# THE LANCET Digital Health

## Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: McKee JL, Kaufman MC, Gonzalez AK, et al. Leveraging electronic medical record-embedded standardised electroencephalogram reporting to develop neonatal seizure prediction models: a retrospective cohort study. *Lancet Digit Health* 2023; **5**: e217–26.

#### **McKee 2022 Supplemental Information**

#### **Table of Contents**

| Validation of the EMR algorithm                        | Page 1 |
|--------------------------------------------------------|--------|
| Figure S1: Neonatal EEG Template                       | Page 1 |
| Figure S2: Breakdown of EEG types and accrual overtime | Page 2 |
| Figure S3: Population characteristics                  | Page 2 |
| Figure S4: Kaplan-Myer Survival Analysis               | Page 3 |
| Figure S5: Example decision tree for HIE patients      | Page 4 |
| Table S1: Model Methods                                | Page 5 |
| Table S2: Day 1 EEG Features.                          | Page 7 |

#### Validation of the EMR algorithm

Our EMR-based algorithm identified 82/86 (95%) of the individuals with HIE from an independent clinical list and identified 68 additional individuals who met criteria for inclusion. The individuals not captured by this algorithm but identified on the clinical list were patients transferred from outside hospitals (n=2) or patients in whom the diagnosis of either HIE or hypothermia was incorrectly omitted from the diagnosis codes (n=2). Individuals incorrectly selected by our algorithm, including those with initial EEGs performed at outside hospitals or who did not actually undergo therapeutic hypothermia, were manually removed (n=70).

| listory & Technical Desc                                                                                                 | ription  | Standard I | CU Neona     | te Daily Im   | pression    | Final Impression a | and Correlation | on       |                |                        |     |
|--------------------------------------------------------------------------------------------------------------------------|----------|------------|--------------|---------------|-------------|--------------------|-----------------|----------|----------------|------------------------|-----|
| EEG DESCRIPTION:                                                                                                         |          |            |              |               |             |                    |                 |          |                |                        |     |
|                                                                                                                          |          |            |              |               |             | Mon                | itoring: U      | nchanged |                |                        |     |
| Patient State:                                                                                                           | awake    | asleep     | indetermin   | ate           |             |                    |                 |          | 8              |                        | Tex |
| Continuity:                                                                                                              | normal   | continuity | normal di    | scontinuity   | excessiv    | e discontinuity    | burst supp      | pression | asymmetry      | low voltage suppressed | Tex |
| Synchrony: normal abnormal abnormal Invariant abnormal bursts separated by IBI < 5 uV with no normal patterns in bursts. |          |            |              |               |             | Тех                |                 |          |                |                        |     |
| edominant Backgro                                                                                                        | und Freq | uencies:   | beta alp     | ha theta      | delta       | entirely attenuat  | ed asymr        | netry    |                | ,                      | Тех |
| Voltage:                                                                                                                 | normal   | borderlin  | low low      | v voltage su  | ppressed    | electrocerebra     | al inactivity   | high     | asymmetry      |                        | Тех |
| Variability:                                                                                                             | present  | absent     | unknown      | /unclear/not  | applicable  | 6                  |                 |          |                |                        | Тех |
| Reactivity:                                                                                                              | present  | absent     | unclear      | not tested    |             |                    |                 |          |                |                        | Тех |
| Dysmaturity:                                                                                                             | absent   | present    | unclear/u    | nknown/not    | applicable  | •                  |                 |          |                |                        | Тех |
| Graphoelements:                                                                                                          | present  | absent     | unknown      |               |             |                    |                 |          |                |                        | Тех |
| Focal Slowing:                                                                                                           | none     | present    |              |               |             |                    |                 |          |                |                        | Тех |
| EEG Transients:                                                                                                          | absent   | sharp wa   | ave (1 type) | sharp wa      | ave (2 type | sharp wave         | e (3 types)     | sharp    | wave (4 types) | sharp wave (5 types)   | Тех |
| Soizuros                                                                                                                 | 0000     | EEG only   | coizuroc     | alactraclinic | al coizuro  | e clinically on    |                 |          |                |                        | Te  |

**Figure S1: Neonatal EEG Template.** A screenshot of the neonatal EEG reporting template is shown. EEG variables are derived from American Clinical Neurophysiology Society standardized EEG terminology, and hover boxes define terms to users.



Figure S2: Breakdown of EEG types and accrual overtime. (A) >42,000 EEGs have been reported using the templated system, most of these being routine (<1 hour) EEGs or hospital-based long-term monitoring (CEEG). (B) Monthly numbers of EEGs reported using the novel system have remained roughly stable, except during the COVID-19 pandemic (dashed vertical line).



**Figure S3: Population characteristics.** Distributions of age at EEG initiation (**A**) and duration of continuous EEG monitoring (CEEG) (**B**) for the overall neonatal population (purple) and the subgroup of neonates with hypoxic-ischemic encephalopathy (HIE) (yellow). Neonates with HIE had CEEG initiated at younger ages and underwent longer duration CEEG than the overall cohort (see main text for details).



**Figure S4: Kaplan-Myer Survival Analysis.** Proportion of individuals with seizure-free survival is displayed for both the entire cohort (yellow) and those with HIE (blue). Individuals are censored when monitoring is discontinued (vertical marks).



**Figure S5: Example decision tree for HIE patients.** The model is initiated with all patients and 22% risk of seizures (top). This tree then divides patients based on the presence or absence of seizures on day 1. For example, among patients who did not have seizures on day 1 (on the left), only had a 12% risk of seizures on subsequent days. Next, the model recursively splits the population based on the other features to create the branches, until it reaches a terminal leaf that is either homogenous in outcome or too small to split further. The highlighted group on the left accounts for 48% of the population, but only has a 4% risk of future seizures. However, the highlighted group on the right, while only representing 5% of the population has a 60% chance of future seizures.

### Table S1: Model Methods

| Key  | Model Name                              | Model Type             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|-----------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LR1  | log_regress_c<br>aret                   | Logistic<br>Regression | Default logistic regression model with k-fold cross-validation (k=10) using the caret package in R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DT   | regresstree_ca<br>ret                   | Decision<br>Tree       | Default decision tree model with cross-validation (k=10) using the caret package in R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RF1  | random_mod<br>el1                       | Random<br>Forest       | Default random forest model using the randomForest package in R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RF2  | random_mod<br>el_mtry                   | Random<br>Forest       | Random Forest model, optimized for minimal OOB (out of bag) error using stepwise tuning of mtry (number of variables sampled at each split). Optimal mtry = 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RF3  | random_mod<br>el_opt                    | Random<br>Forest       | Random Forest model, optimized for minimal error rate. Parameters tested included mtry (range 1-10, by increments of 1), minimal node size (3-9, by increments of 2) and number of trees (250-500, by increments of 50). Optimal mtry = 4, optimal node size = 9, optimal number of trees = 500.                                                                                                                                                                                                                                                                                                                                                             |
| RF4  | range_1                                 | Random<br>Forest       | Random forest model using the ranger package in R optimized for OOB error rate. Parameters tested included mtry (range 1-10, by increments of 1), minimal node size (3-9, by increments of 2), sample size $(0.55, 0.632, 0.7, 0.8)$ , and number of trees (250-500, by increments of 50). Optimal mtry = 8, optimal node size = 3, optimal sample size = $0.632$ , optimal number of trees = 250.                                                                                                                                                                                                                                                           |
| RF5  | h2o_1                                   | Random<br>Forest       | Distributed Random Forest model using the H2O package in R. Parameters tested included mtry (range 1-10, by increments of 1), sample size (0.55, 0.632, 0.70, 0.80), and number of trees (200-500, by increments of 100). The model was optimized towards maximum AUCPR. Optimal mtry = 2, optimal sample size = 0.55, optimal number of trees = 400.                                                                                                                                                                                                                                                                                                        |
| RF6  | h2o_balanced                            | Random<br>Forest       | Distributed Random Forest model using the H2O package in R. Parameters tested included mtry (range 1-10, by increments of 1), sample size ( $0.55$ , $0.632$ , $0.70$ , $0.80$ ), and number of trees (200-500, by increments of 100). In order to create balance, the model was stratified and the class balance default parameter was activated. The model was optimized towards maximum AUCPR. Optimal mtry = 2, optimal sample size = 0.80, optimal number of trees = 200. Cross-validation (k=10) was also implemented within the model.                                                                                                                |
| RF7  | h2o_custom_<br>bal                      | Random<br>Forest       | Distributed Random Forest model using the H2O package in R. Parameters tested included mtry (range 1-10, by increments of 1), sample size ( $0.55$ , $0.632$ , $0.70$ , $0.80$ ), and number of trees (200-500, by increments of 100). In order to create balance, the model was stratified and the class balance parameter was activated with "no subsequent seizures" undersampled at a rate of $0.5$ and "subsequent seizures" sampled at a rate of $0.9$ . The model was optimized towards maximum AUCPR. Optimal mtry = 1, optimal sample size = $0.70$ , optimal number of trees = 400. Cross-validation (k=10) was also implemented within the model. |
| RF8  | h2o_weighted<br>_0.6068152_<br>2.840491 | Random<br>Forest       | Distributed Random Forest model using the H2O package in R. Parameters tested included mtry (range 1-10, by increments of 1), sample size $(0.55, 0.632, 0.70, 0.80)$ , and number of trees (200-500, by increments of 100). In order to create balance, the model was stratified and weighted in order to proportionally distribute points to "non-subsequent seizure" (0.61) and "subsequent seizure" (2.84) instances. The model was optimized towards maximum AUCPR. Optimal mtry = 1, optimal sample size = 0.55, optimal number of trees = 200. Cross-validation (k=10) was also implemented within the model.                                         |
| RF9  | h2o_weighted<br>_0.5_1.5                | Random<br>Forest       | Same as above model, aside from weighted metrics for "non-subsequent seizure" (0.5) and "subsequent seizure" (1.5). Optimal mtry = 1, optimal sample size = $0.55$ , optimal number of trees = 200.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RF10 | h2o_weighted<br>_0.5_2                  | Random<br>Forest       | Same as above model, except weights for "non-subsequent seizure" (0.5) and "subsequent seizure" (2.0). Optimal mtry = 1, optimal sample size = $0.55$ , optimal number of trees = 200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RF11 | h2o_weighted<br>_0.5_3                  | Random<br>Forest       | Same as above model, except weights for "non-subsequent seizure" $(0.5)$ and "subsequent seizure" $(3.0)$ . Optimal mtry = 1, optimal sample size = 0.55, optimal number of trees = 200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RF12 | h2o_weighted<br>_0.5_4                  | Random<br>Forest       | Same as above model, except weights for "non-subsequent seizure" $(0.5)$ and "subsequent seizure" $(4.0)$ . Optimal mtry = 1, optimal sample size = 0.55, optimal number of trees = 200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RF13 | h2o_weighted<br>_0.5_5                  | Random<br>Forest       | Same as above model, except weights for "non-subsequent seizure" $(0.5)$ and "subsequent seizure" $(5.0)$ . Optimal mtry = 1, optimal sample size = 0.55, optimal number of trees = 200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| RF14 | h2o_weighted<br>_0.5_10  | Random<br>Forest       | Same as above model, except weights for "non-subsequent seizure" $(0.5)$ and "subsequent seizure" (10). Optimal mtry = 1, optimal sample size = $0.55$ , optimal number of trees = 300.                             |
|------|--------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RF15 | h2o_weighted<br>_0.5_15  | Random<br>Forest       | Same as above model, except weights for "non-subsequent seizure" (0.5) and "subsequent seizure" (15). Optimal mtry = 1, optimal sample size = NA, optimal number of trees = 200.                                    |
| LR2  | log_regress_c<br>aret_wb | Logisitc<br>Regression | Logistic regression model with cross-validation ( $k$ =10) using the caret package in R. Weights were added to proportionally distribute points to "non-subsequent seizure" (0.61) and "subsequent seizure" (2.84). |
| LR3  | log_regress_c<br>aret_w3 | Logisitc<br>Regression | Same as above model, aside from weighted metrics for "non-subsequent seizure" $(0.5)$ and "subsequent seizure" $(3.0)$                                                                                              |
| LR4  | log_regress_c<br>aret_w5 | Logistic<br>Regression | Same as above model, aside from weighted metrics for "non-subsequent seizure" $(0.5)$ and "subsequent seizure" $(5.0)$                                                                                              |

The above table provides a list (not in rank order) of all models tested on our data. Models were chosen from common R machine learning packages, with the goal of moving from more classical statical methods such as logistic regression to more sophisticated machine learning algorithms such as decision trees and random forests. Stronger performing models were expanded and tested with more depth than weaker models, including tests of different weights. We did not intend for this to be an exhaustive search for the "optimal model" but rather aimed to explore how different types of models, and different weights, would affect performance.

Table S2: Day 1 EEG features

|                | All Neonates         | 5                          | Neonates w         | ith HIE                    |                   |              |
|----------------|----------------------|----------------------------|--------------------|----------------------------|-------------------|--------------|
| EEG feature    | Number<br>reported   | Frequency of abnormalities | Number<br>reported | Frequency of abnormalities | 95% CI for<br>OR* | P-<br>value* |
| Continuity     | 1283/1313<br>(97·7%) | 847/1283<br>(66%)          | 146/150<br>(97·3%) | 93/146 (63.7%)             | 0.62, 1.32        | 0.28         |
| Voltage        | 1278/1313<br>(97·3%) | 180/1278<br>(14·1%)        | 147/150<br>(98·0%) | 42/147 (28.6%)             | 1.61, 3.65        | <0.001       |
| Variability    | 1289/1313<br>(98·2%) | 193/1289<br>(15·0%)        | 145/150<br>(96·7%) | 40/145 (27.6%)             | 1.42, 3.25        | <0.001       |
| Reactivity     | 1247/1313<br>(95·0%) | 231/1247<br>(18·5%)        | 141/150<br>(94·0%) | 37/141 (26·2%)             | 1.02, 2.37        | 0.032        |
| Graphoelements | 1293/1313<br>(98·5%) | 159/1293<br>(12·3%)        | 146/150<br>(97·3%) | 36/146 (24.7%)             | 1.50, 3.57        | <0.001       |
| Transients     | 1256/1313<br>(95·7%) | 256/1256<br>(20·4%)        | 139/150<br>(92·7%) | 22/139 (15.8%)             | 0.43, 1.19        | 0.22         |
| EEG Seizures   | 1307/1313<br>(99·5%) | 203/1307<br>(15·5%)        | 147/150<br>(98·0%) | 31/147 (21.1%)             | 0.92, 2.25        | 0.097        |
| EEG Impression | 1292/1313<br>(98·4%) | 989/1292<br>(76·5%)        | 148/150<br>(98·7%) | 110/148<br>(74·3%)         | 0.59, 1.35        | 0.54         |

Number reported represents the number of first day EEG reports commenting on the feature of interest. Frequency of abnormalities is the number of first day reports specifying that the feature of interest was abnormal, out of all reports describing the feature. \*Fisher's exact test comparing frequency of abnormalities in all neonates to those with hypoxic-ischemic encephalopathy (HIE). 95% confidence intervals for the odds ratio and p-values are provided.