SUPPLEMENTARY INFORMATION

SUSTAINED ENDOSOMAL RELEASE OF A NEUROKININ-1 RECEPTOR ANTAGONIST FROM NANOSTARS PROVIDES LONG-LASTING RELIEF OF CHRONIC PAIN

*Rocco Latorre^{1,2}, *Paulina D. Ramírez-Garcia³, Alan Hegron^{1,2}, James L. Grace³, Jeffri S. Retamal³, Priyank Shenoy³, Mai Tran³, Luigi Aurelio³, Bernard Flynn³, Daniel P. Poole³, Rafael Klein-Cloud^{1,2}, Dane D. Jensen^{1,4}, Thomas P. Davis⁵, Brian L. Schmidt^{1,2,4}, John F. Quinn³, Michael R. Whittaker³, Nicholas A. Veldhuis³, Nigel W. Bunnett^{1,2}

¹Department of Molecular Pathobiology, New York University, New York 10010, USA ²Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York 10010, USA

³Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia ⁴Bluestone Center for Clinical Research, New York University College of Dentistry, New York 10010, USA

⁵Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia

* Equal first authors

Correspondence:

Nigel W. Bunnett, Ph.D., Department of Molecular Pathobiology, New York University, New York 10010, USA. <u>nwb2@.nyu.edu</u>

Nicholas A Veldhuis, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia. <u>nicholas.veldhuis@monash.edu</u>

Michael R Whittaker, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia. <u>michael.whittaker@monash.edu</u>

SUPPLEMENTARY FIGURES

Figure S1. Synthesis and characterization of AP-NH₂. A. Synthetic scheme. AP-NH₂ comprised a 3-carbon linker and primary amine for conjugation to nanostar linker. **B.** ¹⁹F-NMR of the starting material AP-NH₂. Red crosses (×) represent contaminant fluorine species in solution. **C.**¹H-NMR of the starting material AP-NH₂.

Figure S2. Characterization of nanostars. A-C. Evolution of molecular weight determined by GPC of the BSPA-POEGA arm polymer (orange) after star formation and purification (blue) with pentafluorophenyl acrylate (PFPA, A), 3-vinylbenzaldehyde (VBA, B) and 4-benzoylphenyl acrylate (Benzo, C). D-G. ¹H-NMR spectra of purified PEG arm (acetone-d6) (D), nanostar-PFPA (CDCl₃) (E), nanostar-VBA (DMSO-d6) (F) and nanostar-Benzo (DMSO-d6) (G).

Figure S3. Synthesis and characterization of Cy5-labeled nanostars. A. Scheme for labeling of the nanostar polymers with Cy5-NH₂. B-D. GPC chromatograms with dual UV-Vis ($\lambda = 646$ nm, blue) and RI (orange) detection of nanostar-PFPA-Cy5 (B), nanostar-VBA-Cy5 (C) and nanostar-Benzo-Cy5 (D). Co-elution demonstrates effective labelling of the nanostars with Cy5. The slight shift in retention time for the UV-vis and dRI is due to arrangement of the detectors in series.

Figure S4. Profiling linker stability by release of Cy5-NH₂ and AP-NH₂ from nanostar-Cy5 and nanostar-AP conjugates. A-C. Release of Cy5-NH₂ was examined at pH 7.4, 6.0 or 5.0 over time. Cy5-NH₂ release was measured as mean fluorescence intensity (MFI, λ = 646 nm) for VBA-Cy5 (A), Benzo-Cy5 (B) and PFPA-Cy5 (C). Mean±SD, N=2-3 independent experiments. D-F. Release of AP-NH₂ was examined at pH 7.4 over time. AP-NH₂ release was assessed by HPLC. Chromatograms for AP-NH₂ release after 2, 6, 8, 10 or 24 h from VBA-AP (D) and Benzo-AP (E). F shows time course of AP-NH₂ release. Mean±SE, N=3 independent experiments.

Figure S5. Antagonistic activity of AP-NH₂ and AP. Ca^{2+} transients were measured in HEK-NK₁R cells. Fura-2/AM loaded cells (2 μ M, 45 min, 37°C, 5% CO₂) were pre-incubated for 30 min with increasing concentrations of AP or AP-NH2 before challenging cells with 10 nM SP (~EC₈₀). Data presented as mean±SEM of N=4 independent experiments performed in triplicate.

Figure S6. AP conjugation and release from nanostars. A-C. ¹⁹F-NMR spectra of the purified AP conjugated to PFPA-AP (**A**), VBA-AP (**B**) and Benzo-AP (**C**). TFE (0.6 mM) was added as a standard. Samples were analyzed in DMSO-d6. **D-F.** Kinetic study of incorporation of AP-NH₂ into nanostars was assessed by ¹⁹F-NMR spectra for PFPA-AP (**D**), VBA-AP (**E**) and Benzo-AP (**F**).

Figure S7. ¹**H-NMR spectra of nanostars.** Purified nanostar-PFPA-AP (**A**), nanostar-VBA-AP (**B**) and nanostar-Benzo-AP (**C**) in DMSO-d6. Characteristic proton assignments arising from the nanostar polymer scaffold and conjugated drug (AP-NH₂) are shown.

Figure S8. TEM of nanostars. Representative TEM images of PFPA, VBA and Benzo nanostars loaded with AP-NH₂. Scale bar=50 nm.

Figure S9. In vitro toxicity assessment of nanostars. VBA- Ø, Benzo-Ø and PFPA-Ø (1-100 μ g/ml) were incubated for 2, 6 and 24 h with HEK293 cells. Propidium iodide was used to assess plasma membrane integrity (A-C), Alamar Blue was used to assess redox activity (D-F) and Thiazolyl Blue Tetrazolium Bromide (MTT) was used to assess mitochondrial activity (G-H). Mean±SEM. N =3 independent experiments. One-way ANOVA, Dunnett's multiple comparisons test, compared to vehicle. **** *P*<0.0001, **P*=0.332.

Figure S10. Nanoparticles and plasma membrane NK₁R signaling in HEK293T cells. Effects of SP (10 nM) on EbBRET between Rluc8-mG α_{si} (A, B, C), Rluc8-mG α_{sq} (D, E, F) and β ARR2-Rluc2 (G, H, I) with RGFP-CAAX. Cells were preincubated with vehicle (Veh, control), VBA-AP, Benzo-AP, PFPA-AP (500 nM AP loaded in nanoparticles: A, B, D, E, G, H; 1000 nM AP loaded in nanoparticles: C, F, I) or VBA-Ø for 4 h before stimulation with SP and measurement of EbBRET. A, D, G: time course of EbBRET prior and after SP (10 nM) stimulation. B, C, E, F, H, I: area under the curves (AUC) of corresponding time course of EbBRET. Mean±SEM. N=3-10 independent experiments. **P*<0.05, ***P*<0.001, ****P*<0.001, *****P*<0.0001. One-way ANOVA, Dunnett's multiple comparisons test.

Figure S11. Empty nanoparticles and NK₁R signaling in HEK293T cells. Effects of SP (10 nM) on EbBRET between Rluc8-mG α_{si} (A, D), Rluc8-mG α_{sq} (B, E) and β ARR2-Rluc2 (C, F) with RGFP-CAAX (A, B, C) or tdRGFP-Rab5a (D, E, F). Cells were preincubated with vehicle (Veh), VBA-Ø, Benzo-Ø or PFPA-Ø for 4 h before stimulation with SP and measurement of EbBRET. Curves represent time course of EbBRET prior and after SP (10 nM) stimulation. Mean±SEM. N=3-10 independent experiments.