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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The introduction is very clear, and it useful to understand a better update rule under random 

backwards update connections. This rule is obtained by meta-learning weights on existing update 

rules, with an l1 regularizer, to subselect amongst these rules. 

I have two key concerns, that I believe can be easily addressed. Following that I have a longer set of 

comments to hopefully help improve clarity in the work. 

The biggest omission here is a better connection to other work on learning update rules. They are not 

necessarily focused on biological plausibility (though some are), nor on improving random feedback 

alignment. But they are trying to understand alternative update rules. Examples include, among many 

others: 

“Learning to learn by gradient descent by gradient descent” Andrychowicz et al. 

“Meta-Learning Update Rules for Unsupervised Representation Learning”, Metz et al. 

It would be useful for this work to summarize the insights from this literature, particularly with respect 

to the problem setting considered in this work. 

Second, the paper states the following contribution: 

“In this study, we develop a novel meta-plasticity approach to discover interpretable, biologically 

plausible plasticity rules that improve online learning performance with fixed random feedback 

connections. The resulting plasticity rules show improved online training of deep models in the low 

data regime. Our results highlight the potential of meta-plasticity to discover effective, interpretable 

learning rules satisfying biological constraints. ” 

The implication is that learning a linear combination on a set of existing plasticity rules can help 

identify good, biologically plausible update rules. (Linearity is key for interpretability) But this is not 

explicitly stated up front, nor are the ramifications discussed. Does this mean that you believe a linear 

combination of existing rules will get us there? Or that we already have the single rule that works well, 

but have not had a way to find it across problems? And is one of the conclusions from this work that 

Oja’s rule plus random feedback connections is a pretty good plasticity rule? I think one of the critical 

contributions here is choosing to parameterize the update rule as this linear combination (rather than 

meta-plasticity, which has been previously investigated), so really focusing on this and explaining why 

it is critical would help clarify the key contribution here. For me, some of the insights in the work 

(about Hebbian learning and Oja’s rule) were more interesting that the meta-plasticity approach. Your 

simple approach helped get those insights, so of course is important. 

Otherwise, this paper is nice. Below is a list of hopefully constructive comments, expressed in order as 

reading the paper: 



I was a tad confused about some of the choices, until I got to Section 2.2.2. Once I understood that 

mathcalF (the update function) was parameterized as a linear combination of existing update rules, 

then the objective functon(including the l1 norm) was much more clear. I wonder if it is possible to 

propose this parameterized form earlier, and also constrast it with the less interpretable rule 

mentioned in the introduction, by Lindsey et al. How did they parameterize the function? 

And further, how does your approach compare to theirs? It is ok for it to perform worse, since you 

restrict your form more for interpretability. However, such a comparison would be illuminating. 

As a minor comment, you use the gradient of the loss plus the l1 regularizer. But, the l1 regularizer is 

not differentiable everywhere, and proximal updates can be better. Did you consider this? You could 

acknowledge that you have a subgradient, and also potentially reference work that says SGD for the 

l1 is reasonable effective (whereas when using GD, I have generally found proximal methods to help a 

lot). 

In Figure 4, the coefficients are negative for two of the terms used! That says that you do the opposite 

of those plasticity update rules (Oja’s rule and the Hebbian term). How can that be? Is it because 

those rules are usually added, and you are subtracting? If so, it would be useful to make them all the 

same sign (change the rules so they are all supposed to be usually added or subtracted) to improve 

interpretability. 

A minor naming convention. Somehow when I first read meta-plasticity, I assumed this would mean 

learning a rule that maintained plasticity. Instead, you are learning an update rule. NNs, though, are 

known to lose the ability to learn, and so meta-learning could be used to avoid this issue. 

Pg 10 “Despite this, the alignment angles of FeHebb (Fig. S2) are superior to Fbio’s, ”. The word 

superior is a bit confusing, since here performance is better for Fbio. Instead, I think you mean: are 

better aligned with the backprop direction. It is not clear (nor likely true) that backprop is the best 

direction. 

Figure 6 was a bit vague. I wonder if this could be augmented to help better understand the 

description in the text. I didn’t much follow it. Maybe adding the update equations there might help 

understand. 

Table 1 is confusing. What are the alpha_0, alpha_1 and alpha_2 for? Just for the Hebbian angles, or 

somehow a ratio between the angles for Hebbian versus random alignment? 

How did you pick the 9 possible plasticity rules? Are they all biologically plausible rules? 

The text states that addig Oja’s rule improves performance, but not alignment. But, it seems to me 

that alignment for Fbio and when just using Oja’s (plus the gradient term) is not *too* different. Is 

the implication that Fbio has aligned well, but Oja’s rule has not? 



Finally, you did a nice thorough analysis on this dataset. That is enough. But it would also be 

interesting to see if this behavior of Oja’s rule extends to other datasets, or if we see that other rules 

are much more effective there. This is not a criticism so much as: your work has intrigued me and I 

want to know more. 

Minor comments: 

1. Eq 6 should have L_meta(Theta), so it is clear that the objective function is for Theta. 

2. Figure 2 will also be more useful once you introduce the functional form for mathcalF earlier. This 

figure was not useful to me until I read 2.2.2. 

Reviewer #2 (Remarks to the Author): 

Shervani-Tabar and Rosenbaum explore possible learning rules with the aim to boost the performance 

of a feedforward network on a classification task that relies on random feedback alignment to back 

propagate errors through the network. The authors propose 10 mathematical terms and use a meta-

learning approach to show that three of the explored terms are sufficient to increase the accuracy of 

the network to similar levels as when it is trained with a backprop algorithm. 

The manuscript is well written and the results are interesting, shining a light on how the brain (with 

biological constraints) might implement algorithms that are similar to backprop. I appreciate the 

analysis of the individual plasticity terms that the authors find with their meta-learning approach. I 

also consider it relevant because it explores possible improvements to the random alignment 

algorithm. It is unclear to me, however, how pre- and post-synaptic errors would be encoded and 

transmitted to specific synapses so that the meta-learned rules are biologically plausible, as claimed 

by the authors. I have other specific points which I elaborate below on (major and minor points) which 

I think are important to be addressed by the authors. 

Major points 

1) It is unclear whether the rules discovered by the author's meta-learning approach are indeed 

biologically plausible. Apart from Oja's rule, which is solely composed of pre- and post-synaptic 

activities as well as the connection weight, the other two "bio" terms (referred to as "eHebb") use pre- 

and post-synaptic errors that are presumably computed by a backward pathway. It seems to me that 

this makes the rule nonlocal and the concept of biological plausibility may be lost. In this vein, it 

would be interesting to compare the author's model to biophysical implementation of backprop in 

Sacramento et al. (NeurIPS 2018). Could the authors elaborate how the learning rule found by their 

meta-learning approach could be implemented with biological constraints? 



2) The meta-learning algorithm (Algorithm 1) does not seem to be entirely novel as described by the 

authors in the abstract: "In this study, we develop a novel meta-plasticity approach to discover 

interpretable, biologically plausible plasticity rules.. " (see, e.g., Confraveux et al. 2020). In my view, 

what seems to be novel is the set of terms used in the search space of the meta-learning algorithm 

(Section 4.2). Could the authors elaborate on the precise novelty in the algorithm? 

3) The authors argue that imposing an L1 penalty on the plasticity coefficients encourages their 

algorithm to learn a plasticity rule with fewer terms. This is a valid point, however, it should be 

confirmed with, e.g., comparing it to using L2 (or maybe not using a penalty term if that's possible). 

Is it truly a key feature of the author's approach or would the results be similar with a different norm? 

I might be missing the point here because it sounds like a technical detail rather than a key feature. 

4) For the candidate learning terms (Section 4.2), all terms are of increasing complexity, yet "simple" 

multiplications of different variables apart from the last term, F9, which is Oja's rule. It is not clear to 

me why a standard Hebb term, y_l*y_{l-1}^T, as well as the Oja's penalty term, y_l*y_{l-

1}^T*W_{l-1,l}, were not used as independent candidate terms, which would make the meta-

learning search more independent/robust. Could the authors elaborate on why they have chosen to 

explicitly use Oja's rule? Additionally, what would happen if Oja's rule was separated into two terms, a 

purely Hebbian and the penalty term? 

5) The meta-learning algorithm finds 3 terms as relevant to solve the classification task chosen by the 

authors (as shown in fig. 4), however, one of these terms does not seem to be needed if I interpreted 

fig. 7 correctly. This raises the question of whether the outer (meta-learning) loop reached a global 

minimum after 500 episodes (fig. 4), given that the error is similar to backprop with (fig. 4) and 

without F2 (fig. 7). Could the authors please clarify whether this interpretation of fig. 7 makes sense? 

I would like to suggest running longer sims (with more episodes) to make sure that a minimum has 

been reached in the outer loop. 

Minor points 

6) The term "meta-plasticity" is usually used in neuroscience to refer to the "plasticity of synaptic 

plasticity" (see, e.g., Abraham and Bear, 1996), which differs in meaning to "meta-learning", usually 

used in machine learning for automatic algorithm learning (well explained by the authors in page 5, 

line 143). For example, "meta-plasticity" is used in page 2, line 68; page 3, line 78; page 3, line 83; 

and other places, where it means (as far as I understand) "meta-learning". 

7) Page 3, line 83: "We use meta-plasticity to learn a parameterized plasticity rule based on a 

combination of biologically motivated rules." It is not clear to me how these terms (outlined in section 

4.2) are biologically motivated (please see point 1). 

8) Page 3, line 86-91: The first two key features presented by the authors seem to have considerable 

overlap with Confavreux et al., 2020. If that's the case, I would like to suggest adding a citation there 

and clarifying this in the text. 



9) Page 3, line 92: It is not clear to me how relevant this feature is for the results found by the 

authors. Would the method not work using L2? (please see point 3). 

10) Page 3, line 95: Previous work on meta-learning plasticity rules (e.g., Confavreux et al., 2020; 

Lindsey and Litwin-Kumar, 2020) have always considered "online rules". Could the authors elaborate 

on which would be the other possible type of implementation apart from the online learning in their 

setting? Why is this a key feature of the authors' approach? 

11) Page 4: The authors explain well the backprop algorithm, but I find it confusing to have Eq. 4 

defining the matrix B as the transpose of W, given that B is also used for the random feedback 

alignment algorithm. The authors later in the page define superscripts "FA" and "BP" for error 

computed with random feedback alignment and backprop, respectively, but these superscripts are not 

used in, e.g., page 6, when they define the meta-learning algorithm. I would like to suggest to the 

authors to always use a superscript in both error and matrix B (starting in Eq. 3) to clearly state when 

they are referring to the transpose of W or a fixed matrix. 

12) Page 4, line 131: "Alternative approaches have proposed a direct feedback pathway… but we find 

that this also does not achieve backprop performance" Could the authors elaborate? I think the 

manuscript would be more clear with a longer explanation of these findings here. 

13) Page 5, fig 1a: How is the matrix B generated for FA? The "speed" by which it reaches high 

accuracy is always the same for different initialisations of B? 

14) Page 7, fig 2: In the schematics (middle of figure), it looks like the activation variables, y_i and 

y_j, are computed separately from the errors, e_i and e_j. The implementation in a simulation is 

straightforward, but the biological implementation is not (as intuitively seen in the schematics). Could 

the authors elaborate on how this type of plasticity would be implemented in a biological setting? I 

would like to suggest adding such an implementational hypothesis to this figure. 

15) Page 7, line 180: I would like to suggest explicitly describing panels a to c of figure 3 in the main 

text to help the readers. 

16) Page 9, (no line numbers on this page): I would like to suggest explicitly describing panels a to c 

of figure 4 in the main text to help the readers. 

17) Page 9, fig 4d: It's not clear from the figure whether the system (outer loop) reached a global 

minimum after 500 meta-learning iterations (episodes). Please see point 5. 

18) Page 15, line 295: "The proposed plasticity rules draw upon biological learning rules, including 

Hebbian plasticity and Oja's rule, …" To the best of my knowledge, Oja's rule is a type of Hebbian 

plasticity rule. I would like to suggest clarifying it in the Discussion section. 



19) Page 15, line 296: Continuing last point; "... to combine information locally from their immediate 

neighbors, …" It's not clear to me what the authors mean by "neighbors" in this sentence. The same 

term is used later in page 16, line 307, without being clear to me either what the term means. 

20) Page 16, line 306: "The first one uses a Hebbian-style learning term …" In the previous page the 

authors refer to it as "Hebbian plasticity" rather than "Hebbian-style learning". I find these terms a bit 

misleading because, as far as I know, Oja's rule is an implementation of Hebbian learning and it could 

be referred to as Hebbian-style learning, however, the authors state that a learning rule with error 

terms is Hebbian. I would like to suggest clarifying these statements. 

21) Page 16, line 335: "... interpretable learning rules satisfying biological constraints …" These 

constraints are not entirely clear to me. The next sentence states that "... we only considered 

plasticity in the forward connections…" However, this is, in my view, not a strong biological constraint, 

such as, e.g., plasticity being local. The manuscript's clarity would benefit from an introduction of what 

biological constraints are being imposed to arrive at the terms introduced in section 4.2. 

22) Page 16, line 374: "We focused on metal-learning biologically motivated plasticity rules, …" Similar 

to the point above, the manuscript's clarity would benefit from a more detailed explanation of how 

each term (or rule) follows a specific biological constraint. 

23) Page 26, line 529: The "big" parentheses to the right of "i,k" and "j,k'" should be moved to the 

right so that the sum over k and k' also takes into account the error terms. 

Reviewer #3 (Remarks to the Author): 

This paper is interesting, well-written, and makes a valuable contribution. I think it should be 

published once the issues I raise are addressed (either by explaining why they should not be 

addressed, or, more likely, by modifying the manuscript to address them). 

I only have one major concern. Throughout the paper in every result there is no discussion of 

between-run variation. To be scientifically sound, one should do the same experiment multiple times 

with different random factors (e.g. different initial weights) and then have plots that show intra- and 

inter-treatment variation. Was each treatment only run once? If so, how can we conclude what is 

noise vs. signal? Similarly, there should be statistics performed (and proper ones; meaning not 

assuming normally distributed data unless you first do the proper tests to confirm normality) to show 

whether the different treatments are statistically significantly different. I recommend redoing the 

experiments and plotting/reporting bootstrapped confidence intervals, doing statistical tests (e.g. 

Mann-Whitney tests), etc. 

More specific issues 



⁃ Lines 70-71. Do these papers not have controls that only optimize the initial weights, but without 

plasticity rules? If so, wouldn’t the performance gap between the two tell you the affect/benefit of the 

learned plasticity rules? 

⁃ 261-268: It is not clear in these lines how much of the phenomena you describe were known ahead 

of time (and, if so, which citations support them; there seems to be a lack of sufficient citations given 

the claims being summarized) vs. new claims/phenomena you are making (in which case supporting 

data/descriptions seems missing). I think most of these claims were previously known, meaning what 

is needed is clearer writing and more citations. On line 266, citation [26] is at an unconventional 

location in the sentence, making it difficult for me to figure out what claim that citation is supposed to 

support. 

⁃ Lines 277- 279: Confusing and seemingly contradictory. How is it both true that it is not appropriate 

to train the last layer this way, but that you did train it that way without any performance degradation 

(at least, I think that is what you are saying). Overall these lines are unclear. Can you explain more 

clearly what exactly you did?



Response to reviewers

We thank the reviewers and editor for their helpful comments that have improved the manuscript.
Below, we have included a response to each of the reviewers’ comments. Reviewer’s comments are
in bold text, our responses are in regular text, and text added to the manuscript is in red. Citation
numbers in this document refer to the bibliography at the end of this document, not the main text.

Reviewer 1

The introduction is very clear, and it useful to understand a better update rule under random
backwards update connections. This rule is obtained by meta-learning weights on existing up-
date rules, with an l1 regularizer, to subselect amongst these rules.

I have two key concerns, that I believe can be easily addressed. Following that I have a
longer set of comments to hopefully help improve clarity in the work.

Major

1. The biggest omission here is a better connection to other work on learning update rules.
They are not necessarily focused on biological plausibility (though some are), nor on im-
proving random feedback alignment. But they are trying to understand alternative up-
date rules. Examples include, among many others:

• “Learning to learn by gradient descent by gradient descent” Andrychowicz et al.
• “Meta-Learning Update Rules for Unsupervised Representation Learning”, Metz et

al.

It would be useful for this work to summarize the insights from this literature, particu-
larly with respect to the problem setting considered in this work.

We have modified the introduction to include a summary of the literature above (lines 77-79,
83-89). In addition, we have included the following related works (lines 90-95)

• “Meta-learning biologically plausible semi-supervised update rules” by Gu et al. [1]

• “Meta-learning bidirectional update rules.” by Sandler et al. [2]

More recent work includes Andrychowicz et al. [3], who parametrize the learning
rule with a Recurrent Neural Network (RNN) and meta-learn weights of the RNN
model. Using an RNN allows for training a dynamic update rule.

The scope of the meta-learning framework is beyond learning the forward path-
way’s plasticity rule. Meta-learning has given rise to unorthodox training models
beyond the classic backward transmission of errors. For example, Metz et al. [4]
used a meta-learning framework to learn a plasticity rule for unsupervised learning.
They proposed to infer the teaching signals by meta-learning a network that projects
forward activation units and the downstream feedback signal into backward hidden
states. These hidden states are subsequently used to update the forward and back-
ward weights via each pathway’s meta-learned plasticity rule. Another related work
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on semi-supervised learning [1] uses learnable auxiliary feedback and lateral con-
nections to facilitate error propagation during training and meta-learns the plasticity
rules to update these connections. Finally, Sandler et al. [2] reformulate the inter-
actions between the forward and backward activations by defining parameterized
update rules for both feedforward and feedback connections. Then, they yield new
plasticity rules by meta-learning these hyperparameters.

2. Second, the paper states the following contribution: “In this study, we develop a novel
meta-plasticity approach to discover interpretable, biologically plausible plasticity rules
that improve online learning performance with fixed random feedback connections. The
resulting plasticity rules show improved online training of deep models in the low data
regime. Our results highlight the potential of meta-plasticity to discover effective, inter-
pretable learning rules satisfying biological constraints. ” The implication is that learning
a linear combination on a set of existing plasticity rules can help identify good, biologi-
cally plausible update rules. (Linearity is key for interpretability) But this is not explicitly
stated up front, nor are the ramifications discussed. Does this mean that you believe a
linear combination of existing rules will get us there? Or that we already have the single
rule that works well, but have not had a way to find it across problems? And is one of the
conclusions from this work that Oja’s rule plus random feedback connections is a pretty
good plasticity rule? I think one of the critical contributions here is choosing to parame-
terize the update rule as this linear combination (rather than meta-plasticity, which has
been previously investigated), so really focusing on this and explaining why it is critical
would help clarify the key contribution here. For me, some of the insights in the work
(about Hebbian learning and Oja’s rule) were more interesting that the meta-plasticity
approach. Your simple approach helped get those insights, so of course is important.
The reviewer is correct that our utilization of a linear combination of plasticity rules is key
for the interpretability of our meta-learned rule. The combination of this linearity with an L1
penalized meta-loss and meta-parameter sharing allowed us to identify the dominating terms
among a pool of learning terms and further study them (as performed in Section 2.2.2 of this
work). While we mentioned out the L1 penalty and meta-parameter sharing in the text, we
did not mention the importance of using a linear combination of individual plasticity rules.
The reviewer also questions whether we believe that a linear combination of existing rules or a
single rule is ideal. Our study is mostly agnostic to these two alternatives since our approach
can meta-learn one or more rules. It should also be noted that many of the terms we included
in our pool of candidate rules are not established plasticity rules. And a linear combination of
plasticity rules is itself another plasticity rule (indeed, Oja’s rule is already a sum of two terms),
so the question of whether we aim to learn a single existing rule or a combination of existing
rules can become somewhat ambiguous. We added new text (lines 348-356) to the Discussion
to address these comments and explicitly point out the importance of writing the learning rule
as a linear combination of plasticity rules.

To assure interpretability of our meta-learned learning rule, we expressed the rule
as a linear combination of individual plasticity terms, imposed an L1 penalty on the
coefficients, and used meta-parameter sharing between all update rules. Many terms
in the pool of plasticity rules can be redundant and employ identical or overlapping
mechanisms but only differ in their efficiency, i.e., computational cost or the number
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of required learning iterations to operate. Employing an L1-penalized meta-loss
decreases the count of plasticity terms that work in parallel. Additionally, while
sharing the same meta-parameters across layers may limit the model’s freedom in
learning, it is a vital component for discovering a global learning rule, leaving the
door open to investigate the revealed terms.

We also emphasized the linear combination of plasticity rules when it is first introduced (lines
185-186).

Then, given a set of R candidate terms {Fr}0≤r≤R−1, a parametrized plasticity rule
is defined as a linear combination of individual plasticity terms.

The reviewer also asked whether a conclusion of our study is that Oja’s rule by itself is a good
learning rule. In the context of our study, this should be interpreted to mean that Oja’s rule
alone can help overcome slow learning introduced by random feedback connections. We do
think this is a conclusion of our study and we added the following sentence to point this out
more explicitly (lines 315-316).

These findings indicate that introducing Oja’s rule alone can help with the problem
of slow learning caused by random feedback connections.

We have realized that not only does Oja’s rule benefit the random feedback model, but it also
can be helpful to improve learning coupled with backprop. Therefore, it extends beyond the
Feedback Alignment model. In addressing an upcoming comment (Minor-11), we show that
this behavior of Oja’s rule also extends to the other datasets (See Supplementary material;
Fig. S4).

Otherwise, this paper is nice. Below is a list of hopefully constructive comments, expressed
in order as reading the paper:

Minor

1. I was a tad confused about some of the choices, until I got to Section 2.2.2. Once I under-
stood that mathcalF (the update function) was parameterized as a linear combination of
existing update rules, then the objective functon (including the l1 norm) was much more
clear. I wonder if it is possible to propose this parameterized form earlier

We thank the reviewer for pointing out the potentially confusing order in which terms were
defined. To resolve this, we moved the definition and description of the update function’s
parameterization (F(Θ)) earlier (in Section 2.2), prior to the definition of the meta-objective
function (lines 185-195).

2. Also, contrast it with the less interpretable rule mentioned in the introduction, by Lindsey
et al. How did they parameterize the function? And further, how does your approach
compare to theirs? It is ok for it to perform worse, since you restrict your form more for
interpretability. However, such a comparison would be illuminating.

The work by Lindsey et al. [5] is hard to interpret because it does not limit meta-learning to the
plasticity rule but also meta-learns initial weights and feedback connections.

3



Lindsey et al. proposed a two-step supervised Oja’s rule, where first, the activations are updated
using

y′
ℓ =

(
1− θ′ℓ

)
yℓ + θ′ℓeℓ,

where eℓ is the teaching signal propagated through directed feedback. Then, weights are up-
dated by

F = θ2 ⊙ (y′
ℓy

′T
ℓ−1 − (y′

ℓy
′T
ℓ )Wℓ−1,ℓ).

where θ′ℓ is associated with each layer, θ2’s elements are associated with each weight, and ⊙ is
the element-wise product.

However, the problem with the interpretability of this work arises from the following differ-
ences. In the work of Lindsey et al.:

• Different layers and weights use different plasticity parameters. Lack of parameter-
sharing prevents learning a general learning rule.

• Weight initializations are meta-learned. While we reinitialize the network weights to
random values at the beginning of each episode, their work uses weights that are meta-
learned in the previous episode as the initial weights. Learning the starting point in the
parameter space accelerates the learning speed.

• Feedbacks are meta-learned. While we use fixed randomly sampled feedback connections
at each episode, they use meta-learned feedback connections from the previous episode.
Meta-optimizing feedback connections lead to improvement in error transmission effi-
ciency.

These issues prevent studying the extent to which the learning rule has affected the improve-
ments in the learning, as opposed to optimizing the feedback connections and initial weights.
Also, it prevents generalizing the learned rule across layers. Further, it prevents generalizing
the learned rule to a lifetime, as the update rule adapts to the meta-learned feedback and initial
weights. We added a reference to Lindsey et al.’s work in Section 2.2 (line 180), where we
discuss these issues.

3. As a minor comment, you use the gradient of the loss plus the l1 regularizer. But, the l1
regularizer is not differentiable everywhere, and proximal updates can be better. Did you
consider this? You could acknowledge that you have a subgradient, and also potentially
reference work that says SGD for the l1 is reasonable effective (whereas when using GD,
I have generally found proximal methods to help a lot).

The reviewer is correct that the L1 penalty is not differentiable at zero. We used PyTorch auto-
matic differentiation tools, which defines the derivative of the absolute value function as zero at
this point. This convention fits the idea that L1 regularization does not penalize parameters with
zero value. Moreover, exact zeros do not frequently arise in practice when using floating point
arithmetic. The use of gradient-based learning with L1 norms is common in deep learning and,
as pointed out by the reviewer, tends to work reasonably well when using SGD. To account for
these comments, we added the following sentence with a reference to a textbook in which L1
regularization for deep learning is discussed (lines 498-502):

Furthermore, the L1 norm used in the meta-loss (Eq. 6), defined by the absolute
value function, is not continuously differentiable at every point. However, it is

4



commonly used in deep learning in conjunction with stochastic gradient descent
(SGD) [6]. In PyTorch and other deep learning frameworks, the derivative of the
absolute value function is typically defined as zero at zero.

4. In Figure 4, the coefficients are negative for two of the terms used! That says that you
do the opposite of those plasticity update rules (Oja’s rule and the Hebbian term). How
can that be? Is it because those rules are usually added, and you are subtracting? If so, it
would be useful to make them all the same sign (change the rules so they are all supposed
to be usually added or subtracted) to improve interpretability.

We thank the reviewer for pointing out this issue, which could make it more difficult to interpret
some Figures. Note that several of our plasticity terms are not previously studied rules so
they do not have an established sign convention. For rhose rules that have an established sign
convention, we modified the definition so that a positive coefficient reflects the more common
version of the rule (Eq. 7, Eq. 9, and Section 4.2). The signs of some curves in Figs. 4d, 7d,
and S2d are modified accordingly.

5. A minor naming convention. Somehow when I first read meta-plasticity, I assumed this
would mean learning a rule that maintained plasticity. Instead, you are learning an up-
date rule. NNs, though, are known to lose the ability to learn, and so meta-learning could
be used to avoid this issue.

The reviewer is correct that the term “meta-plasticity” might be confusing to readers. Following
the reviewer’s suggestion, we modified the text to replace the use of “meta-plasticity” with
“meta-learning” throughout the manuscript.

6. Pg 10 “Despite this, the alignment angles of FeHebb (Fig. S2) are superior to Fbio’s, ”.
The word superior is a bit confusing, since here performance is better for Fbio. Instead, I
think you mean: are better aligned with the backprop direction. It is not clear (nor likely
true) that backprop is the best direction.

Thank you for catching this inaccurate phrasing. We changed “superior” to “better aligned”
(lines 247-248).

7. Figure 6 was a bit vague. I wonder if this could be augmented to help better understand
the description in the text. I didn’t much follow it. Maybe adding the update equations
there might help understand.

To help clarify the interpretation of Fig. 6, we summarized the update equations in the caption.

Information flow between the forward and backward pathways: (a) Both lay-
ers are trained with the rule F(Θ) = θ0F0 via feedback alignment. In this case,
information from B2,1 is transmitted to W0,1 through F0 ( 1⃝) and then propagated
forward to W1,2 ( 2⃝). (b) The first layer is updated with the rule F(Θ) = θ0F0

via feedback alignment, while the second layer uses FeHebb(Θ) = θ0F0 + θ2F2.
Using F0, information from B2,1 is communicated to W1,2 ( 1⃝, 3⃝); meanwhile, the
presence of F2 sets up a new channel to directly communicate information from
B2,1 to W1,2 ( 2⃝). The blue arrows depict information propagation through the for-
ward and backward paths. The communications between feedback and feedforward
pathways are represented with red arrows.
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We also added and modified the text to support these changes and further explain the figure
(lines 262-265).

Note that the mechanism in F0 needs two learning iterations to transmit information
from B2,1 to W1,2; information from W0,1 propagates to W1,2 only after y1 is
computed with the updated W0,1. Meanwhile, F2 does this in the same iteration,
carrying out expedited learning.

Similarly, we modified the description for the diagrams shown in Fig. S3.

Interactions between feedback and forward pathways using FeHebb: (a) All
layers trained with the rule F(Θ) = θ0F0 via feedback alignment. Information
from B3,2 and B2,1 is transmitted to W0,1 through the F0 plasticity rule ( 1⃝),
which then passes on to W1,2 and W2,3 ( 3⃝). Meanwhile, information from B3,2

is transmitted to W1,2 ( 2⃝), which is then propagated to W2,3 after the forward
propagation. (b) W2,3 is updated using FeHebb(Θ) = θ0F0 + θ2F2, while W0,1

and W1,2 are trained with the rule F(Θ) = θ0F0 via feedback alignment. Plas-
ticity rule F0 transmits information from B2,1 and B3,2 to W0,1 ( 1⃝) and from
B3,2 to W1,2 ( 2⃝). This information is propagated to their downstream layers af-
ter the forward path ( 4⃝). Concurrently, an additional channel established by F2

explicitly propagates the information from B3,2 to W2,3 ( 3⃝). (c) W0,1 and W2,3

use the plasticity rule F(Θ) = θ0F0 via feedback alignment, and W1,2 utilizes
FeHebb(Θ) = θ0F0 + θ2F2. F0 communicates information from B2,1 and B3,2 to
W0,1 ( 1⃝), which then is propagated to the downstream layers ( 3⃝). Meanwhile, the
F0 rule in FeHebb disseminates information from B3,2 to W1,2, while F2 in FeHebb

establishes a direct route to transmit information from B2,1 to W1,2 ( 2⃝). The en-
suing forward propagation from W1,2 to the downstream layers continues as usual.
In all graphs, blue arrows represent the propagation of data through the forward
or backward path, while the red arrow represents the flow of information from the
backward pathway to the forward connections.

8. Table 1 is confusing. What are the α0, α1 and α2 for? Just for the Hebbian angles, or
somehow a ratio between the angles for Hebbian versus random alignment?

We thank the reviewer for catching the omission of these details. αℓ represents the alignment
angle between the teaching signal eℓ and the backprop direction. The subscript ℓ denotes the
layer index. We modified the caption for clarity (Table 1).

9. How did you pick the 9 possible plasticity rules? Are they all biologically plausible rules?

Since we did not restrict ourselves to previously studied plasticity rules, there was an unlimited
number of potential rules to choose from. Some of the rules were chosen because they match
previously studied rules (F0 is from backprop, F3 is weight decay, F9 is Oja’s rule). We also
included all quadratic combinations of errors and activations (F0-F2) except for pure Hebbian
plasticity (yℓy

T
ℓ−1) because it lead to unstable dynamics. We therefore replace pure Hebbian

plasticity with Oja’s rule, which adds a stabilizing term to pure Hebbian plasticity. We also
included some higher order terms to test their viability. The terms are biologically plausible in
the sense that they only combine activations, errors, and weights that are local to the modified
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synapse. In response to this comment and a comment from Reviewer 2, we added an in depth
discussion of the biological plausibility of our plasticity rules to the Discussion (lines 374-409)

While synaptic plasticity in the brain is mediated by a vast array of biophysical
processes, the changes to a single synaptic weight largely depend on the activity
of its pre-synaptic and post-synaptic neurons and the current weight, a property
known as “local” plasticity. For the plasticity rules used in our study (with the
exception of Oja’s rule), weight updates depend on activations from a forward pass
and error signals from a backward pass. Since these quantities were used to update
the forward projecting weights, this raises the question of whether the plasticity rules
are truly local. The answer to this question depends on the biological interpretation
of the forward and backward passes.

Under one interpretation, separate populations of neurons encode the forward
and backward passes, i.e., the neurons encoding eℓ are distinct from those encoding
yℓ. Under this interpretation, the plasticity rules used in this study are not strictly
local.

Under another interpretation, forward activations and backward errors are rep-
resented by the same neural populations, i.e., the same neurons encode eℓ and yℓ.
Under this interpretation, all of the plasticity rules used in this study are local. There
are several models for how this multiplexing of forward and backward signals could
be achieved (see [7] for a review). For example, activations and errors could be
represented at separate points in time by the same neurons.

Alternatively, recent work hypothesizes that activations and errors are encoded
separately in the basal and apical dendrites of the same cortical pyramidal neu-
rons [8]. Along similar lines, a growing body of work posits that activations and
errors are multiplexed by the distinction between bursts and single action potentials,
which are communicated separately by synaptic projections onto the soma versus
apical dendrites of pyramidal neurons [9, 10, 11]. The dependence of synaptic plas-
ticity on the morphological site of the synaptic contact and on the type of spiking
(bursts versus individual spikes) is well established in experiments [12, 13, 14, 15,
16]. Under these models, established biophysical properties of cortical synapses can
produce plasticity rules like ours that multiplex forward and backward propagating
information to update weights. Networks in [11] rely on weight decay to approxi-
mately align forward and backward weights [17], while some networks in [8] rely on
random feedback alignment. Hence, our meta-learned plasticity rules could improve
learning in those models.

Our meta-learning approach isolated three plasticity terms: a backprop-like rule
(F0), Oja’s rule [18] (F9), and a rule we refer to as eHebb (F2). Possible biological
implementations of Oja’s rule and the backprop-like rule have been studied in great
depth in previous work [8, 7, 19, 11]. The eHebb rule could be implemented in
a similar way to the backprop-like rule. For example, under the model in [11],
eHebb would change synaptic weights in response to the co-occurrence of pre- and
post-synaptic bursts. Plasticity is strongly mediated by firing rates and intracellular
calcium [20, 21], both of which are elevated during bursts.

In addition, to describe our choice of plasticity rules, we added the following text to the Meth-
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ods where the plasticity rules are introduced (lines 475-483):

The rules above are local in the sense that the updates to the j, kth entry of Wℓ−1,ℓ

depend only on the kth entry of eℓ−1 and yℓ−1, the jth entry of yℓ and eℓ, and the
j, kth entry of Wℓ−1,ℓ. This notion of locality assumes that errors and activations
are encoded in the same neurons (see Discussion). Even under this constraint of
locality, there is an unlimited number of possible plasticity rules to choose from. To
form the list above, we first considered all quadratic combinations of activations and
errors except we omitted pure Hebbian plasticity (yℓy

T
ℓ−1) because we found that it

leads to unstable network dynamics (a blowup of activations). Instead, we replaced
it with Oja’s rule F9, which adds a stabilizing term onto pure Hebbian plasticity.
Additional terms were added to test the viability of higher order plasticity terms.

10. The text states that addig Oja’s rule improves performance, but not alignment. But, it
seems to me that alignment for Fbio and when just using Oja’s (plus the gradient term) is
not *too* different. Is the implication that Fbio has aligned well, but Oja’s rule has not?

Figure 7c shows the alignment of the teaching signal of FOja with the backprop analog. Fig-
ure S2c shows the same plot for Fbio. While the alignment angles in FOja are, on average,
around 75◦ for all layers, using Fbio, this reduces to as low as 35◦ for the deeper layers. Thus,
in the deeper layers, the teaching signals of Fbio are substantially more aligned with the back-
propagated teaching signals. We modified the text to clarify this (lines 292-295):

In fact, alignment angles are only slightly smaller when using Oja’s rule compared
to using pure FA, as seen by comparing Fig. 7c to Fig. 3d. This contrasts with
alignment angles for FeHebb and Fbio, which are greatly reduced in deeper layers
compared to FOja (compare Fig. 7c to Figs. 5c and S2c).

11. Finally, you did a nice thorough analysis on this dataset. That is enough. But it would also
be interesting to see if this behavior of Oja’s rule extends to other datasets, or if we see
that other rules are much more effective there. This is not a criticism so much as: your
work has intrigued me and I want to know more.

We thank the reviewer for this excellent suggestion to test Oja’s rule under our learning frame-
work on another dataset. Oja’s rule is effective, at least in part, because of how it reduces
correlations within rows of the weight matrices. We expect this property to be independent of
the dataset and therefore expected to see benefits of Oja’s rule in other data sets. To test this
empirically, we evaluated the performance of the FOja in a 10-way classification on the Fash-
ioMNIST dataset and compared the results with Feedback Alignment and backprop methods
on the same dataset (lines 705-710). Results show substantial improvement in learning through
FOja in the presence of random feedback connections (Fig. S4).

Performance of the FOja on FashionMNIST

Section 2.2.2 examines how Oja’s rule improves learning in the Feedback Align-
ment model (Fig. 7). In this section, we demonstrate the effectiveness of Oja’s rule

8



on a different dataset by using the FashionMNIST [22] to train a classifier model.
Figure S4 illustrates that introducing the Oja’s rule (Eq. 9) substantially enhances
learning across different datasets when the model is trained with random feedback
connections.
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Figure S4: Performance of benchmark learning schemes while training a 5−layer fully-connected
classifier network on FashionMNIST dataset [22] for a 10-way classification task. The plot demon-
strates accuracy versus the number of training data for Feedback Alignment (FA) [23] and backprop
(BP) [24] methods, compared to FOja (Eq. 9).

Studying different learning rules in the a meta-learning framework requires a proper dataset (as
discussed in Section 4.3). Such a dataset should have

• Many classes to sample different tasks.

• Enough samples per class to simulate learning in a lifetime.

• Appropriate for the classifier network, i.e., a fully-connected network.

However, such datasets are lacking in the literature. Thus, exploring other datasets in the
present meta-learning framework is subject to the availability of appropriate datasets.

12. Eq 6 should have Lmeta(Θ), so it is clear that the objective function is for Θ.

We thank the reviewer for the suggestion. We modified the meta-objective function for clarifi-
cation (Eq. 6).

13. Figure 2 will also be more useful once you introduce the functional form for F earlier.
This figure was not useful to me until I read 2.2.2.

We thank the reviewer for this suggestion, which we addressed in response to the reviewer’s
earlier comment (Minor-1).
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Reviewer 2

Shervani-Tabar and Rosenbaum explore possible learning rules with the aim to boost the per-
formance of a feedforward network on a classification task that relies on random feedback
alignment to back propagate errors through the network. The authors propose 10 mathematical
terms and use a meta-learning approach to show that three of the explored terms are sufficient
to increase the accuracy of the network to similar levels as when it is trained with a backprop
algorithm.

The manuscript is well written and the results are interesting, shining a light on how the
brain (with biological constraints) might implement algorithms that are similar to backprop. I
appreciate the analysis of the individual plasticity terms that the authors find with their meta-
learning approach. I also consider it relevant because it explores possible improvements to
the random alignment algorithm. It is unclear to me, however, how pre- and post-synaptic
errors would be encoded and transmitted to specific synapses so that the meta-learned rules are
biologically plausible, as claimed by the authors. I have other specific points which I elaborate
below on (major and minor points) which I think are important to be addressed by the authors.

Major

1. It is unclear whether the rules discovered by the author’s meta-learning approach are
indeed biologically plausible. Apart from Oja’s rule, which is solely composed of pre-
and post-synaptic activities as well as the connection weight, the other two ”bio” terms
(referred to as ”eHebb”) use pre- and post-synaptic errors that are presumably computed
by a backward pathway. It seems to me that this makes the rule nonlocal and the concept
of biological plausibility may be lost. In this vein, it would be interesting to compare the
author’s model to biophysical implementation of backprop in Sacramento et al. (NeurIPS
2018). Could the authors elaborate how the learning rule found by their meta-learning
approach could be implemented with biological constraints?

We thank the reviewer for catching some implicit assumptions that were made by interpreting
our plasticity rules as local. Plasticity rules that involve backward projecting error terms are
only local under biological interpretations in which errors and activations are encoded by the
same neurons. They are not local if errors and activations are encoded by separate neural
populations. There is a rich literature on biological models and interpretations of forward and
backward passes. Many inter (including the one in Sacramento et al. [8]) use the same neurons
to encode forward and backward passes, and would therefore interpret our plasticity rules as
local. To better explain the “locality” and biological plaubsibility of our plasticity rules, and
to relate our work to Sacremento et al. and other studies, we added the following text to the
Discussion (lines 374-409):

While synaptic plasticity in the brain is mediated by a vast array of biophysical
processes, the changes to a single synaptic weight largely depend on the activity
of its pre-synaptic and post-synaptic neurons and the current weight, a property
known as “local” plasticity. For the plasticity rules used in our study (with the
exception of Oja’s rule), weight updates depend on activations from a forward pass
and error signals from a backward pass. Since these quantities were used to update
the forward projecting weights, this raises the question of whether the plasticity rules
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are truly local. The answer to this question depends on the biological interpretation
of the forward and backward passes.

Under one interpretation, separate populations of neurons encode the forward
and backward passes, i.e., the neurons encoding eℓ are distinct from those encoding
yℓ. Under this interpretation, the plasticity rules used in this study are not strictly
local.

Under another interpretation, forward activations and backward errors are rep-
resented by the same neural populations, i.e., the same neurons encode eℓ and yℓ.
Under this interpretation, all of the plasticity rules used in this study are local. There
are several models for how this multiplexing of forward and backward signals could
be achieved (see [7] for a review). For example, activations and errors could be
represented at separate points in time by the same neurons.

Alternatively, recent work hypothesizes that activations and errors are encoded
separately in the basal and apical dendrites of the same cortical pyramidal neu-
rons [8]. Along similar lines, a growing body of work posits that activations and
errors are multiplexed by the distinction between bursts and single action potentials,
which are communicated separately by synaptic projections onto the soma versus
apical dendrites of pyramidal neurons [9, 10, 11]. The dependence of synaptic plas-
ticity on the morphological site of the synaptic contact and on the type of spiking
(bursts versus individual spikes) is well established in experiments [12, 13, 14, 15,
16]. Under these models, established biophysical properties of cortical synapses can
produce plasticity rules like ours that multiplex forward and backward propagating
information to update weights. Networks in [11] rely on weight decay to approxi-
mately align forward and backward weights [17], while some networks in [8] rely on
random feedback alignment. Hence, our meta-learned plasticity rules could improve
learning in those models.

Our meta-learning approach isolated three plasticity terms: a backprop-like rule
(F0), Oja’s rule [18] (F9), and a rule we refer to as eHebb (F2). Possible biological
implementations of Oja’s rule and the backprop-like rule have been studied in great
depth in previous work [8, 7, 19, 11]. The eHebb rule could be implemented in
a similar way to the backprop-like rule. For example, under the model in [11],
eHebb would change synaptic weights in response to the co-occurrence of pre- and
post-synaptic bursts. Plasticity is strongly mediated by firing rates and intracellular
calcium [20, 21], both of which are elevated during bursts.

We also added the following text to the Methods section where the plasticity terms are given
(lines 475-478):

The rules above are local in the sense that the updates to the j, kth entry of Wℓ−1,ℓ

depend only on the kth entry of eℓ−1 and yℓ−1, the jth entry of yℓ and eℓ, and the
j, kth entry of Wℓ−1,ℓ. This notion of locality assumes that errors and activations
are encoded in the same neurons (see Discussion).

2. The meta-learning algorithm (Algorithm 1) does not seem to be entirely novel as described
by the authors in the abstract: ”In this study, we develop a novel meta-plasticity approach
to discover interpretable, biologically plausible plasticity rules.. ” (see, e.g., Confraveux
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et al. 2020). In my view, what seems to be novel is the set of terms used in the search space
of the meta-learning algorithm (Section 4.2). Could the authors elaborate on the precise
novelty in the algorithm?

As per the editor’s request and following the journal’s policy, we avoid the word “novel” in the
revised version of the manuscript.

Our method solves the weight alignment problem by incorporating meta-parameter sharing, L1
regularization of meta-parameters, online learning, and re-initialized weights. Ours is the first
study in which these features have been combined to address weight alignment. Moreover, our
analysis of the meta-learned plasticity rules, including Oja’s and Hebbian plasticity between
errors, demonstrates how they can overcome the weight alignment problem. These plasticity
rules were not previously known to overcome the weight alignment problem.

In contrast, Confraveux et al. [25] used meta-learning to recover plasticity rules that were al-
ready known to accomplish the task in question, e.g., finding principle components. Moreover,
Confraveux et al. did not consider error-based learning, which is the focus of this work. We
have revised the manuscript to state these points more clearly (lines 113-116).

Previous studies have employed different combinations of elements, such as meta-
parameter sharing (as used in [25]) and online learning (as used in [5]). In contrast
to previous studies, we integrate all these features to address the weight alignment
problem. Our analysis of the meta-learned plasticity rules demonstrates how they
overcome the weight alignment challenge.

3. The authors argue that imposing an L1 penalty on the plasticity coefficients encourages
their algorithm to learn a plasticity rule with fewer terms. This is a valid point, however,
it should be confirmed with, e.g., comparing it to using L2 (or maybe not using a penalty
term if that’s possible). Is it truly a key feature of the author’s approach or would the
results be similar with a different norm? I might be missing the point here because it
sounds like a technical detail rather than a key feature.

We thank the reviewer for this suggestion. In order to make a comparison, we have performed
experiments on meta-loss with L2 regularization as well as without regularization. The results
of these tests can be seen in Fig. S5. Additionally, we have included a section in the supple-
mentary material discussing these results, which can be found on lines 711-727.

Performance of alternative penalization methods

In Sec. 2.2, we proposed using L1 regularization on the meta-loss to decrease redun-
dancy within the update rules. As shown in Fig. 4d, this technique leads to a sparser
set of meta-parameters and acts as a model selection method, identifying the most
effective plasticity rules.

In Fig. S5, we examine the impact of alternative regularization methods on the
meta-learning algorithm by comparing the performance of models with no regular-
ization and L2 regularization. When using no regularization in the meta-learning,
the algorithm eliminates update terms negatively impacting the learning. However,
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another set of plasticity rules may individually improve the results, but when these
rules are considered in a set, other terms may be more beneficial for the optimiza-
tion process. Nevertheless, the model still includes them in the final meta-optimized
learning rule. As seen in Fig. S5a, the model has identified seven plasticity terms,
making it impractical to investigate each of these terms individually.

As an alternative, Fig. S5b shows the results of using L2 regularization

Lmeta(Θ) = L(fW (Xquery),Yquery) + λ∥Θ∥2. (1)

Unlike L1 regularization, L2 tends to decrease all parameters but does not return
sparse solutions and is unsuitable for feature selection. In other words, even though
L2 regularization reduces the values of all parameters, it does not eliminate the
redundant or less influential plasticity terms with large meta-parameters from the
final solution.
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Figure S5: L1 improves feature selection in the meta-learning model: Performance of different
penalization methods while training a 5−layer fully-connected classifier network on EMNIST dig-
its [26] with online learning. Evolution of meta-parameters for the pool of learning rules defined in
section 4.2 using (a) no penalization, (b) L2 penalized meta-loss (Eq. S.3).

4. For the candidate learning terms (Section 4.2), all terms are of increasing complexity, yet
”simple” multiplications of different variables apart from the last term, F9, which is Oja’s
rule. It is not clear to me why a standard Hebb term, yl ∗yTl−1, as well as the Oja’s penalty
term, yl ∗yTl−1 ∗Wl−1,l, were not used as independent candidate terms, which would make
the meta-learning search more independent/robust. Could the authors elaborate on why
they have chosen to explicitly use Oja’s rule? Additionally, what would happen if Oja’s
rule was separated into two terms, a purely Hebbian and the penalty term?
We thank the reviewer for catching that we overlooked the explanation for including Oja’s rule
as a single term instead of each sub-term independently. We found that the standard Hebbian
term leads to unstable network dynamics (a blowup of activations after several episodes) when
it is included as a term by itself, so we only included it within Oja’s rule. To explain this choice,
we added the following text to the Methods where the plasticity rules are listed (lines 481-483):

we omitted pure Hebbian plasticity (yℓy
T
ℓ−1) because we found that it leads to unsta-

ble network dynamics (a blowup of activations). Instead, we replaced it with Oja’s
rule F9, which adds a stabilizing term onto pure Hebbian plasticity.
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5. The meta-learning algorithm finds 3 terms as relevant to solve the classification task cho-
sen by the authors (as shown in fig. 4), however, one of these terms does not seem to
be needed if I interpreted fig. 7 correctly. This raises the question of whether the outer
(meta-learning) loop reached a global minimum after 500 episodes (fig. 4), given that the
error is similar to backprop with (fig. 4) and without F2 (fig. 7). Could the authors please
clarify whether this interpretation of fig. 7 makes sense? I would like to suggest running
longer sims (with more episodes) to make sure that a minimum has been reached in the
outer loop.

The reviewer expressed a concern about whether rule F2 (Hebbian plasticity on errors) is
needed to achieve the accuracy achieved by Oja’s rule (F9) and F0 alone. We would first
like to point out that including F2 does improve the accuracy obtained by Oja’s rule and F0.
This is most visible by comparing the performance with Oja’s rule and F0 (Fig. 7a) to the
performance with Oja’s, F0, and F2 combined (Supplementary Fig. S2a). In making this com-
parison, we observe an improvement of approximately 5 − 10% when F2 is included in the
plasticity rule. For the reviewer’s convenience, we have included a comparison of these two
plots below.
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Figure 1: Comparison between the accuracy of the classifier using the plasticity rules FOja(Θ) =
θ0F0 + θ9F9 (black) and Fbio(Θ) = θ0F0 + θ2F2 + θ9F9 (red).

We appreciate the reviewer’s suggestion to run longer meta-learning experiments. In response,
we now run all meta-learning tests for a total of 600 episodes.

Minor

1. The term ”meta-plasticity” is usually used in neuroscience to refer to the ”plasticity of
synaptic plasticity” (see, e.g., Abraham and Bear, 1996), which differs in meaning to
”meta-learning”, usually used in machine learning for automatic algorithm learning (well
explained by the authors in page 5, line 143). For example, ”meta-plasticity” is used in
page 2, line 68; page 3, line 78; page 3, line 83; and other places, where it means (as far as
I understand) ”meta-learning”.

We appreciate the reviewer bringing attention to the potential conflict in terminology. We have
replaced the term ”meta-plasticity” with ”meta-learning” throughout the manuscript.

2. Page 3, line 83: ”We use meta-plasticity to learn a parameterized plasticity rule based
on a combination of biologically motivated rules.” It is not clear to me how these terms
(outlined in section 4.2) are biologically motivated (please see point 1).
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We changed “biologically motivated rules” to “candidate rules” and we relegate the discussion
of the rules’ biological plausibility to the Discussion (see reply to Major-1 above) where it can
be addressed in sufficient detail.

3. Page 3, line 86-91: The first two key features presented by the authors seem to have
considerable overlap with Confavreux et al., 2020. If that’s the case, I would like to suggest
adding a citation there and clarifying this in the text.

We appreciate the reviewer’s suggestion. We have revised the text to cite Confavreux et al. [25]
and clarify their use of meta-parameter sharing. Regarding the re-initialization of weights, they
mention that they begin meta-training the network from randomly initialized weights. However,
it is not specified in their paper if the network weights are reinitialized to a random value after
each meta-iteration, so we did not mention whether they use this approach. But we did rephrase
our description of this approach to avoid claiming that it is novel in our work.

4. Page 3, line 92: It is not clear to me how relevant this feature is for the results found by
the authors. Would the method not work using L2? (please see point 3).

We appreciate the reviewer for bringing this point to our attention. We have addressed this
issue in response to a previous comment (Major 3).

5. Page 3, line 95: Previous work on meta-learning plasticity rules (e.g., Confavreux et al.,
2020; Lindsey and Litwin-Kumar, 2020) have always considered ”online rules”. Could
the authors elaborate on which would be the other possible type of implementation apart
from the online learning in their setting? Why is this a key feature of the authors’ ap-
proach?

We would first like to point out that the term “online learning” has various interpretations in the
machine learning literature. In our manuscript, we adopt the definition by Goodfellow et al. [6],
which refers to the training using a batch size of one for a single epoch. In the context of meta-
learning, this means updating the inner loop one data point at a time with K gradient descent
updates using a set of K samples from task Ti. Finally, the meta-loss is computed on the query
set of task Ti based on the Kth weight update. It is noteworthy that during each episode, only
one task is observed. This approach, sometimes called Online-aware Meta-Learning [27], helps
to avoid catastrophic interference.

The reviewer correctly notes that Lindsey et al. [5] use online learning in their model. We have
revised our text to acknowledge this (line 114). In contrast, Confavreux et al. [25] use batch
learning within their inner loop; i.e., for each task Tn, the model is updated for E epochs, each
with B gradient descent updates, where B is the number of batches per epoch. As stated in the
caption of Figure 1 in their paper, the networks were trained using a batch size of 200 for the
weight updates. Subsequently, the meta-loss is computed across multiple tasks. During each
episode, N networks are trained over N unique tasks Tn for E epochs, each with B batches
per epoch. Finally, the meta-loss is determined as the average loss of these N networks on the
query set of their task Tn.

In the present work, our goal is to improve the feedback alignment technique by refining the
learning rule, and online learning is particularly relevant in this setting. A challenge encoun-
tered by the feedback alignment technique and other asymmetric feedback methods is that
utilizing small batch sizes can lead to a decline in performance. Therefore, it is crucial for the
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plasticity rule obtained through meta-learning to effectively train the model while learning from
an online stream of data. To emphasize the pertinence of online learning for the weight align-
ment problem addressed in our study, we added a comment about this when we first introduced
our use of online learning (line 112).

6. Page 4: The authors explain well the backprop algorithm, but I find it confusing to have
Eq. 4 defining the matrix B as the transpose of W, given that B is also used for the random
feedback alignment algorithm. The authors later in the page define superscripts ”FA” and
”BP” for error computed with random feedback alignment and backprop, respectively,
but these superscripts are not used in, e.g., page 6, when they define the meta-learning
algorithm. I would like to suggest to the authors to always use a superscript in both error
and matrix B (starting in Eq. 3) to clearly state when they are referring to the transpose
of W or a fixed matrix.
We appreciate the reviewer’s feedback on the potential confusion regarding the feedback con-
nections in backprop. In response, we have updated the manuscript (lines 127-137) to clearly
distinguish B using superscripts FA and BP when strictly referring to each method. However,
in several instances, we are not strictly referring to either method. For example, Algorithm 1 is
used for both the Feedback Alignment and backprop methods, as shown in Fig. 3. Therefore,
we drop the superscript when we do not specifically refer to either case.

7. Page 4, line 131: ”Alternative approaches have proposed a direct feedback pathway. . .
but we find that this also does not achieve backprop performance” Could the authors
elaborate? I think the manuscript would be more clear with a longer explanation of these
findings here.
We appreciate the reviewer’s suggestion. We have revised the text to provide more information
about the Direct Feedback Alignment method and the performance of this model (lines 151-
156).

An alternative approach to using feedback connections that link consecutive layers is
to create direct backward pathways [28]. This change allows errors to be transmitted
directly from the output layer to the upstream layers. This modification leads to
improved performance compared to the feedback alignment method, speeding up
the learning process and improving accuracy. However, it still falls short of the
performance level of backpropagation (see Supplementary Fig. S1).

For further clarification, a comprehensive description of the DFA has been added to the Sup-
plementary Material (lines 649-661).

Figure 1 illustrates that the Feedback Alignment model [23] is less effective than
the backprop model when training deep networks with a continuous data stream.
To be more precise, the backprop model begins learning immediately at the start
of training, while the Feedback Alignment model takes around 2000 training data
points before it starts to learn. Additionally, the rate of learning for the Feedback
Alignment model is slower.

In an attempt to improve the Feedback Alignment model’s performance, the Di-
rect Feedback Alignment (DFA) method [28] proposed altering the backward con-
nections to directly transmit errors from the output layer yL to the upstream layers
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yℓ. The modulating signals in this modified model are calculated as

eℓ = BL,ℓeL ⊙ σ′(zℓ),

with
eL =

∂L
∂zL

.

In this formulation, BL,ℓ ∈ Rdim(yℓ)×dim(yL), where dim(yℓ) represents the di-
mensionality of the activation yℓ.

As shown in Fig. S1, incorporating direct feedback connections to the Feedback
Alignment method speeds up learning, and the model’s accuracy improves after
1000 training data points. However, even with this modification, the network’s per-
formance is still lower than that of the backprop model. Figure S1 further compares
the DFA model with the Feedback Alignment model trained with the Fbio plasticity
rule (Eq. 7) and shows that the improved plasticity rule outperforms the DFA model.

8. Page 5, fig 1a: How is the matrix B generated for FA? The ”speed” by which it reaches
high accuracy is always the same for different initialisations of B?

We randomly sampled forward and backward connections from a uniform distribution, utilizing
the Xavier initialization method. We have revised the text to clarify this (lines 465-468).

In the fixed feedback pathway problem, the weights and feedback connections are
initially set to random values that differ from each other. Both symmetric and fixed
feedback models utilize the Xavier method [29] to re-initialize forward and back-
ward connections at the start of each meta-learning episode.

To address the reviewer’s question, we have modified Fig. 1 to demonstrate the model per-
formance across different trials, each starting from a different initial value. Furthermore, we
assessed the model’s performance with different initialization methods, using the normal distri-
bution for backward connections and uniform distribution for forward connections (lines 728-
739). Our results, presented in Fig. S6, demonstrate the model’s capability to learn effectively
using the proposed plasticity rule under various initial values and initialization methods.

Performance of alternative backward initialization

As mentioned in Sec. 4.1, the Xavier initialization method was used to randomly
sample forward and backward connections from a uniform distribution

Bℓ+1,ℓ,Wℓ,ℓ+1 ∼ U

(
−

√
6

dim(yℓ) + dim(yℓ+1)
,

√
6

dim(yℓ) + dim(yℓ+1)

)

throughout the study, where dim(yℓ) is the dimension of the activation yℓ. Nev-
ertheless, the findings presented in this work do not depend on the initialization
method of the backward connections.
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To illustrate this, we conducted an experiment where we employed the normal
Xavier initialization method

Bℓ+1,ℓ ∼ N
(
0,

2

dim(yℓ) + dim(yℓ+1)

)
to sample initial values for the backward connections. The forward connections
were initialized using a uniform distribution as before (Eq. S.4). Figure S6 shows
that the proposed Fbio plasticity rule can successfully train the model using different
methods for initializing the backward connections.
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Figure S6: Fbio trains effectively under different initialization of the feedback: Accuracy of a 5-
layer classifier network trained on MNIST dataset [30] to perform a 10-way classification task using
Feedback Alignment (FA) [23] compared to the proposed Fbio plasticity rule (bio) outlined in Eq. 7.
The backward connections were initialized in both tests using the normal Xavier initialization method
(Eq. S.5).

9. Page 7, fig 2: In the schematics (middle of figure), it looks like the activation variables,
yi and yj , are computed separately from the errors, ei and ej . The implementation in a
simulation is straightforward, but the biological implementation is not (as intuitively seen
in the schematics). Could the authors elaborate on how this type of plasticity would be
implemented in a biological setting? I would like to suggest adding such an implementa-
tional hypothesis to this figure.
Thank you for catching this oversight in explaining the interpretation of our model. To clarify
this point, we added the following sentence to the caption in Fig. 2, which points to the Discus-
sion section where this issue is addressed in more detail (see response to Major-1 above):

Such terms are consistent with local plasticity if yi and ei are encoded by the same
neuron (see Discussion).

10. Page 7, line 180: I would like to suggest explicitly describing panels a to c of figure 3 in
the main text to help the readers.
We thank the reviewer for this suggestion. As suggested, we have modified the text to include
a description of panels a to c in Fig. 3 in the main text (lines 215-216).

Figures 3a - 3c compare the performance of the two plasticity rules over 600 episodes.
First, the reinitialized models fW are trained at each episode using an online stream
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of M × K = 250 data points. Then, the meta-accuracy and meta-loss are eval-
uated with the query data. Tracing the evolution of the plasticity coefficients in
Fig. 3c shows that the meta-learning model converges after ∼ 100 episodes. Af-
ter convergence, the model trained with feedback alignment is, on average, about
25% accurate in its predictions, whereas the model backpropagated via symmetric
feedbacks reaches an approximate accuracy of about 70% (Fig. 3a). In addition, the
backpropagated model reaches considerably lower loss values as shown in Fig. 3b.

11. Page 9, (no line numbers on this page): I would like to suggest explicitly describing panels
a to c of figure 4 in the main text to help the readers.
We appreciate the reviewer’s suggestion. Per the suggestion, we have revised the text to include
a description of panels a, b, and c of Fig. 4 in the main text (page 10).

As seen in Fig. 4a, the model’s accuracy initially resembles that of the FA model,
but as the meta-optimization continues, the accuracy improves, starting around 10
episodes. By about 300 meta-iterations, the accuracy approaches that of the BP
model. This trend is also echoed in Fig. 4b, where the loss initially follows that of
the FA learning model but then declines and eventually becomes similar to that of the
BP method. In Fig. 4c, it is demonstrated that the alignment angles of the teaching
signals with their BP counterparts are improved compared to the FA model, seen in
Fig. 3d.

12. Page 9, fig 4d: It’s not clear from the figure whether the system (outer loop) reached a
global minimum after 500 meta-learning iterations (episodes). Please see point 5.
We appreciate the reviewer’s suggestion. We have previously addressed this in our response to
the previous comment (Major 5).

13. Page 15, line 295: ”The proposed plasticity rules draw upon biological learning rules,
including Hebbian plasticity and Oja’s rule, . . . ” To the best of my knowledge, Oja’s rule
is a type of Hebbian plasticity rule. I would like to suggest clarifying it in the Discussion
section.
We thank the reviewer for this suggestion. We have revised the text to make the distinction
clear (lines 338-341).

Our work accelerates the learning process by enhancing the rules that govern neural
plasticity while transmitting teaching signals through fixed connections. Our pro-
posed rules for plasticity are based on biologically motivated learning principles,
like Oja’s rule, or have been inspired by them, such as the error-based Hebbian rule.

14. Page 15, line 296: Continuing last point; ”... to combine information locally from their
immediate neighbors, . . . ” It’s not clear to me what the authors mean by ”neighbors” in
this sentence. The same term is used later in page 16, line 307, without being clear to me
either what the term means.
We intended this language to express the locality of the plasticity rules, but we agree with the
reviewer that it was unclear. Given that the locality of our plasticity rules is also more nuanced
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(as discussed above), we removed all mentions of “neighbors” and leave the discussion of the
locality of the plasticity rules for the Discussion (see response to Major-1 above).

15. Page 16, line 306: ”The first one uses a Hebbian-style learning term . . . ” In the previous
page the authors refer to it as ”Hebbian plasticity” rather than ”Hebbian-style learning”.
I find these terms a bit misleading because, as far as I know, Oja’s rule is an implementa-
tion of Hebbian learning and it could be referred to as Hebbian-style learning, however,
the authors state that a learning rule with error terms is Hebbian. I would like to suggest
clarifying these statements.
We appreciate the reviewer’s suggestion. We have modified the text to make the distinction
clear and easy to understand for the reader (lines 358-361).

The first, an error-based Hebbian rule, combines the errors of pre- and postsynaptic
layers to update forward projecting weights. The second rule, known as Oja’s rule,
combines pre- and post-synaptic activations with the connection’s current state to
update weights.

16. Page 16, line 335: ”... interpretable learning rules satisfying biological constraints . . . ”
These constraints are not entirely clear to me. The next sentence states that ”... we only
considered plasticity in the forward connections. . . ” However, this is, in my view, not a
strong biological constraint, such as, e.g., plasticity being local. The manuscript’s clarity
would benefit from an introduction of what biological constraints are being imposed to
arrive at the terms introduced in section 4.2.
We thank the reviewer for catching the unclear wording in these sentences. In this paragraph,
we meant to point out that our approach could be applied to some different problems than the
one we studied. We rephrased the sentences in question as follows (lines 422-428):

We used meta-learning to find plasticity rules that can learn effectively under the
biologically relevant setting where forward and backward weights are not explicitly
aligned. But our meta-learning technique can be applied more broadly to iden-
tify plasticity rules that overcome other biological constraints in various contexts
and models. For instance, our study only focused on plasticity in forward connec-
tions; however, backward projections in the brain can also exhibit plasticity. Our
meta-learning approach can be extended to discover plasticity rules for backward
connections in such settings.

17. Page 16, line 374: ”We focused on metal-learning biologically motivated plasticity rules,
. . . ” Similar to the point above, the manuscript’s clarity would benefit from a more de-
tailed explanation of how each term (or rule) follows a specific biological constraint.
We changed “biologically motivated” to “biologically plausible” because it more precisely de-
scribes the pool of rules we used. An explanation for the biological plausibility of rules was
addressed in previous comments.

18. Page 26, line 529: The ”big” parentheses to the right of ”i,k” and ”j,k’” should be moved
to the right so that the sum over k and k’ also takes into account the error terms.
Thank you for catching this error, which we have corrected.
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Reviewer 3

This paper is interesting, well-written, and makes a valuable contribution. I think it should be
published once the issues I raise are addressed (either by explaining why they should not be
addressed, or, more likely, by modifying the manuscript to address them).

Major

1. I only have one major concern. Throughout the paper in every result there is no discussion
of between-run variation. To be scientifically sound, one should do the same experiment
multiple times with different random factors (e.g. different initial weights) and then have
plots that show intra- and inter-treatment variation. Was each treatment only run once?
If so, how can we conclude what is noise vs. signal? Similarly, there should be statis-
tics performed (and proper ones; meaning not assuming normally distributed data unless
you first do the proper tests to confirm normality) to show whether the different treat-
ments are statistically significantly different. I recommend redoing the experiments and
plotting/reporting bootstrapped confidence intervals, doing statistical tests (e.g. Mann-
Whitney tests), etc.
We thank the reviewer for this excellent suggestion. We have repeated all the tests in the
manuscript and represent figures with the mean and bootstrap confidence interval. In addition,
we have added details of this in the Methods section (lines 471-473).

All plots depict the mean outcome over 20 trials, each with different initial weights
and feedback matrices. The shaded region in the loss, accuracy, and meta-parameters
plots illustrates the 98% confidence interval, determined through bootstrapping with
500 samples.

To address the reviewer’s comment on intra-treatment variations, we have performed the Mann-
Whitney test on all the meta-optimization experiments to assess the statistical significance of
the accuracy improvements the modified plasticity rules achieved. The results of this analysis
(Fig. S7) and the related discussion have been included in the supplementary material (lines
740-752).

Inter-treatment variation

Throughout the paper, we examine the variations within each plasticity rule by cal-
culating the confidence intervals. To determine if the improvements in accuracy
are statistically significant, we use the Mann-Whitney U test to compare two sets
of data: the accuracy of trials using the FA method and the modified plasticity rule.
Samples are taken at the end of each episode and represent the accuracy of the model
trained with different initial weights and feedback connection values. We chose the
Mann-Whitney U test over the t-test as it does not assume a Gaussian distribution
within the groups.

We begin by hypothesizing that the FA method trial samples show lower ac-
curacy than that of the modified plasticity rule. We utilize 20 samples from each
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group. The results, illustrated in Fig. S7, indicate that the p-value falls below 5%
within fewer than 100 episodes in every example. Our findings indicate strong evi-
dence against the null hypothesis, providing statistical support for the performance
gain using the proposed plasticity rules.
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Figure S7: The performance gain obtained with the modified plasticity rules is statistically sig-
nificant: The p-value of the one-sided Mann-Whitney test over 600 meta-optimization episodes, com-
paring samples from trials using the FA method to those using (a) FeHebb, (b) FOja, (c) Fbio, and
(d) Fpool plasticity rules.

Minor

1. Lines 70-71. Do these papers not have controls that only optimize the initial weights, but
without plasticity rules? If so, wouldn’t the performance gap between the two tell you the
affect/benefit of the learned plasticity rules?

The reviewer references a study [5] in which the plasticity parameters, feedback connections,
and initial forward weights are meta-learned. However, they do not offer any mechanisms to
alter these settings. This lack of control makes it impossible to determine the individual impact
of each factor.

2. 261-268: It is not clear in these lines how much of the phenomena you describe were
known ahead of time (and, if so, which citations support them; there seems to be a lack
of sufficient citations given the claims being summarized) vs. new claims/phenomena you
are making (in which case supporting data/descriptions seems missing). I think most
of these claims were previously known, meaning what is needed is clearer writing and
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more citations. On line 266, citation [26] is at an unconventional location in the sentence,
making it difficult for me to figure out what claim that citation is supposed to support.

We thank the reviewer for highlighting a potential source of confusion. As a result, we have
made modifications to the text and citations to ensure clarity regarding references to prior works
(lines 296-307).

Inspecting Fig. 7 suggests that rather than helping to align the modulating signals,
Oja’s rule helps by entirely circumventing the backward path. Oja’s rule imple-
ments a Hebbian learning rule subjected to an orthonormality constraint on the
weights [18]. In Eq. 9, yℓ−1 and yℓ denote post-nonlinearity activations (as stated
in Eq. 2), resulting in the F9 plasticity rule to implement a non-linear version of
Oja’s rule. When trained iteratively, this non-linear variation implements a recursive
non-linear algorithm for Principal Component Analysis [31, 32]. Previous studies
on the convergence of Oja’s rule have shown that for a compression layer, where
dim(yℓ−1) > dim(yℓ), rows of the weight matrix (Wℓ−1,ℓ)1 , . . . , (Wℓ−1,ℓ)dim(yℓ)

will tend to a rotated basis in the dim(yℓ)−dimensional subspace spanned by the
principal directions of the input yℓ−1 [33].

We demonstrate that incorporating Oja’s rule into Feedback Alignment improves
feature map extraction in the forward path through unsupervised learning, despite
FOja not recursively applying pure Oja’s rule.

3. Lines 277- 279: Confusing and seemingly contradictory. How is it both true that it is not
appropriate to train the last layer this way, but that you did train it that way without any
performance degradation (at least, I think that is what you are saying). Overall these lines
are unclear. Can you explain more clearly what exactly you did?

We thank the reviewer for pointing out the unclear phrasing in the manuscript. The initial layers
in a classifier network serve as feature extractors, whereas the final layer acts as a predictor,
converting the feature representations from the prior layers into the target category for the input
data point. Enhancing orthonormality benefits the feature extraction capability of the early
layers. However, as the final layer is not a feature extractor, it is not expected to improve the
final layer’s performance. Nonetheless, our findings showed no adverse effects when applying
the rule to all layers; hence, we chose to use the same plasticity rule to update all layers for
consistency. We have modified the manuscript to clarify this remark (lines 317-323).

The architecture of a classifier network includes initial layers that act as feature ex-
tractors, creating hidden representations for the final layer. This last layer, dubbed
predictor, maps the hidden feature representations to the target class for the given
input image. To improve the classifier’s performance, a plasticity rule that en-
hances feature extraction in the earlier layers is beneficial. However, this rule has
no grounds to positively impact the predictor layer’s performance. Despite this, for
comprehensiveness, we also applied the plasticity rule FOja to the final layer and
found no detrimental effect on the model’s performance.
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REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have largely addressed all of my concerns. The paper is clearly written, the idea simple but 

very thoroughly explored with clear insights. The methodology is sound and the work is now much 

better placed with respect to the literature. 

Two minor comments: 

1. Testing no regularization and l2 was a good idea. However, these plots do not let me see the actual 

magnitudes of the coefficients. Could you also include the coefficients themselves at the end of learning, 

in a table, for no regularization, l1 and l2? 

2. A reviewer nicely suggested to show behavior across multiple trials. You added this: “All plots depict 

the mean outcome over 20 trials, each with different initial weights and feedback matrices. The shaded 

region in the loss, accuracy, and meta-parameters plots illustrates the 98% confidence interval, 

determined through bootstrapping with 500 samples” What are you bootstrapping, exactly? For 

bootstrap CIs, I would have expected bootstrapping over the 20 trials themselves. 

Reviewer #2 (Remarks to the Author): 

The authors have done an excellent job in their replies to my comments! I recommend the publication 

of the manuscript after consideration of a few minor points (mostly small details) described below. I 

would like to emphasise that most of them are suggestions to improve the clarity of the manuscript, i.e., 

for the authors to implement if they consider them to be useful (they don't impact my assessment of 

the manuscript). The order of the points below are according to the PDF, they do not reflect importance 

or relevance. 

1. x-labels of plots: In Figure 1 and some of the supplementary figures, the x-axis represents episodes of 

the inner loop (online learning), while in Figures 3, 4, 5, 6, 8 and some supplementary figures, the x-axis 

represents episodes of the outer loop (meta learning). I would like to suggest changing the labels of the 

x-axis of each plot from "Episodes" to different words/phrases when the x-axis reflects episodes of the 



inner or the outer loop of the algorithm (e.g., "online learning episodes" in one case and "meta learning 

episodes" in the other). 

2. Figure 1b: I would like to suggest adding a bit more details about alpha in the caption of this figure, 

something similar to the caption of Figure 3d. Additionally, some of the captions (including Figure 1) are 

very short, and it may be helpful to the reader if more information is included, even if it's the same 

information from other figure captions. I would like to suggest either repeating the definition of, e.g., 

alpha (and other relevant information), or referring to the caption where the explanation is more 

detailed, e.g., "similar to Figure Xa" or "defined in Figure Xa". 

3. Page 7, line 193: I appreciate the authors' effort to confirm that the L1 penalty term indeed selects a 

sparser set of terms in their algorithm compared to L2 or without a penalty term. Based on this 

confirmation, I would like to suggest to the authors to briefly mention this confirmation in this sentence 

(page 7, line 193) or to add a brief sentence after this one, pointing the reader to the supplementary 

material. 

4. Page 15, line 315: "These findings indicate that introducing Oja's rule alone can help with the problem 

of slow learning caused by random feedback connections." It might be worth including a reference to 

Figure S4 here. 

5. Page 15, line 324: "... F^{OJA} provides embeddings that facilitate more effective learning in the last 

layer." This sentence might be understood as being a bit contradictory with the new text added just 

above it. It's not entirely clear from this sentence if Oja's rule facilitates learning in the last layer because 

the last layer follows Oja's rule or because the initial layers follow Oja's rule. In other words, is Oja's rule 

important when acting in the last layer or it facilitates the learning in the last layer because it changed 

the activity (or representation) in previous (initial) layers? From the results (and the new added text) it is 

clear that it is the latter (Oja's rule is important in initial layers, not the last one). The main problem here 

might be my interpretation of the word "embeddings" and the term "learning in the last layer" in this 

sentence, so I would like to suggest rephrasing it, being more specific (with details). 

6. Page 30, Equation below line 700: There are two "right" parentheses ")" misplaced in the first line of 

the equation, not the second line. Latex code: $(\sum_k (B_{l+1,l})_{i,k})(e_{l+1})_k$ should be $(\sum_k 

(B_{l+1,l})_{i,k}(e_{l+1})_k)$. Same for the second term. This way all terms with index k are inside the 

parentheses where the sum over k is placed. 

Reviewer #3 (Remarks to the Author): 



The reviewers have addressed my concerns. The one minor request I have is that I think it is appropriate 

to report medians (not means) plus CIs since you are not making the assumption of normality. I 

recommend changing to medians (or consulting a statistician to make sure it is ok if you think it is 

appropriate to stick with means). 



Response to reviewers

We thank the reviewers and editor for their helpful comments that have improved the manuscript.
Below, we have included a response to each of the reviewers’ comments. Reviewer’s comments are
in bold text, our responses are in regular text, and text added to the manuscript is in red.

Reviewer 1

The authors have largely addressed all of my concerns. The paper is clearly written, the idea
simple but very thoroughly explored with clear insights. The methodology is sound and the
work is now much better placed with respect to the literature.

Two minor comments:

1. Testing no regularization and l2 was a good idea. However, these plots do not let me see the
actual magnitudes of the coefficients. Could you also include the coefficients themselves
at the end of learning, in a table, for no regularization, l1 and l2?

We thank the reviewer for this suggestion. We have modified the manuscript to include a table
reporting meta-parameter values after 600 episodes for two different regularization methods
(L1 and L2) and with no regularization.

2. A reviewer nicely suggested to show behavior across multiple trials. You added this:
“All plots depict the mean outcome over 20 trials, each with different initial weights and
feedback matrices. The shaded region in the loss, accuracy, and meta-parameters plots
illustrates the 98% confidence interval, determined through bootstrapping with 500 sam-
ples” What are you bootstrapping, exactly? For bootstrap CIs, I would have expected
bootstrapping over the 20 trials themselves.

We thank the reviewer for pointing out the potentially confusing phrasing in the manuscript.
The reviewer is correct that bootstrapping is performed over the trials. In the experiments, we
generated 500 bootstraped samples by sampling 20 observations with resample from the set of
20 trials. We modified the manuscript to clarify this:

The shaded region in the loss, accuracy, and meta-parameters plots illustrates the
98% confidence interval, determined through bootstrapping across trials with 500
bootstrapped samples.
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Reviewer 2

The authors have done an excellent job in their replies to my comments! I recommend the
publication of the manuscript after consideration of a few minor points (mostly small details)
described below. I would like to emphasise that most of them are suggestions to improve the
clarity of the manuscript, i.e., for the authors to implement if they consider them to be use-
ful (they don’t impact my assessment of the manuscript). The order of the points below are
according to the PDF, they do not reflect importance or relevance.

1. x-labels of plots: In Figure 1 and some of the supplementary figures, the x-axis repre-
sents episodes of the inner loop (online learning), while in Figures 3, 4, 5, 6, 8 and some
supplementary figures, the x-axis represents episodes of the outer loop (meta learning).
I would like to suggest changing the labels of the x-axis of each plot from ”Episodes” to
different words/phrases when the x-axis reflects episodes of the inner or the outer loop of
the algorithm (e.g., ”online learning episodes” in one case and ”meta learning episodes”
in the other).

We thank the reviewer for pointing out this error. We have changed the x-axis labels in online
experiment to ”No. training data”.

2. Figure 1b: I would like to suggest adding a bit more details about alpha in the caption
of this figure, something similar to the caption of Figure 3d. Additionally, some of the
captions (including Figure 1) are very short, and it may be helpful to the reader if more
information is included, even if it’s the same information from other figure captions. I
would like to suggest either repeating the definition of, e.g., alpha (and other relevant
information), or referring to the caption where the explanation is more detailed, e.g.,
”similar to Figure Xa” or ”defined in Figure Xa”.

We thank the reviewer for this excellent suggestion. We have modified the caption in Fig. 1
to include information on the alignment angle (α). We have further modified all figures in the
manuscript to include more details on the experiments and their results.

3. Page 7, line 193: I appreciate the authors’ effort to confirm that the L1 penalty term
indeed selects a sparser set of terms in their algorithm compared to L2 or without a
penalty term. Based on this confirmation, I would like to suggest to the authors to briefly
mention this confirmation in this sentence (page 7, line 193) or to add a brief sentence
after this one, pointing the reader to the supplementary material.

We thank the reviewer for the suggestion. Based on this suggestion, we have revised the text to
direct the reader to the supplementary notes.

4. Page 15, line 315: ”These findings indicate that introducing Oja’s rule alone can help with
the problem of slow learning caused by random feedback connections.” It might be worth
including a reference to Figure S4 here.

We thank the reviewer for the suggestion. Per reviewers suggestion, we have modified the text
to point the reader to the supplementary Fig. S4.

5. Page 15, line 324: ”... FOJA provides embeddings that facilitate more effective learning
in the last layer.” This sentence might be understood as being a bit contradictory with
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the new text added just above it. It’s not entirely clear from this sentence if Oja’s rule
facilitates learning in the last layer because the last layer follows Oja’s rule or because the
initial layers follow Oja’s rule. In other words, is Oja’s rule important when acting in the
last layer or it facilitates the learning in the last layer because it changed the activity (or
representation) in previous (initial) layers? From the results (and the new added text) it
is clear that it is the latter (Oja’s rule is important in initial layers, not the last one). The
main problem here might be my interpretation of the word ”embeddings” and the term
”learning in the last layer” in this sentence, so I would like to suggest rephrasing it, being
more specific (with details).

We agree that the sentence in question was confusing. The sentence was meant to summarize
the effects of Oja’s rule all together (not just its inclusion in the last layer, which is the topic of
that paragraph). And it was meant to convey that Oja’s rule applied in early layers improves
learning performance of the last layer. We moved the sentence to a separate paragraph and
rephrased it to be more specific:

In summary, rather than improving alignment, FOja applied to hidden layers pro-
vides embeddings that facilitate more effective learning.

6. Page 30, Equation below line 700: There are two ”right” parentheses ”)” misplaced in the
first line of the equation, not the second line. Latex code: (

∑
k(Bl+1,l)i,k)(el+1)k should

be (
∑

k(Bl+1,l)i,k(el+1)k). Same for the second term. This way all terms with index k are
inside the parentheses where the sum over k is placed.

Thank you for catching this error, which we have fixed.
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Reviewer 3

The reviewers have addressed my concerns.

1. The one minor request I have is that I think it is appropriate to report medians (not
means) plus CIs since you are not making the assumption of normality. I recommend
changing to medians (or consulting a statistician to make sure it is ok if you think it is
appropriate to stick with means).

We consulted with a Statistics colleague in our department. After going through our data with
us, the colleague concluded that the mean (instead of the median) is appropriate for presenting
our data. We also checked to make sure that plotting the medians in place of the means does
not substantially affect our results. In doing so, we found that plots of the medians were very
similar to plots of the means.
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