacaacaa
NC 0000867-9654816	Outer reverse primer	aggtacctatcggatgtgtg
	Inner forward primer	gactgactttgcatttggtg
	Inner reverse primer	atgtagagttaggacaaatggg
	Outer forward primer	catctgacttgggtgttgag
NC 000068.7-119602997	Outer reverse primer	ctgggaccctgcatatctaa
	Inner forward primer	aagtagttgctttgttctgaaaa
	Inner reverse primer	cggcaggactctatttctaaa
	Outer forward primer	gtgaagccattgatcagtgt
NC 000073 6-131445809	Outer reverse primer	gatccaacagccatgaactt
	Inner forward primer	tttagaccttgaatccaaagaga
	Inner reverse primer	ttacaggagtggaaggtgtc
	Outer forward primer	ccagagaaacaaaggggaag
NC 000076.6-61429145	Outer reverse primer	gtgacaggtcctcagttttc
	Inner forward primer	attcatgggagtctgggtc
	Inner reverse primer	gcctgctcagctctttatag
	Outer forward primer	cttgagaggaaatgagggga
NC 000086.7-159386968	Outer reverse primer	caaaccgaggagatgaagtc
	Inner forward primer	ggatcttgtcgtctggtttt
	Inner reverse primer	cagcatgtctagtgagttcc
	Outer forward primer	cctttccttctccactctct
NC 000068.7-120507290	Outer reverse primer	acagtctgaggctacacttt
_	Inner forward primer	gcttcctcctttcctta
	Inner reverse primer	agtggggttgaacagtaagt
	Outer forward primer	tcctagaactctactgctgc
NC_000071.6-20759239	Outer reverse primer	gccatgtgttaaatgttgcc
	Inner forward primer	gatacaacaatctcactttattcct
	Inner reverse primer	ggctttgtctgatatgttcct
	Outer forward primer	caacaatgccaaacagttcc
NC_000074.6-124909354	Outer reverse primer	cgtgaatgtggtatgtggtt
	Inner forward primer	cggctctacttggttgtttt
	Inner reverse primer	gccaaaatgtgtgtatgcag

Supplementary Table 6. Insert locations of	BE3 in BE3 mice with normal weight
and obesity.	

Group		Integration		
		name	Integration site	Location
		BE3-insert 10	chr1:69683654-69683655	Ikzf2 Intronic
	#	BE3-insert 11	chr9:37485434-37485435	Gm47945 Gm47963 Intergenic
	1	BE3-insert 1	chr11:23139312-23139313	Gm12059 1700061J23Rik Intergenic
		BE3-insert 12	chr11:58169177-58169178	Gemin5 Mrpl22 Intergenic
ght		BE3-insert 13	chr5:148296121-148296122	Mtus2 Intronic
wei		BE3-insert 4	chr6:106085816-106085817	Cntn4 Intronic
mal	#	BE3-insert 8	chr7:44299731-44299732	Gm18307 Gm7238 Intergenic
nor	2	BE3-insert 14	chr10:92916728-92916729	Cfap54 Intronic
vith		BE3-insert 1	chr11:23139312-23139313	Gm12059 1700061J23Rik Intergenic
ce v		BE3-insert 12	chr11:58169177-58169178	Gemin5 Mrpl22 Intergenic
BE3 mi		BE3-insert 15	chr6:37202544-37202545	Dgki Intronic
		BE3-insert 1	chr11:23139312-23139313	Gm12059 1700061J23Rik Intergenic
	# 3	BE3-insert 16	chr11:30464035-30464036	4930505A04Rik Intronic
		BE3-insert 12	chr11:58169177-58169178	Gemin5 Mrpl22 Intergenic
		DE2 in cont 17	chr15:101114617-	Eign12 A glad22 Intergenie
		BE3-Insert 17	101114618	Figni2 Ankra33 Intergenic
	# 1	BE3-insert 13	chr5:148296121-148296122	Mtus2 Intronic
		BE3-insert 4	chr6:106085816-106085817	Cntn4 Intronic
		BE3-insert 8	chr7:44299731-44299732	Gm18307 Gm7238 Intergenic
ý		BE3-insert 11	chr9:37485434-37485435	Gm47945 Gm47963 Intergenic
oesit		BE3-insert 1	chr11:23139312-23139313	Gm12059 1700061J23Rik Intergenic
h ol	# 2	BE3-insert 13	chr5:148296121-148296122	Mtus2 Intronic
BE3 mice wit		BE3-insert 4	chr6:106085816-106085817	Cntn4 Intronic
		BE3-insert 8	chr7:44299731-44299732	Gm18307 Gm7238 Intergenic
		BE3-insert 11	chr9:37485434-37485435	Gm47945 Gm47963 Intergenic
		BE3-insert 1	chr11:23139312-23139313	Gm12059 1700061J23Rik Intergenic
		BE3-insert 13	chr5:148296121-148296122	Mtus2 Intronic
	#	BE3-insert 8	chr7:44299731-44299732	Gm18307 Gm7238 Intergenic
	3	BE3-insert 1	chr11:23139312-23139313	Gm12059 1700061J23Rik Intergenic

Gene	Primers	Sequence
	Primer F	gtatccacggagtcccagcag
N-YE1-BE3-FNLS	Primer R	cgtaaagcaggcaggtctcc
	Probe	5'VIC/ggcggatcgagccccatgag/BHQ-1
	Primer F	gtcgaagagaatcccgggcca
C-YE1-BE3-FNLS	Primer R	cgccggacacgctgaacttg
	Probe	5'VIC/ccatcctggtcgagctggacggcg/BHQ-1
C a JO	Primer F	aaggagcaaggtcgcttaca
(Peference)	Primer R	ggcactgacatgggaagagt
(Reference)	Probe	5'6-FAM/caggacccattgcaaggaaca/BHQ-1

Supplementary Table 7. Primes and probes for droplet digital PCR reactions.