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SUPPLEMENTARY MATERIALS  

RECRUITMENT AND DEMOGRAPHIC INFORMATION 

---------------------------------- 

Table S.1. Dates and Sample Size of Each Data Collection Round. N Unique Speakers Reflects 

the Number of Unique Speakers per Round. Each Conversation Had Two Speakers. 

Recruitment 

Round 

Recruitment 

Date 

N 

Conversations 

Percent of 

Conversations 

N Unique 

Speakers 

Round 1 01/07 - 01/14 46 2.78 92 

Round 2 05/01 - 05/29 183 11.05 366 

Round 3 06/26 - 07/14 196 11.84 391 

Round 4 07/29 - 08/31 403 24.34 475 

Round 5 10/08 - 11/07 423 25.54 480 

Round 6 11/09 - 11/25 405 24.46 493 

---------------------------------- 

---------------------------------- 

Table S.2. Demographic Information for Participants in the Corpus. 

Demographics Sample N Sample Percent 

Age 18-25 425 29.19 

25-35 499 34.27 

35-45 286 19.64 

45-55 129 8.86 

55+ 83 5.7 

Not Reported 34 2.34 

Gender Female 782 53.71 

Male 610 41.9 

Other or Prefer not to Answer 30 2.06 

Not Reported 34 2.34 

Race/Ethnicity White 920 63.19 

Asian 200 13.74 

Black or African American 117 8.04 

Hispanic or Latino 108 7.42 



Demographics Sample N Sample Percent 

Mixed 53 3.64 

Other 13 0.89 

American Indian or Alaska Native 7 0.48 

Native Hawaiian or Pacific Islander 2 0.14 

Prefer not to Say 2 0.14 

Not Reported 34 2.34 

Education Bachelor’s Degree 567 38.94 

Some College 354 24.31 

Master’s Degree 247 16.96 

Associate Degree 97 6.66 

Completed High School 81 5.56 

Professional Degree 36 2.47 

Doctoral Degree 32 2.2 

Some High School 8 0.55 

Not Reported 34 2.34 

Note. N = 1456. 

CORPUS CONSTRUCTION 

Data Processing & Feature Extraction 

Here, we describe in detail how the video and audio files were processed into unified, 

structured, and user-friendly formats.  

Conversational Alignment 

Each participant’s video stream was saved as an independent video in .mkv format. If a 

participant’s connection dropped and then rejoined the conversation session, a new video file 

was created in addition to the existing one. As such, processing of recorded conversations started 

with the creation of a coherent, single-file representation of the conversation from each partner’s 

respective video files. Programmatic alignment consisted of four primary steps using the video 

processing software, FFMPEG. First, input media were reencoded to correct possibly corrupted 

timestamps. Second, the TokBox metadata, which provided a timeline of when participants 

joined, left, and possibly rejoined the conversation, was verified and corrected by measuring the 



duration of the media. Third, after metadata correction, an individual participant’s videos were 

combined into a single video, adding padding and blank filler segments where appropriate. For 

example, if a participant dropped and rejoined 10 seconds later, two videos would have been 

created in the archive. Directly joining these videos was not helpful, because of that 10 second 

gap; the resulting merged video would be misaligned. However, the gap in time was also 

reflected in the metadata, and so a 10 second “blank” video was inserted to maintain alignment 

with respect to the overall conversational timeline. Finally, participants’ aligned videos were 

combined into a unified representation. Separate audio channels for each participant were created 

for downstream automated transcription. 

It is worth noting that for some video segments the TokBox software does not accurately 

record the start and stop time of the video stream correctly relative to the overall timeline of the 

conversation. Video durations (and therefore offsets) can be verified using the FFMPEG tool 

FFPROBE to measure the audio and video stream durations and compare them to those reported 

in the metadata, adding or subtracting appropriate offsets to the stopTimeOffset where necessary. 

Correcting the startTimeOffset is more difficult and requires heuristics since there is no trusted 

reference point in time. We chose the heuristic of minimizing audio signal overlaps during 

playback as a proxy for proper alignment. Such a heuristic is imperfect which impacts a small 

number of conversations in the dataset leading to slight misalignment in the unified audio 

signals; the independent signals are also included. Finally, note that videos where the alignment 

was problematic in human review were excluded. 

Overall, joining the conversation videos posed a non-trivial challenge, and required a 

number of subjective, albeit carefully reasoned, decisions. The corpus therefore includes both the 



raw video files along with their merged versions, so that other researchers may apply their own 

alternate methods for alignment and synchronization. 

Feature Extraction 

We describe the processes used to generate and extract analyzable features according to 

the source of the information: transcripts, audio, video, and survey responses. The outputs of 

these processes are analysis-ready in the sense that they are structured into common file formats 

and indexed by a shared timeline or by conversational turns where appropriate. 

Textual. Processing of textual information involved transcription, turn identification, and 

extracting speaking statistics. 

Transcription. To produce a transcript of the conversation, we processed the aligned 

conversation files using the Amazon Web Services (AWS) Transcribe automated transcription 

service. The raw transcript and tokens returned by the Transcribe API are included in this data 

release.  

Note that while the transcripts are very usable, the quality of automated transcription is 

far from perfect. Throughout the development of this dataset, we tested numerous automated 

transcription services, and each of them left much to be desired. An important direction for 

future work on this dataset is the development of “gold standard” transcripts, either via improved 

automated transcription or human labeling. 

Turn identification. The sequential representation of text in alternating turns is essential 

to many conversation analyses. The definition of a turn, however, can vary, depending on how 

pauses, overlaps, backchannels, and other complications are preprocessed. The simplest way to 

construct a conversational turn is to assign each word token to a participant’s turn until a token 

from another participant occurs, at which point that participant’s turn begins, and so on. This is 
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the default method used to construct turns from the raw transcript. Although limited in many 

respects, this approach provides a useful reference point for improved algorithms that we 

develop (see Section 1 of the Results in the Manuscript).  

Turn-based and time-based feature aggregation. Once equipped with conversational 

turns, we considered two possible approaches to aggregating the remaining acoustic, visual, and 

textual features: time-based (finer-grained) and turn-based (coarser). In the release, we include 

time-based aggregations at a one-second resolution. Researchers can use the turn timestamps 

noted in the transcript files to aggregate turn-based features as desired. For a comprehensive list 

of corpus features and how they were computed, see the Data Dictionary.

Note that while the entire TokBox session is included for each conversation, the 

conversation is said to have begun the moment both participants have joined the session. In all of 

the turn-based indexing included in this release, this moment is specified as turn_id=0, with all 

prior data for the session being indexed as turn_id=-1. So, if you are watching a conversation 

video and observe a particular moment of interest, you could locate the turn number by searching 

the utterance field of the turn-based aggregation of the conversation. Using the conversation ID 

and turn number, you could then index into any of the other features discussed in this section; for 

example, the probability that each participant is displaying a happy facial expression during that 

turn. 

Acoustic. Processing of acoustic information involved spectral characterizations, 

phonation, and prosody features. 

Spectral characterizations. A number of calculations were performed on the audio of the 

conversations. For example, the fundamental frequency (F0) of people’s speech was computed 

over 0.01 s intervals using the Parselmouth package (102). Further, the Python library Librosa 

https://www.sciencedirect.com/science/article/abs/pii/S0095447017301389
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(103) was used to compute the first 13 Mel-frequency cepstrum coefficients, as well as various

additional spectral features such as the spectral centroid, contrasts, zero-crossing rate, and others 

(104). These features were aggregated using the mean value over 1 s intervals.  

Phonation and prosody. Baseline vocal pitch (F0) was used along with signal energy to 

compute other prosodic features; for example, jitter and shimmer, which measure the variance of 

pitch and volume respectively (105). We also computed a measure of vocal “intensity” 

(sometimes referred to as “activation”), which is a measure of emotion and momentary affect 

(See Section 4 of the Results in the Manuscript). To do so, we trained a model on the Ryerson 

Audio-Visual Database of Emotional Speech and Song (RAVDESS) (82), and then applied this 

model to our corpus. These features were aggregated using the mean value over 1 s intervals. 

Visual. Processing of visual information involved smile, nod, and emotion detection. 

Visual features were computed at 1 s intervals (frames). In some frames, a face was not detected, 

and for these frames the visual features were recorded as null values. 

Smile and nod. We used OpenCV, a computer vision software library, to extract a set of 

facial landmark locations within each visual frame. We then applied a set of heuristics to 

estimate whether or not a participant was smiling or nodding for any given frame. We attempted 

to measure gaze as well but were not satisfied with the consistency of results. 

Emotion detection. An emotion recognition model was trained using the AffectNet 

dataset (84). The model, a convolutional neural network, assigned a probability distribution 

across eight emotional classes (happy, sad, angry, etc.) to each frame of facial expression, per 

speaker. 
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CORPUS FRAMEWORK 

Our “levels” framework simply helps to organize a vast, multi-featured dataset into 

convenient categories for reporting analyses that clearly belong to different families of content. 

Here we discuss in more detail how this notion of a conversational hierarchy, in addition to its 

practical utility, may also prove fruitful in generating new theoretical insights. 

Consider a lower-level conversational feature as a purely descriptive statement of record. 

The pitch of a speaker’s voice, the presence or absence of eye contact, and time spent in silence 

are all examples of low-level features. Typically, these actions can be captured at a sub-second 

timescale. While it is true that the automated extraction of such features from a recording may 

require considerable feats of algorithmic inference (e.g., tracking on-screen gaze), these features 

nevertheless at least seek to capture an objective record of a conversation.  

Moving upward through the hierarchy, different levels are characterized by the degree of 

indirect inference required and the breadth of contextual information used to make these 

inferences. The distinction we make between a mid-level versus a high-level inference therefore 

becomes a matter of scope. Humans, it seems, often employ a wide range of inputs to make their 

judgments (e.g., Whether Jill likes Jack is a highly indirect inference based on information across 

space, time, and textual/acoustic/visual modalities). Moreover, humans frequently, perhaps even 

rather helplessly, employ the full scope of their lived experiences to make sense of the present 

moment (e.g., “This person’s voice reminds me of my dear Aunt Sally, whom I remember 

fondly”). Because subjective impressions and judgments about a conversation incorporate the 

broadest range of information and context, we distinguish them as high-level inferences. 

In contrast, mid-level inferences are characterized by their use of a narrower scope of 

context and antecedent reference. Informally, they may dig deep, but not wide, to know what 
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they know. For example, language embeddings, which create numerical representations of the 

semantic meaning of spoken words (See Section 4 of the Results in the Manuscript), are made 

possible because an underlying statistical model was trained on a deep and extensive corpus of 

written language. While this kind of inference is based on a wealth of previously encountered 

information—similar to human judgment, in that regard—the context behind language 

embeddings is arguably deeper (i.e., billions of words of text training data) than it is wide. A 

hitch in the voice, a sad glance away; all these signals, essential for shared understanding 

between humans, will go unnoticed by a machine that knows only language. We thus refer to 

these inferences, which typically vary on the timescale of a conversational turn, as mid-level 

inferences. This layer of the conversational hierarchy thus operates somewhere between the 

objective immediacy of low-level events and the subjective expanse of high-level human 

judgment.  

Notably, humans, too, can make mid-level inferences in conversation, such as when some 

aspect of the conversation carries a particular salience (e.g., a captivating facial expression), at 

which point people often stop attending to the wider array of signals that normally influence their 

ongoing impression formation. Similarly, but in the converse, the more algorithms are able to 

account for context that once seemed solely in the domain of human capacity, the more they 

seem eerily human, threatening to cross over the safety of the uncanny valley. Despite the 

crossing of levels by human and machine, discretizing this continuum of inference into a middle 

and higher level seems of theoretical and practical utility. 

One unresolved question in conversation research relates to how information flows 

across levels. It is clear that low-level, factual accounting of a conversation must necessarily 
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underlie higher-order sense-making about a conversation. From there, however, the trajectory of 

inference remains an open area for future study. 

One possible representation of the hierarchy is as a cascade of dependencies, with high-

level judgments relying on mid-level inferences, which in turn draw on low-level behaviors to 

convey meaning. We invoked this model in the main text, with an example of a smile (low-

level), which may be a key component of what is perceived as a happy facial expression (mid-

level), which in turn may serve as input into one’s assessment of their conversation as enjoyable 

(high-level). But it seems equally plausible that low-level features may influence high-level 

impressions directly, without moving “through” a mid-level inference. 

To complicate matters further, once formed, high-level impressions may percolate back 

down through the hierarchy. For example, after registering a perceived insult, a speaker’s low-

level behavior may change—elevating vocal pitch, increasing facial tension, or clipping speech. 

In turn, subsequent mid-level perceptions may be distorted, leading participants to draw differing 

conclusions about the same objective events. Scholars of conversation currently have little 

empirical basis for choosing among these intuitively plausible models for information flow, and 

their resistance to a simple accounting reflects the complexity of human conversation. 

Ultimately, information dynamics within these levels of conversation remains a subject in need 

of considerable future research. 

As this discussion makes clear, the results we present only scratch the surface of the 

corpus. We regard our findings and this simply framework as an initial overture that will require 

additional efforts from many researchers across the social and computational science. Scholars 

from a variety of disciplines appear increasingly interested in the dynamics of conversation, and 
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there are countless aspects of conversation that we did not begin to cover. The raw material is 

there, however—and in many cases, processed and ready to be analyzed.  

RESULTS 

Section on Turn-taking and Turn Segmentation 

Turn Exchange 

Conversations were transcribed with AWS Transcribe. Each transcription’s most basic 

form was a list of individual tokens, accompanied by start and end timestamps, speaker IDs, and 

confidence estimates. The minimum temporal resolution was 10 ms (0.01 s). Within each 

conversation and speaker, tokens were joined with adjacent tokens if 20ms or less of pause 

separated them. This output is considered the Heldner & Edlund transcript, where each row is 

considered a speaking turn. 

Following this, the Heldner & Edlund (35) communication state classification algorithm 

was applied to each transcript. This algorithm created, for each conversation, a time-series at 

10ms increments of who, if anyone, was speaking at that moment in time. Using this time-series, 

a new dataset was created where each state transition was classified as either a Gap (between-

speaker silence), Pause (within-speaker silence), Overlap (between-speaker overlap), or WSO 

(within-speaker overlap, an interruption). The units for each classification are durations in 

milliseconds. Overlaps are the only intervals which have values below 0 ms. 

To address outliers, we removed between- and within-speaker intervals more than three 

standard deviations from the mean.  Pauses and WSOs cannot be less than 0 s. Accordingly, we 

removed outliers >3 SD above the mean in the case of these two measures. Upon visual 

inspection, we observed that these outliers were nearly always attributable to technical issues, 

such as moments of poor internet connectivity, rather than genuine conversational anomalies. 
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Turn Duration 

TERMINAL_PUNC_CUES = [ 

    ".", 

    "?", 

    "!", 

] 

Backchannels 

backchannel_CUES = [ 

    "a", 

    "ah", 

    "alright", 

    "awesome", 

    "cool", 

    "dope", 

    "e", 

    "exactly", 

    "god", 

    "gotcha", 

    "huh", 

    "hmm", 

    "mhm", 

    "mm", 

    "mmm", 

    "nice", 

    "oh", 

    "okay", 

    "really", 

    "right", 

    "sick", 

    "sucks", 

 "sure", 

    "uh", 

    "um", 

    "wow", 

    "yeah", 

    "yep", 

    "yes", 

    "yup", 

] 

NOT_backchannel_CUES = [ 

    "and", 

    "but", 
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    "i", 

    "i'm", 

    "it", 

    "it's", 

    "like", 

    "so", 

    "that", 

    "that's", 

    "we", 

    "we're", 

    "well", 

    "you", 

    "you're", 

] 

Section on Conversation and Wellbeing 

We were encouraged during the review process to further explore the effect of repeatedly 

answering questions about one’s wellbeing. While we can never entirely rule out that repeated 

rating accounts for some part of the effect, we can further examine our data for evidence that 

intervention itself (i.e., the conversation) is, in fact, the primary driver of the observed 

improvement in people’s subjective well-being.   

To this end, we believe that some kind of demand effect offers the most plausible 

explanation for why repeated measurement itself might have caused an increase in self-reported 

well-being. That is, participants reported higher well-being simply because they were asked the 

same question twice and assumed that we expected them to provide a higher score. We therefore 

examine some observable implications of these competing explanations for the increase.  

Consider that if the pre-and-post-conversation changes that we observed were simply due 

to the demand of asking the question twice, one prediction of this account would be that the 

magnitude of the change would not depend on the quality of the conversation that people had 

with their partner. To examine this, we divided our sample into quartiles. We then analyzed data 

from participants who reported that their conversation partners were in the bottom quartile of 
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conversational quality (i.e., “Bad Conversation Partners”) and the top quartile (i.e., “Good 

Conversation Partners”). A model with conversation quality added as moderator revealed that 

conversation partner quality significantly moderated the size of people’s pre-post affect change 

(b = 0.56, 95% CI = [0.40, 0.72], t(1624) = 6.74, p < .001).  

We also performed this analysis using a more ‘objective’ measure of conversation 

quality: the length/duration of people’s conversations. To examine this, we again divided our 

sample of conversations into quartiles based on duration. We then analyzed data from 

participants whose conversations were in the bottom quartile of duration (i.e., “Short 

Conversations”) and in the top quartile (i.e., “Long Conversations”). A model with conversation 

duration added as moderator revealed that duration significantly moderated the size of people’s 

pre-post affect change (b = 0.84, 95% CI = [0.69, 0.98], t(1919) = 11.28, p < .001). 

In short, people who reported talking to better conversation partners and those who had 

longer conversations had larger pre-post affect changes compared to those who had worse 

conversation partners and shorter conversations. As a result, the weight of the evidence appears 

inconsistent with the idea that the pre-post affect change we observed is the result of asking the 

question twice. 

While these additional analyses do not completely rule out the presence of demand, they 

do show that a demand effect cannot account for the entirety of our effect. People’s post-

conversation reported well-being is not just a function of being asked a question twice, but it is 

also a function of the quality of the conversation (as measured by people’s self-reported partner 

quality and the objective length of the conversation). The conversation itself is acting as 

significant input into people’s well-being. 
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Section on Good Conversationalists 

Section S.1 begins by explaining how we computed turn-level audio, visual, and textual 

features. In S.2, we then describe our statistical procedure for assessing differences on these turn-

level features among participants who varied in their partner-rated conversationalist scores; we 

also describe our procedure for multiple-testing adjustment of p values. Section S.3 presents 

complete results for our analysis of partner-rated conversationalist scores, including (a) 

additional features not discussed in the main text; (b) patterns of results for the “middling” 

conversationalist groups, defined as those in the 25-50th and 50-75th percentiles of their partner-

rated score; and (c) gender-specific and turn-duration-adjusted results.  

S.1. Obtaining Turn-level Features

In this section, we describe how continuous audio recordings and image frames were 

aggregated, based on start/stop times in a transcript segmented by speaking turns, into turn-level 

summary features describing speaker and listener behavior. We also describe how transcript-

based summary features were extracted from a segmented transcript. We used the Backbiter turn 

segmentation model, although the same procedure could be employed with any speaker-

attributed transcript with turn start/stop timestamps (for a discussion of turn segmentation, see 

Section 1 of the Results in the Manuscript). 

S.1.1. Transcript Features

Six transcript-based features were computed for each turn. Of these, four were 

straightforward summary statistics extracted from the segmented transcript. 
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● Pause: The difference between the end time of the prior turn and the start time of the

current turn. This value is negative for turns that overlap with the previous speaker and

positive for those that are preceded by a period of silence.

● Duration: The difference between the start and end times of the current turn.

● Speech rate: The number of words uttered during a turn, divided by the turn duration.

● Backchannel rate: The number of backchanneling events by a listener during a turn (See

Backchannel section in Section 1 of the Results in the Manuscript), divided by the turn

duration.

The remaining two textual features use pre-trained sentence embedding models to 

convert turn-level transcripts into a vector representation. Our main results are based on a 

sentence-level embeddings implementation (73) of MPNet (72). We used cosine similarity and 

Euclidean distance as two measures of semantic distance.  

A common alternative measure of semantic distance, the dot product between two 

vectors, is identical to cosine similarity in our application because MPNet results are 

standardized to unit length. To evaluate the robustness of our results to different embedding 

models, Section S.3 reports comparative results using RoBERTa embeddings (74). 

S.1.1. Audio Features

Six audio features are reported for each turn, aggregating a variety of lower-level 

measures computed at various timescales: short-term (corresponding to 40-millisecond 

intervals), medium-term (1 s intervals) and long-term (speaker turns of varying length). This 

aggregation proceeds in two steps. 
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First, short-term values for numerous low-level features were computed by summarizing 

the audio signal in rolling 40-millisecond windows. These low-level features included whether 

the window contained voiced speech, the fundamental vocal frequency of that speech (F0, 

measured in Hz), volume (log energy, proportional to decibels), and 14 Mel-frequency cepstral 

coefficients (MFCCs) that describe the shape of the power spectrum. Low-level feature 

extraction was conducted using the Python libraries librosa (103), Parselmouth (102; 106), 

pysptk (107) and DisVoice (108). 

These short-term auditory measures were aggregated at 1 s resolution. Average pitch and 

loudness were computed by taking the average non-missing values of all frames within a 1 s 

interval. This aggregation step helped address peculiarities in certain audio features, such as the 

fact that the fundamental frequency is undefined in windows of unvoiced speech (e.g., during the 

unvoiced sibilant /s/). In addition to these transparent averages of objective speech attributes, we 

also computed two model-based proxies of emotional expression—concepts which can be 

difficult to directly measure due to the subjective nature of their perception. 

Because human annotation of speech is highly labor intensive, we utilized labeled data 

from the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS; 82) to 

train a computational model that was subsequently applied to our corpus. The RAVDESS dataset 

contains recordings of 24 trained actors reading statements of varying emotional categories (e.g., 

calm, happy, sad, angry, fearful, surprise, disgust, or neutrality), expressed with either normal or 

high emotional intensity. To estimate speech intensity, we computed a series of summary 

statistics—mean, maximum, and standard deviation for fundamental frequency, log energy, and 

voiced and unvoiced duration—for the short-term feature time-series within each 1 s interval in 

our corpus. Medium-term summary statistics were then input into a logistic regression trained on 
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intensity labels and similarly featurized 1 s intervals from the RAVDESS corpus (described 

below). The resulting model predictions were used as a proxy for speech intensity in our corpus. 

Finally, five medium-term measures were aggregated to long-term turn measures as follows. 

● Pitch: Average of 1 s fundamental frequency values from speaker audio channel within

each turn (includes all 1 s intervals from turn start to end)

● Pitch variation: Standard deviation of 1 s fundamental frequency values from speaker

audio channel within turn (all 1 s intervals from turn start to end)

● Loudness: Average of speaker 1 s log energy values within turn

● Loudness variation: Standard deviation of 1 s log energy values within turn

● Intensity: Average of 1 s model-predicted intensity values within turn

S.1.1. Visual Features

All visual features were captured at 1 s intervals. Three classes of visual features were 

extracted: head movement, gaze, and facial emotion. Each visual feature was computed for both 

listener and speaker. To capture the objective visual signals of head nodding/shaking and gaze, 

we developed our own algorithmic detectors. Using facial recognition software in the Dlib C++ 

library, we computed a set of facial landmarks (83). Our head nodding/shaking detector then 

employed a manually tuned, rule-based approach that evaluated whether facial landmarks moved 

at least 10% of the total detected face size and crossed their starting position at least twice within 

two seconds. When this occurred along the vertical camera axis, we recorded a “nod,” generally 

taken as a nonverbal signal of “yes.” If it occurred along the horizontal axis, it was recorded as a 

“shake,” typically indicating “no.”  Nods and shakes were aggregated to the turn level by 
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computing the maximum across all 1 s intervals in the turn, indicating whether any nodding or 

shaking occurred. Second, to measure whether participants were gazing at the screen, we used 

eye landmarks to compute the proportion of pixels within the eye regions that were white. If this 

proportion fell between 0.22 to 0.45, we estimated gaze to be directed at the screen. We caution 

that this variable appears to be noisy and has not been tested for accuracy. Finally, to obtain a 

proxy for facial emotion, we used FastAI (109) to train an emotion recognition model on the 

AffectNet corpus of facial expression images (84). AffectNet categorizes facial expressions into 

eight emotional groups; given the low estimated incidence of facial emotions other than 

happiness (and neutrality), we extracted only the predicted probability of happiness. 

● Listener/speaker nodding yes: Vertical movement of facial landmarks exceeding a

manually tuned threshold

● Listener/speaker shaking no: Horizontal movement of facial landmarks exceeding a

manually tuned threshold

● Listener/speaker gazing on screen: White pixel proportion within eye region exceeding a

manually tuned threshold

● Listener/speaker facial happiness: Predicted probability obtained from AffectNet-trained

neural network

S.2. Statistical Methods

In this section, we describe our procedure for assessing whether groups of participants 

diverge in their conversational behavior. The same procedures are employed both for analyzing 

speech patterns by (a) partner-rated conversationalist score and (b) partner identity (see 

Manuscript Results Section 5 and Supplement Section B). 
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Our primary analysis of conversationalist score compares the outermost quartiles; 

additional results are given in the Supplement for all four quartiles.  

Below, we first describe how we tested the null hypothesis that a conversational feature 

Y, such as loudness, was distributed equally among the K groups—or that f(y | X=xk) = f(y | 

X=xk’) for all k, k’∈{1, …, K}. In other words, we evaluate whether every group k uses highly 

intense speech at the same rate as every other group k’. This approach utilized the full 

distribution of each feature and as such was well suited to capturing nonlinearities often observed 

in conversational data. However, a key limitation was that it produced p values as a test statistic 

and must be interpreted primarily by visually comparing feature distributions. To report 

numerical differences, the following subsection describes how we analyzed differences in means, 

E[Y | k] – E[Y | k’], and produced confidence intervals. Finally, we describe our procedure for 

accounting for multiple significance testing. 

S.2.1. Assessing Differences in Distributions

Two key statistical challenges arose in these analyses. First, conversational features 

exhibit clustered dependence within a participant-conversation unit and across participants 

within a conversation. For example, idiosyncrasies in microphone positioning might cause 

speech from one participant to sound louder, or background noise might cause both participants 

to speak more loudly. Second, the number of observations (turns) within a cluster 

(conversations) can be influenced by the explanatory variables of interest (e.g., conversationalist 

score). 

To test for differences in conversational patterns while accommodating these statistical 

issues, we first discretized each feature into deciles (i.e., quietest 10% of turns, turns between the 
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10th and 20th percentile on loudness, etc.) that captured much of the variation in how participants 

engaged with each other. That is, we represented each turn-level value, Yi, with a one-hot 

encoding of the form Y*
i
 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], here indicating a value of Yi for i=1, (i.e., 

in the lowest decile). We then conducted a test of equal category proportions using an asymptotic 

multivariate Gaussian approximation for the multinomial distribution. Specifically, we 

constructed a matrix of turn-level discretized feature values, Y* = [Y*
1,\1

T,  …, Y*
N,\1

T]T, where 

Y*
i,\1 = [Y*

i,2,  …, Y*
i,K] represented the one-hot encoding of Yi with the lowest reference 

category omitted (as category proportions sum to unity). Each turn was weighted to ensure that 

the total weight of each speaker in each conversation was equal, i.e., longer conversations 

received smaller weight on each turn. We then conducted a weighted multiple outcome 

regression of Y* on group indicator variables X, with X = [X1,  …, XN] and Xi as a k-

dimensional one-hot vector in which a positive entry in the kth position indicating the turn 

belonged to a participant with membership in group k. This produced a 9-dimensional vector of 

coefficient estimates for each group’s categorical proportions, βk = [βk,2, …, βk,10]T, of turn 

features for that group (recalling that the omitted category proportion, βk,1, sums to unity). 

Finally, we conducted an F test for the linear hypotheses of equality that coefficient vectors 

between each pair of groups—i.e., βk = βk’ for all k, k’—using an estimated variance-covariance 

matrix clustered at the conversation level. This approach had the advantage of easily 

accommodating conversation-level clustering and turn-level weights; it carried the disadvantage 

of requiring discretization of continuous features, discarding information, and resulting in some 

loss of statistical power. Alternative approaches based on clustered rank-sum tests (e.g., 110), 

which do not discretize the data, offer greater statistical power but are computationally infeasible 

in large datasets like the one studied here. 
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S.2.2. Assessing Differences in Winsorized Means

 While tests of distributional equality are well-suited for assessing nonlinear differences in 

speech patterns, the p values they produce do not provide insight about precisely where and how 

those differences arise. For this reason, we provide distributional plots that convey, for example, 

how bad conversationalists are more likely to speak in a moderately loud voice, whereas good 

conversationalists are more polarized between quiet and loud speech.

To aid interpretation, we also computed differences in central tendency, which were 

straightforward to summarize and facilitated the reporting of confidence regions. This was 

complicated by the fact that automated processing occasionally resulted in outliers that strongly 

distorted simple averages. For example, in some cases, slight errors in the start/stop timestamps 

of short turns produced outlying values speech-speed estimates due to division by near-zero 

values. Similarly, audio artifacts occasionally arose from non-speech events such as laptop 

movement, producing outlying values that commanded disproportionate leverage in subsequent 

analyses. To address these issues, we employed Winsorization, a technique commonly used in 

analyses of audio data, for all unbounded variables (111, 112). Winsorizing at the (arbitrarily 

determined) 95% level replaced extreme values outside the 2.5th and 97.5th percentiles with the 

values of the boundary percentiles themselves. Finally, we conducted linear regressions of the 

resulting trimmed features on group indicators, obtaining estimated differences in Winsorized 

means. As in our distributional tests, we clustered standard errors at the conversation level and 

weighted turns to ensure that each speaker-conversation contributed equally to our estimates. 

S.2.3. Multiple Testing Corrections
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 Our first set of mid-level analyses compared the best- and worst-rated conversationalists 

on 20 textual, auditory, and visual measures These tests resulted in 60 robustness analyses, as we 

repeated the same comparisons among subsets of female and male participants, as well as 

adjusting for turn duration. To control the false-discovery rate at conventional levels, we applied 

the multiple-testing correction of Benjamini & Hochberg (113) within each study. All reported p 

values were inflated by a corrective factor, ensuring they can be interpreted as usual (e.g., with 

reference to a 0.05 significance level) rather than utilizing a modified significance threshold. 

S.3. Results from Descriptive Analysis of Patterns by Partner-rated Conversationalist Score

 In this section, we report complete results and robustness tests from our study of high- 

and low-skilled conversationalists. Section S.3.1 presents a comprehensive set of results from 

our main analysis, including additional transcript-based, auditory, and visual features not 

reported in the main text as well as additional subgroups of “middling” conversationalists. 

Section S.3.2 contains results on female and male participants alone, allowing an assessment of 

gender heterogeneity of results. Section S.3.3. reports results after controlling for turn duration, 

allowing for an assessment of whether differences in non-duration conversational patterns such 

as speech speed or loudness may be in part driven by differences in turn duration. Finally, 

Section S.3.4. demonstrates that semantic similarity results are robust to the choice of a widely 

used alternative embedding model, RoBERTa, in place of the MPNet-based results presented in 

the main analyses. 

S.3.1. Complete Results from Main Analysis

In this section, we present comprehensive findings from our study of how highly skilled 

conversationalists (as rated by their partners) differ from their low-skilled counterparts. Results 
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proceed as follows. Figures S.1, S.2, and S.3 respectively provide results on all transcript-based, 

auditory, and visual features; for completeness, we also report the estimated behavior of 

middling conversationalists (i.e., groups rated in the 25-50th percentile and 50-75th percentile) in 

addition to results on bad and good conversationalists (0-25th percentile and 75-100th percentile). 

Table S.3 provides a summary table assessing the statistical significance of differences in 

distributions between bad and good conversationalists, using p values corrected for multiple 

testing. 
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Fig. S.1. Behavior of good, middling, and bad conversationalists on transcript-based 

features. Each panel depicts the engagement patterns of good conversationalists (top 25% of partner-

rated conversationalist score, depicted in blue) and bad conversationalists (bottom 25%, red) on a turn-

level characteristic, expanding upon Figure 8 in the main text with additional panels. For completeness, 
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the plot also depicts middling conversationalists who are above the median (50–75th percentile, light 

blue) and below the median (25–50th percentile, light red). Horizontal axes denote categories of turn-

level characteristics, defined in terms of feature deciles. The vertical position of each point indicates the 

average proportion of turns in a category for each group of conversationalists. 
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Fig. S.2. Behavior of good, middling, and bad conversationalists on auditory-based 

features. Each panel depicts the engagement patterns of good conversationalists (top 25% of partner-

rated conversationalist score, depicted in blue) and bad conversationalists (bottom 25%, red) on a turn-

level characteristic, expanding upon Figure 8 in the main text with additional panels. For completeness, 

the plot also depicts middling conversationalists who are above the median (50–75th percentile, light 

blue) and below the median (25–50th percentile, light red). Horizontal axes denote categories of turn-

level characteristics, defined in terms of feature deciles. The vertical position of each point indicates the 

average proportion of turns in a category for each group of conversationalists. 
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Fig. S.3. Behavior of good, middling, and bad conversationalists on visual-based features. 
Each panel depicts the engagement patterns of good conversationalists (top 25% of partner-rated 

conversationalist score, depicted in blue) and bad conversationalists (bottom 25%, red) on a turn-level 

characteristic, expanding upon Figure 8 in the main text with additional panels. For completeness, the plot 

also depicts middling conversationalists who are above the median (50–75th percentile, light blue) and 

below the median (25–50th percentile, light red). Horizontal axes denote categories of turn-level 

characteristics, defined in terms of feature deciles. The vertical position of each point indicates the 

average proportion of turns in a category for each group of conversationalists. 

Table S.3. Statistical significance of differences in behavior between good and bad 

conversationalists (main results). Each row assesses differences between good conversationalists 

(top 25% of partner-rated conversationalist score) and bad conversationalists (bottom 25%) on a turn-

level conversational feature. Separate p values are reported for tests of distributional equality and for tests 

of mean equality. The table reports only main analyses (all participants, no adjustment for turn duration), 
but multiple-testing adjustment accounts for robustness tests reported elsewhere (analyses restricted to 

male and female participants, as well as adjusting for turn duration). 

Feature Diff. 95% CI 

padj 

(mean) 

padj 

(distr.) 

Transcript Interval after prior turn -0.0523 [-0.0680, -0.0366] <0.001 <0.001 

Transcript Duration 0.0959 [-0.1519, 0.3438] 0.608 <0.001 

Transcript Words per second 0.0996 [0.0595, 0.1396] <0.001 <0.001 

Transcript Backchannel rate -0.0046 [-0.0079, -0.0013] 0.016 <0.001 

Transcript Cosine similarity to prior -0.0053 [-0.0081, -0.0025] 0.001 0.001 

Transcript Euclidean dist. to prior 0.004 [0.0014, 0.0067] 0.009 0.001 

Auditory Vocal intensity 0.0131 [0.0072, 0.0190] <0.001 <0.001 

Auditory Pitch 11.18 [6.84, 15.53] <0.001 <0.001 

Auditory Loudness 0.1189 [-0.4229, 0.6608] 0.809 0.016 

Auditory Pitch S.D. -0.2609 [-1.2030, 0.6812] 0.744 <0.001 

Auditory Loudness S.D. 0.0555 [-0.3872, 0.4982] 0.835 0.025 

Visual Facial happiness (listening) 0.0354 [0.0150, 0.0557] 0.003 0.045 

Visual On-screen gaze (listening) -0.0071 [-0.0430, 0.0288] 0.81 0.994 

Visual Nodding yes (listening) 0.0401 [0.0215, 0.0588] <0.001 <0.001 

Visual Shaking no (listening) 0.0298 [0.0134, 0.0461] 0.002 <0.001 

Visual Facial happiness (speaking) 0.0318 [0.0118, 0.0518] 0.006 0.255 

Visual On-screen gaze (speaking) -0.0059 [-0.0417, 0.0300] 0.821 0.981 

Visual Nodding yes (speaking) 0.0495 [0.0302, 0.0687] <0.001 <0.001 

Visual Shaking no (speaking) 0.041 [0.0230, 0.0591] <0.001 <0.001 

S.3.2. Gender-disaggregated Results

In this section, we present additional findings from robustness tests that subset female 

and male respondents before comparing high- and low-skilled conversationalists. 
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Fig. S.4. Behavior of good and bad conversationalists (female participants). Each panel 

depicts the engagement patterns of good conversationalists (top 25% of partner-rated conversationalist 

score, depicted in blue) and bad conversationalists (bottom 25%, red) on a turn-level characteristic. 

Horizontal axes denote categories of turn-level characteristics, defined in terms of feature deciles. The 

vertical position of each point indicates the average proportion of turns in a category for good or bad 

conversationalists. 
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Fig. S.5. Behavior of good and bad conversationalists (male participants). Each panel depicts 

the engagement patterns of good conversationalists (top 25% of partner-rated conversationalist score, 

depicted in blue) and bad conversationalists (bottom 25%, red) on a turn-level characteristic. Horizontal 

axes denote categories of turn-level characteristics, defined in terms of feature deciles. The vertical 



CANDOR Corpus - Supplement

position of each point indicates the average proportion of turns in a category for good or bad 

conversationalists. 

Table S.4. Statistical significance of differences in behavior between good and bad 

conversationalists (female participants). Each row assesses differences between good 

conversationalists (top 25% of partner-rated conversationalist score) and bad conversationalists (bottom 

25%) on a turn-level conversational feature within a participant gender. Separate p values are reported for 

tests of distributional equality and for tests of mean equality. The table reports only analyses among 

female participants, but multiple-testing adjustment accounts for additional tests discussed elsewhere 

Feature Diff. 95% CI 

padj 

(mean) 

padj 

(distr.) 

Transcript Interval after prior turn -0.034 [-0.0550, -0.0139] 0.003 0.060 

Transcript Duration 0.270 [-0.0498, 0.5893] 0.164 <0.001 

Transcript Words per second 0.060 [0.0091, 0.1107] 0.044 0.212 

Transcript Backchannel rate -0.005 [-0.0097, -0.0004] 0.065 <0.001 

Transcript Cosine similarity to prior -0.006 [-0.0094, -0.0017] 0.013 0.038 

Transcript Euclidean dist. to prior 0.004 [0.0003, 0.0078] 0.065 0.038 

Auditory Vocal intensity 0.005 [0.0004, 0.0103] 0.065 0.069 

Auditory Pitch 4.730 [1.42, 8.05] 0.014 0.002 

Auditory Loudness 0.141 [-0.6036, 0.8858] 0.810 0.691 

Auditory Pitch S.D. 0.200 [-0.7544, 1.1543] 0.809 0.043 

Auditory Loudness S.D. -0.062 [-0.6728, 0.5495] 0.858 0.735 

Visual Facial happiness (listening) 0.020 [-0.0067, 0.0475] 0.223 0.195 

Visual On-screen gaze (listening) -0.006 [-0.0546, 0.0422] 0.835 0.710 

Visual Nodding yes (listening) 0.019 [-0.0069, 0.0442] 0.233 0.259 

Visual Shaking no (listening) 0.019 [-0.0024, 0.0405] 0.145 0.155 

Visual Facial happiness (speaking) 0.015 [-0.0115, 0.0419] 0.376 0.392 

Visual On-screen gaze (speaking) -0.006 [-0.0543, 0.0421] 0.835 0.786 

Visual Nodding yes (speaking) 0.033 [0.0063, 0.0591] 0.035 0.043 

Visual Shaking no (speaking) 0.030 [0.0067, 0.0536] 0.029 0.038 

Table S.5. Statistical significance of differences in behavior between good and bad 

conversationalists (male participants). Each row assesses differences between good 

conversationalists (top 25% of partner-rated conversationalist score) and bad conversationalists (bottom 

25%) on a turn-level conversational feature within a participant gender. Separate p values are reported for 

tests of distributional equality and for tests of mean equality. The table reports only analyses among male 

participants, but multiple-testing adjustment accounts for additional tests discussed elsewhere. 

Feature Diff. 95% CI 

padj 

(mean) 

padj 

(distr.) 

Transcript Interval after prior turn -0.066 [-0.0914, -0.0410] <0.001 <0.001 

Transcript Duration 0.070 [-0.3307, 0.4710] 0.818 0.015 

Transcript Words per second 0.157 [0.0919, 0.2220] <0.001 <0.001 

Transcript Backchannel rate -0.003 [-0.0081, 0.0021] 0.361 0.192 

Transcript Cosine similarity to prior -0.004 [-0.0079, -0.0000] 0.091 0.324 

Transcript Euclidean dist. to prior 0.003 [-0.0005, 0.0067] 0.160 0.322 

Auditory Vocal intensity 0.002 [-0.0053, 0.0095] 0.744 0.193 

Auditory Pitch 2.849 [-0.9402, 6.6389] 0.223 0.255 
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Auditory Loudness 0.017 [-0.8124, 0.8456] 0.969 0.021 

Auditory Pitch S.D. -1.279 [-3.04, 0.48] 0.233 0.030 

Auditory Loudness S.D. 0.165 [-0.5010, 0.8310] 0.777 0.141 

Visual Facial happiness (listening) 0.038 [0.0079, 0.0687] 0.032 0.053 

Visual On-screen gaze (listening) -0.022 [-0.0746, 0.0302] 0.565 0.855 

Visual Nodding yes (listening) 0.058 [0.0293, 0.0864] <0.001 <0.001 

Visual Shaking no (listening) 0.046 [0.0192, 0.0737] 0.003 <0.001 

Visual Facial happiness (speaking) 0.037 [0.0068, 0.0665] 0.035 0.060 

Visual On-screen gaze (speaking) -0.019 [-0.0715, 0.0337] 0.638 0.744 

Visual Nodding yes (speaking) 0.064 [0.0345, 0.0942] <0.001 <0.001 

Visual Shaking no (speaking) 0.061 [0.0312, 0.0910] <0.001 <0.001 

S.3.3. Duration-adjusted Results

In this section, we present additional findings from robustness tests that controlled for 

turn duration in comparing high- and low-skilled conversationalists. To do so, we included 

demeaned turn duration as a linear predictor in the regressions described in Appendix S.2.1. This 

allowed for turn proportions in each category (lowest decile of a feature, second-lowest decile, 

etc.) to increase or decrease linearly as a function of duration. For example, the model allowed 

for a slight reduction in extremely loud speech (as measured by average decibels over the turn) 

for each additional second that the turn continued; this accounted for the possibility that, for 

instance, loud speech was difficult to sustain for long periods. At the same time, the model 

allowed for differently sized increases or decreases of other loudness categories (e.g., moderately 

quiet speech) for each additional second of turn duration. Figure S.6 depicts the predicted 

engagement patterns of good and bad conversationalists, holding turn duration fixed at the 

average value across the corpus. Table S.5 summarizes the statistical significance of duration-

adjusted differences between high- and low-skilled conversationalists. 



CANDOR Corpus - Supplement

Fig. S.6. Behavior of good and bad conversationalists (duration-adjusted results). Each panel 

depicts the engagement patterns of good conversationalists (top 25% of partner-rated conversationalist 

score, depicted in blue) and bad conversationalists (bottom 25%, red) on a turn-level characteristic. 

Horizontal axes denote categories of turn-level characteristics, defined in terms of feature deciles. The 

vertical position of each point indicates the average proportion of turns in a category for good or bad 

conversationalists. 
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S.3.4. Robustness of Semantic Similarity Results

Finally, we demonstrate that results on novelty and semantic similarity were not simply 

idiosyncratic artifacts of the particular embedding model we used to reduce turn transcripts to a 

quantitative representation. While the MPNet embedding model used in our main analyses was 

selected on the basis of achieving the highest average performance across a number of domains, 

RoBERTa embeddings (74) are a widely used alternative. In broad strokes, Figure S.7 replicates 

the overall pattern of our findings: bad conversationalists had higher average similarity to the 

previous turn, indicating more repetitive, less novel, responses. However, we find that these 

differences did not manifest in a consistent manner across embedding models. MPNet results 

suggested that bad conversationalists were differentiated by a large number of extremely high-

similarity statements that were near duplicates of prior turns. In contrast, RoBERTa results 

indicated that bad conversationalists had fewer high-novelty (low-similarity) statements. While 

both approaches suggested that poor conversationalists’ contributions were more mundane, the 

practical implications of the different models’ results present substantially different 

interpretations. Resolving the apparent divergence between these approaches may constitute an 

important area for future work. 

We also found that certain methods to measure semantic distance appeared to depend 

heavily upon the number of words in current and previous turns, although importantly, our 

primary specification and results were robust to residualizing on word count. Finally, most 

embedding models are trained to interpret the intricacies of language based upon corpora of 

written documents, and not transcripts of spoken communication. As such, the rules that these 

models learn about language, and the subsequent numerical representations they produce, may 

not be fully suitable for a corpus such as ours, which is composed of entirely natural 
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conversations. Application of domain-transfer techniques may help address this gap, although 

success may be difficult to evaluate without extensive human annotation. For these reasons, we 

urge readers to exercise caution in interpreting the association between semantic novelty and 

conversationalist quality. Nevertheless, we consider it encouraging that previous work has found 

that pre-trained models can, in fact, achieve near-human performance across a range of domains 

and hyperparameter choices (Rodriguez & Spirling, 2002). 

Fig. S.7. Behavior of good and bad conversationalists on RoBERTa embedding similarity. Cosine 

similarity of current turn to partner’s prior turn for good conversationalists (top 25% of partner-rated 

conversationalist score, depicted in blue) and bad conversationalists (bottom 25%, red). Horizontal axes 

denote categories of semantic similarity, defined in terms of deciles across the corpus. The vertical 

position of each point indicates the average proportion of turns in a category for good or bad 

conversationalists. 

S.3.5. Vocal Intensity Varies with Personality
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In the main text of the manuscript, we compared the vocal intensity distributions of good 

and bad conversationalists, which differed significantly (i.e., the null of equal distributions was 

rejected at padj<0.001). People rated as good conversationalists spoke with greater vocal intensity 

than bad conversationalists. During revision, we were encouraged to explore further sources of 

variability in these effects such as people’s personality traits. To do so, we examined how our 

good-bad conversationalist effects varied with people’s scores on the Big 5 personality traits 

(i.e., whether people are above or below the median score for Agreeableness, Conscientiousness, 

Extraversion, Neuroticism, and Openness).  

For example, consider the neuroticism panel in Figure S.8, which shows that neuroticism 

moderates the vocal intensity of both good and bad conversationalists. For bad 

conversationalists, those higher in neuroticism spoke with greater vocal intensity compared to 

those lower in neuroticism (diff in average intensity score = 0.014, p < 0.001). A similar effect 

was observed for good conversationalists – again those higher in neuroticism spoke with greater 

vocal intensity compared to those lower in neuroticism (diff in average intensity score = 0.013, p 

< 0.01). In other words, being high in neuroticism appears to be associated with speaking with 

more vocal intensity during conversation, but this relationship between neuroticism and vocal 

intensity did not depend on whether someone was a good or bad conversationalist.  

Neuroticism is a personality trait that appears to affect the behavior of good and bad 

conversationalists similarly. But one can also imagine a case where personality affects good and 

bad conversationalists differently. Consider the agreeableness panel of Figure 3. Here 

agreeableness only moderates the vocal intensity of good conversationalists. In other words, 

people’s level of agreeableness does not affect their vocal intensity when they are bad 

conversationalists (diff in average intensity score = 0.002, p = 0.64). But agreeableness does 
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moderate the vocal intensity of good conversationalists, such that good conversationalists who 

are also high in agreeableness speak with more vocal intensity compared to good 

conversationalists who are low in agreeableness (diff in average intensity score = 0.010, p < 

0.05). In our manuscript, we saw that good conversationalists speak with more vocal intensity 

compared to bad conversationalists, and here we see that the agreeableness further moderates this 

effect for good conversationalists specifically. 

In sum, neuroticism and agreeableness are two personality traits that intuitively should be 

related to emotional intensity during conversation. We see evidence for this in our data. For 

neuroticism, higher vocal intensity may be related to the stress or anxiety that people feel in their 

initial interactions with strangers, and for agreeableness, perhaps such intensity is more 

associated with the positive emotions that agreeable people emphasize while being cooperative, 

polite, and friendly in first impression contexts. Furthermore, our analyses reveal how the 

relationship between personality and various behavioral features, such as vocal intensity, can 

sometimes remain stable across good and bad conversationalists (e.g., as we observed with 

neuroticism), and other times, how the effect of personality only emerges in conjunction with 

being a good conversationalist, but not a bad conversationalist (e.g., as we observed with 

agreeableness). Overall, we identified a number of behavioral patterns that distinguish good and 

bad conversationalists, and personality appears to moderate these findings in nuanced ways.  
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Fig. S.8. Each panel depicts the vocal intensity of good conversationalists (top 25% of partner-rated 

conversationalist score, depicted in blue) and bad conversationalists (bottom 25%, depicted in red). Results are 

further divided by people’s scores on the Big 5 personality traits (i.e., whether people are above or below the median 

score for Agreeableness, Conscientiousness, Extraversion, Neuroticism, and Openness). Horizontal axes denote 

turn-level feature deciles. The y-axis indicates the mean proportion of turns in a category for a good or bad 

conversationalist. Error bars represent 95% confidence intervals.
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Section on Topical, Relational, and Demographic Diversity 

In this section, we present results from a quasi-experimental analysis that examined how 

members of one identity group shift their conversational patterns when quasi-randomly assigned 

to partners of (1) their own group, or (2) partners of a differing group.  

The same procedure assessing whether K groups of participants diverge in their 

conversational behavior was applied here; for a detailed discussion, see Supplement Section S.2. 

Here we first restrict analysis to participants from one demographic (e.g., older participants), 

then examine whether those participants engage in conversation differently when assigned to 

older, middling, or younger partners, i.e. among K=3 subgroups of older participants). Similarly, 

to correct for multiple testing, the Benjamini-Hochberg procedure described in Supplement 

Section S.2.3 was applied here to 340 tests about quasi-randomly assigned partner identity on 

participant behavior (involving nine subgroups of participants and 17 contrasts between in-group 

partners and various out-groups of partners, again repeated on 20 features). 

All analyses compare within a group (e.g. subsetting to young participants), making 

contrasts within that subset based on the group of the assigned partner (e.g., comparing those 

assigned to old partners, as opposed to young partners). We emphasize that young and old 

participants differ in many ways, such as their education level and political attitudes. Our 

analysis does not seek to disentangle which specific attribute drives the difference in engagement 

patterns—that is, it does not claim that effects are due to the age gap alone, holding all other 

attributes fixed. Rather, it aims to approximate an ideal experiment in which a participant is 

randomly assigned to converse with a partner from group A or B, where A and B differ on some 

aspect of identity as well as the “bundle of sticks” (91) that are associated with or comprise that 
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identity. Moreover, it does not attempt to identify psychological mechanisms underlying the 

change in an individual’s behavior, such as out-group animosity. Finally, we note that as 

discussed in the main text, differences in one participant’s behavior can arise as a response to 

differing behavior by another participant. Throughout, reported p values are adjusted for the 

multiplicity of features analyzed and partner-group comparisons made. 

 Partner assignment is based on an algorithm that greedily matches pairs of participants 

that indicated their availability during the same time slot. Because the matching algorithm does 

not incorporate demographic information, whether a participant is assigned to an in-group or out-

group partner is guaranteed to be ignorable conditional on availability. For purposes of analysis, 

we assume that it is ignorable when aggregating over availability blocks as well. To assess the 

plausibility of this design assumption, we conduct chi-squared tests to evaluate dependence in 

participant and partner identity—for example, whether older participants are more likely to be 

paired with other older participants, compared to a null model in which they are randomly 

assigned to partners of all ages. Chi-squared tests for dependence in age, gender, race, education, 

and political ideology pairings respectively produce p values of 0.53, 0.33, 0.62, 0.91, and 0.43. 

These results suggest that availability is at most weakly related to membership in an identity 

group. Moreover, within identity groups, we assess that availability is unlikely to correlate 

strongly with baseline conversational patterns.  

In what follows, Sections S.4.1–3 respectively present results on quasi-randomly 

assigned partner age, gender, and race/ethnicity. We do not detect significant differences in 

conversational patterns by partner education (distributed 37%, 40%, and 23% respectively 

below, at, and above the level of a bachelor’s degree) or political ideology (65% liberal, 20% 

neutral, 15% conservative), though we caution that the statistical power of political-ideology 
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results is limited by the relatively small proportion of conservative participants. These results are 

omitted to conserve space, but reported p values include adjustment for all analyses that were 

conducted. To aid interpretation, Table S.6 in Section S.4.4 summarizes differences in average 

feature values with 95% confidence intervals; multiple-testing-adjusted p values are reported for 

tests of differences in means. 

S.4.1. Quasi-random Partner Age Results

To analyze age, we divide participants approximately into tertiles representing the youngest 

(aged 19–28; N=1,204), middle (29–38; N=1,013), or oldest age groups (39–66; N=1,039). Note 

that tertiles are slightly imbalanced due to rounding in reported age. Figures S.9, S.10, and S.11 

respectively present analyses that subset to young, middle, and oldest participants, examining the 

distribution of their conversational features when paired with in- and out-group partners. For 

compactness, we plot only results that are statistically significant at the 0.05 level. 
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Fig. S.9. Behavior of youngest-tertile participants when assigned to young, middle, and old 

age-group partners. Each panel depicts the engagement patterns of young participants assigned to 

young (red), middle (green), or old (blue) age-group partners on a turn-level characteristic. Horizontal 

axes denote categories of turn-level characteristics, defined in terms of feature deciles. The vertical 

position of each point indicates the average proportion of turns in a category. Distributions are presented 

only for features in which the null hypothesis of distributional equality is rejected at the 0.05 level after 

multiple-testing adjustment. 
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Fig. S.10. Behavior of middle age-group participants when assigned to young, middle, and 

old age-group partners. Each panel depicts the engagement patterns of middle age-group participants 

assigned to young (red), middle (green), or old (blue) age-group partners on a turn-level characteristic. 

Horizontal axes denote categories of turn-level characteristics, defined in terms of feature deciles. The 

vertical position of each point indicates the average proportion of turns in a category. Distributions are 

presented only for features in which the null hypothesis of distributional equality is rejected at the 0.05 

level after multiple-testing adjustment. 



CANDOR Corpus - Supplement

Fig. S.11. Behavior of oldest-tertile participants when assigned to young, middle, and old 

age-group partners. Each panel depicts the engagement patterns of old participants assigned to young 

(red), middle (green), or old (blue) age-group partners on a turn-level characteristic. Horizontal axes 

denote categories of turn-level characteristics, defined in terms of feature deciles. The vertical position of 

each point indicates the average proportion of turns in a category. Distributions are presented only for 

features in which the null hypothesis of distributional equality is rejected at the 0.05 level after multiple-

testing adjustment. 

S.4.2. Quasi-random Partner Gender Results

To analyze gender, we examine participants who self-describe as female (N=1,740) or male 

(N=1,463). Participants with other gender identities, as well as those who preferred not to 

answer, were not analyzed due to a lack of statistical power (N=109). Figures S.12 and S.13 

respectively present analyses that subset to female and male participants, examining the 

distribution of their conversational features when paired with in- and out-group partners. For 

compactness, we plot only results that are statistically significant at the 0.05 level. 
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Fig. S.12. Behavior of female participants when assigned to female and male partners. Each 

panel depicts the engagement patterns of female participants assigned to female (red) or male (blue) 

partners on a turn-level characteristic. Horizontal axes denote categories of turn-level characteristics, 

defined in terms of feature deciles. The vertical position of each point indicates the average proportion of 

turns in a category. Distributions are presented only for features in which the null hypothesis of 

distributional equality is rejected at the 0.05 level after multiple-testing adjustment. 
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Fig. S.13. Behavior of male participants when assigned to female and male partners. Each 

panel depicts the engagement patterns of male participants assigned to female (red) or male (blue) 

partners on a turn-level characteristic. Horizontal axes denote categories of turn-level characteristics, 

defined in terms of feature deciles. The vertical position of each point indicates the average proportion of 

turns in a category. Distributions are presented only for features in which the null hypothesis of 

distributional equality is rejected at the 0.05 level after multiple-testing adjustment. 

S.4.3. Quasi-random Partner Race/Ethnicity Results

To analyze race and ethnicity, we examine participants self-describing as Asian (N=485, 16%), 

Black (N=248, 8%), Hispanic (N=220, 7%), or White (N=2,110, 69%). These proportions 

roughly track the U.S. population (6% Asian, 13% Black, 19% Hispanic, and 60% White in 2021 

Census data) but under-represent Black and Hispanic groups. Figure S.14 subsets to White 

participants and examines the distribution of their conversational features when paired with in- 

and out-group partners. Analyses of behavior by non-White groups is not feasible in this dataset 

due to the sparsity of minority-minority pairings. For compactness, we plot only results that are 

statistically significant at the 0.05 level

Fig. S.14. Behavior of White participants when assigned to Asian, Black, Hispanic, and 

White partners. Each panel depicts the engagement patterns of White participants assigned to Asian 

(red), Black (blue), Hispanic (green), or White (purple) partners on a turn-level characteristic. Horizontal 

axes denote categories of turn-level characteristics, defined in terms of feature deciles. The vertical 

position of each point indicates the average proportion of turns in a category. Distributions are presented 

only for features in which the null hypothesis of distributional equality is rejected at the 0.05 level after 

multiple-testing adjustment. 
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Table S.6. Statistical significance of differences in behavior of a participant group, 

contrasting members assigned to out-group partners versus in-group partners. Each row 

reports the difference in the behavior of a group of participants toward out-group partners, as compared to 

in-group partners. The first column specifies the participant group for which conversational behavior is 

being analyzed. In gender analyses, abbreviations indicate Female and Male groups; in age analyses, 

Youngest, Middle, and Oldest tertile; in race/ethnicity analyses, Asian, Black, Hispanic, and White. The 

second column specifies the comparison of partner groups in an abbreviated “X - Y”; in each comparison, 

the first letter (here, “X”) represents the out-group abbreviation and the second (“Y”) always corresponds 

to the participant group being analyzed. Subsequent columns report differences in average conversational 

behavior toward out-group partners (compared to in-group partners), 95% confidence intervals, and 

multiple-testing adjusted p values for the difference in expectation. To conserve space, only differences in 

expectation significant at the 95% level after multiple-testing adjustment are reported; note that multiple-

testing adjustment accounts for 19 features and a total of 17 partner-group contrasts, totaling 323 

analyses; these include additional education and ideology analyses for which no significant difference 

was found. Winsorized differences are reported for unbounded features. 

Participant 

Group 

Partner 

Contrast Feature Diff. 95% CI 

padj 

(mean) 

Gender-based analyses 

F M - F Interval after prior turn 0.0263 [0.0111, 0.0414] 0.018 

F M - F Pitch -3.402 [-5.6571, -1.1470] 0.047 

F M - F Pitch S.D. -1.213 [-1.8446, -0.5815] 0.007 

M F - M Facial happiness (speaking) 0.033 [0.0120, 0.0540] 0.038 

M F - M Facial happiness (listening) 0.034 [0.0127, 0.0554] 0.038 

Age-based analyses 

Y M - Y Duration -0.5208 [-0.8331, -0.2085] 0.027 

Y O - Y Interval after prior turn -0.0411 [-0.0660, -0.0161] 0.029 

Y O - Y Duration -0.7693 [-1.0665, -0.4722] <0.001 

Y O - Y Backchannel rate 0.0072 [0.0026, 0.0119] 0.038 

Y O - Y Shaking no (speaking) -0.0338 [-0.0553, -0.0123] 0.038 

Y O - Y Nodding yes (listening) 0.0365 [0.0122, 0.0608] 0.047 

M O - M Interval after prior turn -0.0375 [-0.0622, -0.0127] 0.047 

O M - O Duration 0.7401 [0.3957, 1.0845] 0.002 

O Y - O Interval after prior turn 0.045 [0.0234, 0.0666] 0.002 

O Y - O Duration 1.4652 [1.1082, 1.8222] <0.001 

O Y - O Shaking no (speaking) 0.0381 [0.0131, 0.0630] 0.047 

O Y - O Pitch S.D. 2.4611 [1.2109, 3.7113] 0.005 

Race/ethnicity-based analyses 

W A - W Duration 0.7511 [0.4451, 1.0572] <0.001 

W A - W Cosine similarity to prior 0.0059 [0.0025, 0.0092] 0.018 

W A - W Euclidean dist. to prior -0.0054 [-0.0085, -0.0023] 0.018 

W A - W Shaking no (speaking) 0.0434 [0.0200, 0.0668] 0.010 

W B - W Backchannel rate -0.0128 [-0.0170, -0.0085] <0.001 
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