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1 Performance of DFA

Figure 1 illustrates that the Feedback Alignment model [1] is less effective than the backprop
model when training deep networks with a continuous data stream. To be more precise, the
backprop model begins learning immediately at the start of training, while the Feedback Align-
ment model takes around 2000 training data points before it starts to learn. Additionally, the
rate of learning for the Feedback Alignment model is slower.

In an attempt to improve the Feedback Alignment model’s performance, the Direct Feedback
Alignment (DFA) method [2] proposed altering the backward connections to directly transmit
errors from the output layer y; to the upstream layers y,. The modulating signals in this
modified model are calculated as

ey = BL7geL ® O'I(Zg), (Sl)

with or
= —, 2
L (9zL <S )

In this formulation, By, , € RImE)xdmyL) where dim(y,) represents the dimensionality of the
activation yy.

As shown in Fig. S1, incorporating direct feedback connections to the Feedback Alignment
method speeds up learning, and the model’s accuracy improves after 1000 training data points.
However, even with this modification, the network’s performance is still lower than that of the
backprop model. Figure S1 further compares the DFA model with the Feedback Alignment
model trained with the P plasticity rule (Eq. 7) and shows that the improved plasticity rule
outperforms the DFA model.
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Figure S1: Performance of benchmark learning schemes while training a 5—layer fully-connected clas-
sifier network on MNIST digits [3] for a 10-way classification task. The plot demonstrates accuracy versus the
number of training data for Feedback Alignment (FA) [1], Direct Feedback Alignment (DFA) [2], and backprop
(BP) [4] methods, compared to the discovered biologically plausible plasticity rule P (bio; Eq. 7).

2 Performance of the FPri°

Fig. S2 demonstrates the classifier’s performance with P within 600 iterations of the meta-
optimizer. Comparing the loss and accuracy of FP° with F° via feedback alignment in Fig. S2a
and Fig. S2b, respectively, shows a significant boost in learning through F"°. Figure S2c further
shows improvement in the alignment of the modulating signals with those of the backprop.
These angles are reduced the most in the deeper layers. Lastly, Fig. S2d illustrates the progress
of the meta-parameters. We observe that the plasticity coefficients converge in about 200
episodes.
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Figure S2: Performance of the classifier network trained with 7P plasticity rule: Comparison
between (a) meta-accuracy and (b) meta-loss of " rule (bio; Eq. 7) with F° via feedback alignment (FA) and
backprop (BP), (c) alignment angles a between modulating signals of P and backprop, and (d) convergence
of the plasticity meta-parameters © = {f,6s,09}. While the term F"° was discovered by regularizing the
meta-loss with the penalty term in Eq. 6 (See Methods), A is set to zero for the illustrations in this figure for
the uncovered rule.

3 Data flow in FeHebb

Table 1 demonstrates the effect of the Hebbian-like error plasticity term (Eq. 8) on the alignment
angles of the modulator signals. Here, we explain these improvements by illustrating FeHebb’s
influence on the feedback pathway’s interactions with the forward path. To set the baseline,
Fig. S3a employs the plasticity rule

FO (9) = _QOGEYET—l (8-3)

to train the network (row 1 in Tab. 1), where e, is transmitted through random feedback
pathways. First, information from backward connections By and Bjss (through Bs ;) flows
into Wy via Egs. 3 and S.3. Similarly, information from Bjs flows into W, during the
weight update. Then in the forward pass, information from W; and W, are propagated
forward into Wy 3. Table 1 shows that this flow of information does not sufficiently adjust W
for a good alignment of the teaching signals, particularly in online training with limited data.

In Fig. S3b, we add the Hebbian-style error term to update W 3 using F°H*P while the rest
of the network is trained with F° through feedback alignment (Tab. 1, row 3). The information
flow to Wy, and W, stays the same; however, FeHebb introduces an auxiliary information
channel from B3, to Wy3. As presented in Tab. 1, this supplementary channel results in a
better alignment of e; with the corresponding error vector transmitted via backprop.



Figure S3c repeats this experiment with W 5 updated using FHe"® while other layers are
updated with F° with feedback alignment (Tab. 1, row 2). Although W is updated with the
same flow of information as Fig. S3b, there is a new flow from Bjy; to W o, which improves e;’s
alignment. Note that better alignment of e; results in more backprop-like weight update, which
subsequently improves data propagation to the downstream layers. As a result, the alignments
in the downstream layers are slightly improved as well, even with the vanilla F° plasticity rule
with feedback alignment updating them. This behavior is similar to the reduced alignment
angles in Fig. 7c, where F? positively affects the alignments by improving the forward data
propagation.
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Figure S3: Interactions between feedback and forward pathways using FeHePP: (a) All layers trained
with the rule F(©) = 6, F° via feedback alignment. Information from Bjs o and Bsg is transmitted to W q
through the F° plasticity rule ((1)), which then passes on to W 2 and Wa 3 ((3)). Meanwhile, information from
Bs; 5 is transmitted to W1 2 ((2)), which is then propagated to Wy 3 after the forward propagation. (b) Wy 3
is updated using FHPP(@) = 0y F° + 0,2, while W1 and W 5 are trained with the rule F(®) = 0 F°
via feedback alignment. Plasticity rule 70 transmits information from By and Bjs to W1 (D) and from
B3, to Wis (). This information is propagated to their downstream layers after the forward path ((4)).
Concurrently, an additional channel established by F? explicitly propagates the information from B3 2 to W 3
(®). (c) Wy, and Wy 3 use the plasticity rule F(®) = 6y FY via feedback alignment, and W o utilizes
FeHebb (@) = 0y FO0 + 0,72, F° communicates information from By and Bz to Wo 1 (D), which then is
propagated to the downstream layers ((3)). Meanwhile, the 79 rule in FeHebb Jisseminates information from
B3, to W o, while F2 in FeHebb ogtablishes a direct route to transmit information from Byqto Wi, (@)
The ensuing forward propagation from W 5 to the downstream layers continues as usual. In all graphs, blue
arrows represent the propagation of data through the forward or backward path, while the red arrow represents
the flow of information from the backward pathway to the forward connections.



4 Expectation of Hebbian-style error-based plasticity

Assume that the entries of By, are i.i.d. with expectation zero and independent from the
entries of e; ;. Also assume that the entries of e, have variance Uz?- In this Supplementary

section, we show that
E [ewe; || Bey-1] =0;Bj, 4 (S.4)

We must first show that E[(e/);)] = 0 and E[(e/);(e¢);)] = 0 when i # j by computing

E|(er),| =E (Z (Bisvo); <>>] (8:5)
k
Z [ By, } E[(eq41),] (S.6)
k
= 0. (S.7)

Now, assume that ¢ # 7 and compute

<Z(Bé+1,€)i7k(e£+l)k> <Z(Bé+l,é)j,k’(e£+l)k’>] (S.8)

k k!

Z ( (Bes1,e)ip (Besie) 1E[ (ec+1), (egﬂ)k,]) (S.9)
O

(S.10)

E(er)i(er);] = E

where the last line follows from the assumptions that 7 # j and By ¢ has independent entries.
Now we can derive Eq. (S.4) as follows

E [(eeeg—l)M ‘ Bz,eq} =E [(ege%BZK_l)i’k ’ Bu,l} (S.11)
—F Z (eeeg)i,j (BZ£*1>J‘7]§ Bf,él] (812)
j=1
=2 E [<e€) (e0); (Bri ‘ By, 1] (S.13)
7j=1
E[ e(); (e0); (Bry1) ‘ By, 1} (S.14)
=0} (Bii1),, (S.15)

The last two lines follow from the fact that whenever i # j, the expectation is equal to zero.
Eq. (S.4) follows directly.

5 Performance of the 792 on FashionMNIST

In the main article, we examine how Oja’s rule improves learning in the Feedback Alignment
model (Fig. 7). In this section, we demonstrate the effectiveness of Oja’s rule on a different
dataset by using the FashionMNIST [5] to train a classifier model. Figure S4 illustrates that
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introducing the Oja’s rule (Eq. 10) substantially enhances learning across different datasets
when the model is trained with random feedback connections.
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Figure S4: Performance of benchmark learning schemes while training a 5—layer fully-connected clas-
sifier network on FashionMNIST dataset [5] for a 10-way classification task. The plot demonstrates accuracy
versus the number of training data for Feedback Alignment (FA) [1] and backprop (BP) [4] methods, compared
to F92 (Oja; Eq. 10).

6 Performance of alternative penalization methods

In Results, we proposed using L1 regularization on the meta-loss to decrease redundancy within
the update rules. As shown in Fig. 4d, this technique leads to a sparser set of meta-parameters
and acts as a model selection method, identifying the most effective plasticity rules.

In Fig. S5, we examine the impact of alternative regularization methods on the meta-
learning algorithm by comparing the performance of models with no regularization and L2
regularization. When using no regularization in the meta-learning, the algorithm eliminates
update terms negatively impacting the learning. However, another set of plasticity rules may
individually improve the results, but when these rules are considered in a set, other terms may
be more beneficial for the optimization process. Nevertheless, the model still includes them
in the final meta-optimized learning rule. As seen in Fig. Sha, the model has identified seven
plasticity terms, making it impractical to investigate each of these terms individually.

As an alternative, Fig. S5b shows the results of using L2 regularization

Lmeta(g) - 'C(fW(Xquery)7 Yquery) + /\HGHQ- (8-16)

Unlike L1 regularization, L2 tends to decrease all parameters but does not return sparse so-
lutions and is unsuitable for feature selection. In other words, even though L2 regularization
reduces the values of all parameters, it does not eliminate the redundant or less influential
plasticity terms with large meta-parameters from the final solution. Table S1 summarizes the
resulting meta-parameters using each meta-loss regularization approach.
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Figure S5: L1 improves feature selection in the meta-learning model: Performance of different pe-
nalization methods while training a 5—layer fully-connected classifier network on EMNIST digits [6]. Evolution
of meta-parameters ® = {6, }o<r<9 for the pool of learning rules defined in Methods using (a) no penalization,
(b) L2 penalized meta-loss (Eq. S.16).

Meta-parameter No regularization L1 L2
0o 0.915 x 1072 0.978 x 1072 0.867 x 1072
0, 0.343 x 1072 0.075 x 1072 —0.095 x 1072
0y —3.654 x 1072 —2.361 x 1072 —3.305 x 1072
03 0.000 x 10~2 0.000 x 1072 0.000 x 102
04 0.816 x 1072 0.087 x 1072 0.430 x 1072
05 0.081 x 1072 0.026 x 1072 0.054 x 1072
Os 0.887 x 1072 0.019 x 1072 0.188 x 1072
0, —0.031 x 1072 0.031 x 1072 —0.177 x 1072
O —0.459 x 1072 —0.064 x 1072 0.053 x 1072
Oy 0.313 x 1072 0.415 x 1072 0.417 x 1072

Table S1: Effect of regularization methods on feature selection in meta-learning the plasticity
rule: The resulting values of meta-parameters @ = {6, }o<,<g for the pool of learning rules defined in Methods
are displayed using no penalization (Eq. 6 with A = 0; Fig. Sha), L1 (Eq. 6; Fig. 4d), and L2 penalized meta-loss
(Eq. S.16; Fig. S5b). The values reported for L1 are averaged across 20 trials. All values are reported for the
final episode £ = 600.

7 Performance of alternative backward initialization

As mentioned in Methods, the Xavier initialization method was used to randomly sample
forward and backward connections from a uniform distribution

6 6
Biio, Ween ~U | =y = : A di i >
e ( \/dlm(}’e) + dim(ye41) \/dlm(yg) + dlm(y”l)) S

throughout the study, where dim(y,) is the dimension of the activation y,. Nevertheless, the
findings presented in this work do not depend on the initialization method of the backward
connections.




To illustrate this, we conducted an experiment where we employed the normal Xavier ini-
tialization method

2
By~ N <o, dim(ys) T dim (}’e+1)) (S.18)

to sample initial values for the backward connections. The forward connections were initialized
using a uniform distribution as before (Eq. S.17). Figure S6 shows that the proposed F" plas-
ticity rule can successfully train the model using different methods for initializing the backward
connections.
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Figure S6: FP© trains effectively under different initialization of the feedback: Accuracy of a 5-layer
classifier network trained on MNIST dataset [3] to perform a 10-way classification task using Feedback Alignment
(FA) [1] compared to the proposed FP plasticity rule (bio) outlined in Eq. 7. The backward connections were
initialized in both tests using the normal Xavier initialization method (Eq. S.18).

8 Inter-treatment variation

Throughout the paper, we examine the variations within each plasticity rule by calculating the
confidence intervals. To determine if the improvements in accuracy are statistically significant,
we use the Mann-Whitney U test to compare two sets of data: the accuracy of trials using
the FA method and the modified plasticity rule. Samples are taken at the end of each episode
and represent the accuracy of the model trained with different initial weights and feedback
connection values. We chose the Mann-Whitney U test over the t-test as it does not assume a
Gaussian distribution within the groups.

We begin by hypothesizing that the FA method trial samples show lower accuracy than that
of the modified plasticity rule. We utilize 20 samples from each group. The results, illustrated
in Fig. S7, indicate that the p-value falls below 5% within fewer than 100 episodes in every
example. Our findings indicate strong evidence against the null hypothesis, providing statistical
support for the performance gain using the proposed plasticity rules.
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Figure S7: The performance gain obtained with the modified plasticity rules is statistically
significant: The p-value of the one-sided Mann-Whitney test over 600 meta-optimization episodes, comparing
samples from trials using the FA method to those using (a) FeHebb (b) FOa () FP° and (d) FPo°! plasticity
rules.
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