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1Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
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SUMMARY
Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to
several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic
reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6million
synapses. The model recreates the biological connectivity of these neurons, and simulations of the
model reproduce multiple experimental findings in different brain states. The model shows that inhibitory
rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find
that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations.
In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The
model is made openly available to provide a new tool for studying the function and dysfunction of the thala-
moreticular circuitry in various brain states.
INTRODUCTION

The thalamus and thalamic reticular nucleus (Rt) lie at the

heart of the thalamocortical (TC) system in the mammalian

brain.2 Thalamic relay cells send projections to the cortex

and form excitatory collaterals with thalamic reticular neurons.

These neurons then send inhibitory projections back to the

thalamus, creating the thalamoreticular circuit.3–5 This circuit

plays a key role in several brain functions, such as transmit-

ting sensory information to the cortex and regulating brain

states such as sleep and wakefulness. It has also been linked

to attentional processes and is responsible for the generation

of spindle oscillations during sleep.6–10 Changes in thalamic

neuron firing and connectivity have been associated with

abnormal brain rhythms, such as those seen in absence epi-

lepsy.11–15 Alterations in the incidence and density of spindle

oscillations during sleep have been observed in various disor-

ders, including schizophrenia,16–20 neurodevelopmental disor-
This is an open access article und
ders,21 attention-deficit/hyperactivity disorder (ADHD),22 and

Alzheimer’s disease.23

In this work, we follow and extend the reconstruction pipeline

presented in Markram et al.24 to develop and validate a digital

model of a thalamoreticular microcircuit of a portion of first-order

somatosensory (ventral posterolateral nucleus [VPL]) thalamus in

the adult mouse.

This study uses a computational model to examine the dy-

namics of the thalamoreticular circuit during wakefulness and

sleep-like states. The model is able to replicate multiple experi-

mental findings and provide new insights and predictions. In

wakefulness, the model shows that the thalamoreticular circuitry

can generate frequency-selective enhancement of thalamic re-

sponses. In sleep, the model reveals that the waxing and waning

of spindle oscillations is generated intrathalamically, and that

changes in cell excitability can alter spindle incidence and fre-

quencies. We provide the experimental data and computational

models as an open resource for further research.
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RESULTS

Reconstructing morpho-electrical models of thalamic
and reticular neurons
Morphological types

One-hundred and fifty-seven neuron morphologies were

collected from in vitro and in vivo labeling experiments in mice,

including data from the MouseLight Project at Janelia25 and in-

house experiments. The morphologies were classified into three

m-types: VPL_TC, VPL_IN, and Rt_RC (Figure 1A). VPL_TC rep-

resented all TC neurons in the VPL, VPL_IN represented all

thalamic interneurons (INs), and Rt_RC represented all neurons

in the Rt. A validated morphological diversification pipeline was

used to generate 92,970 unique morphologies that accounted

for individual variability (see STAR Methods).

Electrical types

Over 100 TC neurons, INs, and reticular neurons were character-

ized through patch-clamp recordings (see STAR Methods) in

mouse brain slices. TC neurons were classified as adapting

(cAD_ltb) and non-adapting (cNAD_ltb) e-types (Figure 1B) based

on their tonic firing responses, similar to those in rat TC cells.26 Rt

neurons also showed adapting and non-adapting responses. INs

were classified as a single-burst-accommodating (bAC) e-type.27

Morpho-electrical models

A multi-objective optimization pipeline was used to build electri-

cal models (e-models) for the e-types in Figure 1B, resulting in

five e-models (see STAR Methods). These e-models were com-

bined with 92,970 morphologies to generate 142,678 unique

morpho-electrical models, which were assessed with a battery

of tests to reject models with electrical features and firing

behavior that differed significantly from the experiments.

Reconstructing thalamoreticular microcircuit structure
We defined the thalamoreticular microcircuit and determined its

neuron numbers, composition, and positions (Figures 1C–1G).

The microcircuit spans parts of the Rt and VPL of the thalamus.

We chose the VPL nucleus because it receives information

from the hindlimb28 and is representative of a more generic

non-barreloid thalamus.

The extent of the Rt_RC dendrites informed the horizontal

dimension of the microcircuit (see STAR Methods), while the

height of the circuit comes from the anatomical parcellation in

the Allen Brain Atlas.29 The resulting volume is �0.22 mm4 with

a length of 323 mm and a height of 800 mm. Using semi-auto-
Figure 1. Single-cell reconstructions, neuron densities, and microcircu

(A) 3D reconstructions of three different thalamic and reticular cell types (m-types)

black.

(B) Electrical types (e-types) and the models that match them. From left to right: e

VPL_TC, and VPL_IN m-types. The two different firing modes of the cNAD_ltb an

(second row).

(C) Average number of neurons in the Rt and VPL regions of the thalamus. A slice

average number of neurons was calculated. The gray box shows a thalamic mic

(D) Dimensions of themicrocircuit (lateral and vertical). The lateral sizewas determin

the microcircuit. The vertical size was calculated from the Allen Reference Atlas. T

(E) The fraction of e-types for each m-type found in our single-cell recordings.

(F) Predicted number of neurons and their positions in the microcircuit (mean an

(G) The placement of cell morphologies in the microcircuit. Only 10% of the neuro

one example of an Rt_RC axon (red) innervating the VPL.
mated cell counting (see STAR Methods), we found an average

cell density of 68,750 ± 1,976 cells/mm3 in Rt and 57,467 ±

5,201 cells/mm3 in VPL. 100% of Rt neurons are inhibitory, while

0.5% of VPL neurons are inhibitory (mean ± std, n = 37 slices).

The resulting model microcircuit contains a total of �14,000

neurons (averaged over seven microcircuit instances) composed

of 4,909 ± 283 Rt_RCs, 8,952 ± 517 VPL_TCs, and 47 ± 2

VPL_INs. The Rt has 100% m-type Rt_RC neurons with 57%

cAD_ltb and 43% cNAD_ltb e-types. VPL has VPL_IN m-type

with bAC e-type, and VPL_TC m-type with 64% cAD_ltb and

36% cNAD_ltb e-types. Soma positions were determined using

a pseudorandomalgorithmand taking into accountmorphological

constraints.4,28–32

Reconstructing and validating synaptic connectivity
The connectivity between neurons in a microcircuit was estab-

lished using an adapted algorithm based on Markram et al.24

and Reimann et al.33 A linear relation between the dendritic sur-

face in the thalamus and bouton numbers on reticular axons34

was found, suggesting predictability of functional synapse loca-

tions.35 We used neuron morphologies and bouton densities

as constraints. Our experimental dataset showed that TCs had

0.102 ± 0.021 boutons/mm (n = 9 axons) and Rt neurons 0.124 ±

0.002 boutons/mm (n = 2 axons). Synaptic connections were es-

tablished by presynaptic axons and postsynaptic dendrites/

somata (Figure 2). INs largely established connections through

presynaptic dendrites, as observed in the visual thalamus.36,37

Medial lemniscal (ML) and corticothalamic (CT) synapses were

included using volumetric bouton densities as constraints (Fig-

ure 2D). Data on lemniscal synapses in the mouse VPM38 was

used and the relative proportions of CT to lemniscal synapses

onto TCs and the ratio of CT to TCs synapses in the Rt.39,40

The model resulted in 4.77 million intrathalamic synapses and

17,998 lemniscal and 40,905 corticothalamic synapses. We

compared the synapse convergence onto reticular neurons41

and the distribution of number of synapses per connection,36

and both gave results comparable with the experimental coun-

terpart (Figures 2E and 2F).

A detailed map of synaptic physiology in a thalamic
microcircuit
We modeled the physiology of synapses in the thalamic micro-

circuit using data from experiments and literature on short-

term plasticity, postsynaptic potential amplitudes, time constant
it features

from amouse. Axons are shown in blue, dendrites in red, and the cell bodies in

xamples of recordings (gray) and models (blue) that correspond to the Rt_RC,

d cAD_ltb e-types are shown: low-threshold bursting (first row) and tonic firing

was stained with anti-GABA (red), anti-NeuN (green), and DAPI (blue), and the

rocircuit.

ed by the smallest circle that captured the Rt_RCdendritic density in the center of

he excitatory/inhibitory ratios and m-type compositions are also shown.

d standard deviation of five microcircuits).

ns are shown (left) and axons are not shown for clarity. The right image shows
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of synaptic currents, and reversal potentials. We identified three

types of short-term plasticity—inhibitory depressing (I2), excit-

atory depressing (E2), and excitatory facilitating (E1)—and

used synapse models featuring stochastic transmission and

short-term plasticity.24,42 We constrained the parameters of

the Tsodyks-Markram model with available thalamic data (See

STAR Methods; Table S1; Figures 2G and 2H). The model pro-

vides a comprehensive map of synapse types with the main

external afferents (Figure 2H). The model was able to reproduce

the stochastic nature of synaptic release and in silico paired-

recording data, closely matching the experimental results

(Tables S2 and S3; Figures 2I–L).

Gap junction connectivity between reticular neurons is
predicted by dendrodendritic appositions
Rt neurons are connected through electrical synapses, contrib-

uting to synchronization in thalamic networks.43–46 Gap junction

(GJ)-coupled neurons are estimated to be 30%–50% of the total

population in Rt47 and play a role in synchronization and de-

synchronization balance in thalamic networks.11

In the model, we defined GJ locations by identifying dendrite-

soma appositions and found that assigning GJs to 30% of appo-

sitions matched experimental results (Figure 3A). The model

predicts that each neuron is directly coupled with 2–20 other

neurons at distances of 40–120 mm, with rare coupling at 300–

400 mm (Figure 3B), in line with experiment findings. Coupling

strength was validated with a GJ conductance of 0.2 nS,48 and

calculated coupling coefficients between simulated paired re-

cordings of 0.023 ± 0.008 (mean ± standard deviation, Figure 3C)

were within the variability of mouse Rt neurons.44 These results

indicate that many aspects of GJ connectivity, in particular its

distance dependence, can be predicted by the morphological

properties of Rt_RC dendrites.

Spontaneous and evoked activity during wakefulness
and sleep in the model thalamoreticular microcircuit
Spontaneous and evoked sensory activity (wakefulness-

like)

We first explored spontaneous and evoked activity in the result-

ing microcircuit in a simulated in vivo wakefulness-like condition

(Figure 4). In this condition, the model reproduces the distribu-
Figure 2. Reconstructing and validating intrathalamic and thalamic affe

(A and B) Neuron morphologies and bouton densities are used to constrain intra

appositions. High bouton densities (number of boutons per axonal length) charac

axon; black, soma) with putative synapse locations is shown on the left, and

experiment (n = 2 Rt_RC morphologies) on the right.

(B) Bouton densities from experiments are used to remove a fraction of axodend

(C) Resulting mono- and multi-synapse connections between neuron pairs are s

(D) Volumetric bouton densities (boutons/mm3) were used to add synapses from

(E) Comparison of synapses per connection in the model and from an electron mi

N = 47 VPL_IN in the model).

(F) Validation of synapse convergence onto Rt_RC neurons in the model with EM

(G) In vitro paired recordings (eight pulses at 40 Hz followed by recovery stimu

plasticity.

(H) Map of short-term plasticity types in the model (green, in-house experimentally

uncharacterized pathways).

(I) Validation of the coefficient of variation (c.v.) of first PSP amplitudes for five in

(J) Comparison of PSP amplitudes in the model for seven characterized pathway
tion of firing rates in first-order thalamic and Rt neurons

during quiet wakefulness, characterized by low firing rates

(<10 Hz).49–51 The simulation exhibits irregular firing activity in

all m-types, with higher firing rates in VPL_INs due to their lower

spiking threshold in the model (Figure 4B). Single-cell activities

are dominated by single tonic spikes (Figure 4B), consistent

with their predominance over low-threshold bursts in wakeful-

ness-like states.52

We then compared spontaneous activity with sensory-evoked

responses with brief activation of a subset of ML fibers, simu-

lating a whisker flick or a brief stimulation of the hindlimb.53 We

found increased population firing rates in VPL_TC neurons,

with a peak in firing in a short time window (5–10 ms) following

the stimulus (Figures 4A and 4B; Video S1). This activity is fol-

lowed by a period of silence in some cells, lasting 100–200 ms

(Figure 4B). Rt_RCs exhibit an increase in firing rate compared

with their spontaneous activity as a result of the excitation they

receive from VPL_TCs (Figure 4B). The increased activity in

Rt_RCs lasts for 50–100 ms after the stimulus and gradually de-

creases to baseline levels, resulting in a clear hyperpolarization

of VPL_TCs (Figure 4A). The longer activation of Rt_RCs is in

line with experimental findings and suggests an important role

of the Rt in limiting sensory responses and focusing them on

rapid perturbations.50

Simulating the activation of an increasing number of afferent

ML fibers revealed increased recruitment of reticular inhibition

(Figure S2A) and decreased response latency and variability

with increasing stimulus size, increasing synchronous responses

(Figure S2B). As expected, increased recruitment of inhibi-

tory cells results in increased hyperpolarization of the VPL

(Figures S2A and S2C).

At the topographical level (Figure S2D; Video S2), VPL cells

located at the center responded to the stimulus, while the activa-

tion in the Rt was broader, with a degree of VPL-mediated depo-

larization in the periphery of the Rt. This result suggests that

receptive fields in the Rt are larger than in the VPL, yet they pro-

vide topographically aligned inhibition to the thalamus in a focal

manner, as shown for visual reticular neurons.49,54 This result

demonstrates that Rt can contribute to precise responses in

the VPL not only by rapidly inhibiting directly responding neurons

but also by limiting the response in the surrounding area.
rent connectivity, short-term synaptic plasticity, and PSP amplitudes

thalamic connectivity. (A) Putative synapses are identified using axodendritic

terize the resulting connectivity. Exemplar Rt_RC neuron (red, dendrites; blue,

bouton density distribution for 1,000 Rt_RC morphologies in the model and

ritic appositions.

hown with black dots representing functional synapses.

medial lemniscal (ML) and corticothalamic (CT) afferents.

croscopy (EM) reconstruction of one IN in the mouse (Morgan and Lichtman36;

experiments in the rat (N = 2, Liu and Jones,41 N = 4,909 Rt_RCs in the model).

lus) constrain the parameters of the Tsodyks-Markram model of short-term

characterized pathways; green checked, literature-derived pathways; orange,

vitro-characterized pathways (see Table S2).

s in house or in the literature (see Table S3).
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Simulated sleep-like cortical up and down states initiate

spindle-like oscillations

Spindles often occur during cortical up states, when cortical

neurons are more active.55–57 To examine the model response

in such conditions, we simulated a transition from a wakeful-

ness-like to nonrapid eye movement (NREM)-like state. We

simulated the up and down states that characterize NREM by

periodically removing the firing background from the cortical af-

ferents for 500 ms and reactivating it for another 500 ms to the

same level as the one used for our standard in vivo wakeful-

ness-like condition (Figures 4C and 4D; Video S3).

During the up state, CT input drivesRt activity and initiates spin-

dle-like oscillations through post-inhibitory rebound in the VPL

(Figure 4C). Interestingly, during the down state, Rt_RCs become

highly hyperpolarized (<₋70 mV), while VPL_TCs are less affected

(Figure 4C). During the simulated cortical up state, Rt_RCs fire

robustly, predominantly low-threshold bursts, causing deep inhib-

itory postsynaptic potentials (IPSPs) in the VPL_TCs that, in turn,

often respond with post-inhibitory rebound bursts, the hallmark of

spindle-like activity in the thalamus (Figure 4D).

Thalamic responses to sensory input exhibit adaptation
and cortical enhancement
Numerous studies have shownadaptation to sensory stimuli in the

lemniscal pathway due to short-term depression of lemniscal

excitatory postsynaptic potentials (EPSPs).58–62 To explore this,

we set out to use themodel to recreate a recent study that showed

that depressed responses in the somatosensory thalamus can be

enhanced by cortical activation in anesthetized mice.63

Consistent with experimental findings, activating lemniscal fi-

bers, in the model, with trains of stimuli at 8 Hz results in high

response probability to the first stimuli, while subsequent

EPSPs exhibit decreased amplitudes (Figure 5A). The activation

of cortical afferents 200 ms before the sensory stimulus with

noisy input at a mean firing rate of 4 Hz increased the firing prob-

ability to all the other stimuli in the train, thus counterbalancing

the adaptation (Figure 5B), as seen in the original study.63

Cortical enhancement of sensory responses is

frequency dependent and frequency selective

The effects of the cortex on thalamic activity depend on the fre-

quency and pattern of cortical activation.64,65 In this study, when
Figure 3. Dendrodendritic overlap predicts Rt GJ connectivity

(A1) Potential connectivity based on dendrodendritic and somatic appositions be

including a sample of 500 Rt_RC neurons (gray dots), a target Rt_RC morphology

to the target (blue dots). The middle panel shows neuron divergence (number of p

andmodel), with each dot representing one target neuron. The right panel displays

neuron, for a sample of 1,000 Rt_RC neurons in the model).

(A2) Predicted GJs after removing dendrodendritic appositions to match average

neuron divergence in the model matches experimental findings, while the right pan

Note the different maximal values in A1 and A2.

(B) Validation of distance-dependent GJs connectivity. The right panel shows r

(n = 500 neurons in the model, n = 33 in the experiment), including mean and sta

(C) Validation of GJs functional properties. The left panel shows an example of in

current step, and its somatic potential, along with the somatic potential of all coup

neuron and the stimulated neuron is the coupling coefficient (CC). The right panel

with paired recordings from the literature, including mean and standard deviatio

(D) Resulting GJ connectivity, including an example of clusters of four Rt_RC neur

by a different color, with axons omitted for clarity. Green dots show the detailed

three and from other Rt_RC neurons not shown.
sensory stimuli of elevated frequencies (e.g., 10–20 Hz) were

presented, thalamic responses were highly depressed and the

probability of firing was greatly reduced (�0.1) (Figures 5C and

5D). When the mean firing rate of the cortex was increased, the

efficacy of corticothalamic (CT) inputs in counterbalancing sen-

sory adaptation also increased, as indicated by an increase in

the firing probability of thalamic cells (Figure 5D). The cortical

enhancement of sensory responses was found to be frequency

selective, with the greatest enhancement observed when sen-

sory stimuli were at a frequency of around 10 Hz. This was due

to the recruitment of Rt inhibition and the activation of intrinsic

subthreshold currents in thalamic cells (Figures 5E, S3F, and

S3G). At higher frequencies of sensory stimuli, the effects of

the cortex on thalamic activity were less pronounced due to

synaptic short-term depression and limited activation of the

low-threshold calcium current in thalamic cells (Figure 5E). The

selective enhancement of 10-Hz sensory stimuli wasmost prom-

inent when the mean CT firing rate was R10 Hz.

Spindle-like oscillations emerge through
thalamoreticular interactions
The model exhibited spindle-like activity during simulated

cortical up states. It is known that sleep spindles are generated

through interactions between cells in the Rt and thalamic

cells.10,66 Numerous studies have explored the mechanisms un-

derlying the generation of spindle-like oscillations.6,10,67–71 This

process involves the activation of Rt neurons, which hyperpolar-

ize TC cells via inhibitory connections between the two cell

types.66,72 This hyperpolarization primes TC cells for rebound

bursts, which perpetuate the spindle cycle through a "ping-

pong" interaction between Rt and TC cells.73 The model was

not specifically designed to replicate these known mechanisms,

but it was found to do so.

Activating the Rt increases thalamic bursting and

initiates spindle-like oscillations

A subset of cells in the Rt were briefly activated with a current

pulse (20 ms) to simulate optogenetic activation74 (Figure S4).

This caused brief (�250 ms) oscillatory responses in both Rt

and VPL cells (Figure S4A). The local field potential in the VPL

showed oscillations at �10 Hz (Figure S4B), which is consistent

with the spindle frequency range in vivo. Single-cell responses
tween Rt_RC dendrites. The left panel shows the microcircuit from the Rt side,

(2D projection, dendrites in red), and the location of Rt_RC neurons connected

ostsynaptic neurons) in the model and literature45 (N = 33 for both experiment

the distribution of potential connectivity divergence (number of appositions per

GJ divergence. The left panel is similar to A1. The middle panel shows that the

el shows that the resulting GJ divergence is reduced by an order of magnitude.

esults from in silico dye injections that reproduce dye-coupling experiments

ndard deviation.

silico paired recordings, where an Rt_RC is stimulated with a hyperpolarizing

led neurons, is recorded. The ratio of the voltage response between a coupled

compares CC values in the model (n = 50 pairs, each one represented by a dot)

n.

ons coupled by GJs and GJ locations. Each neuron morphology is represented

morphological location of GJs received by each of the neurons from the other

Cell Reports 42, 112200, March 28, 2023 7
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Figure 4. Wakefulness and sleep-like activity in the simulated thalamoreticular microcircuit

(A) Population voltage raster displays the membrane potential of a sample of 50 active neurons per m-type (group of neurons) in response to brief activation of

160 ML fibers. The activity is sorted by microcircuit depth and shows increased responses in both Rt and VPL and visible hyperpolarization in the VPL after the

stimulus.

(B) Spike rasters and firing rate histograms of uncorrelated spiking activity in all m-types. VPL_IN neurons have higher firing rates. Rt_RCs show increased activity

for a longer time after the stimulus compared with VPL neurons.

(C) The network is simulated in wakefulness-like conditions for the first 1,000 ms. Then, background activity from CT afferents is removed for 500 ms to

approximate a cortical down state, followed by a 500-ms re-activation to simulate an up state. A sample of 25 neurons per eachm-type is shown and color coded

according to its membrane potential. The down state results in marked hyperpolarization in the Rt while spindle-like oscillations emerge during the up state.

(D) Sample of single-cell recordings from the neurons shown in (C). There is a change in firing mode during the NREM-like phase, where Rt_RC and VPL_TC fire

mainly low-threshold bursts. Spikes are truncated at �25 mV.
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also showed increased bursting in both Rt and VPL cells (Fig-

ure S4D). This synchronized burst firing in Rt cells was found

to be a potent trigger of spindle oscillations (Figures S4D–

S4G). These results confirm the important role of intrinsic

neuronal mechanisms in the generation of spindle-like oscilla-

tions6,75–79 and validate that optogenetic-like activation of the

Rt in the model can trigger them, as shown by Halassa et al.74

Spindle-like oscillations are maintained by ping-pong

interactions between the Rt and thalamus

To investigate the mechanisms of spindle-like oscillations, the

network of thalamoreticular cells was simulated in a silent, hy-

perpolarized state (only receiving spontaneous synaptic

release). When a group of neighboring Rt_RCs was activated

(20-ms pulse; see Video S4), the duration of the resulting ping-

pong interactions between VPL_TCs and Rt_RCs that mediate

the spindle oscillation was influenced by the synaptic release

probability (Prel) (Figure 6A). Short-term synaptic depression,
8 Cell Reports 42, 112200, March 28, 2023
controlled by the recovery time constant (tRecDep), also affected

the duration of the oscillations (Figure 6B). The frequency of the

oscillations (�5–6 Hz; see Figure 6C) was similar to the barrages

of IPSPs recorded in spindle waves in ferrets in vitro.6 The study

found that synaptic mechanisms, including Prel and short-term

synaptic depression, play a role in the duration of spindle-like

oscillations, which was not previously known.

GJs increase the duration of spindle-like oscillations by

propagating low-threshold bursts across the reticular

network

GJs between reticular neurons contribute to the duration of spin-

dle-like oscillations by synchronizing activity and transmitting

low-threshold bursts, as shown in previous studies.8,11,44,46

Our results show direct evidence of GJs’ effect, as removal of

GJs prevented spindle-like oscillations from occurring. Compar-

ison of spiking activity and spatiotemporal patterns in the Rt and

VPL revealed increased spiking and longer-lasting excitation in
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the Rt and higher inhibition in the VPL with the presence of GJs

(Figures 6D–6I). GJs transmitted slow signals efficiently, with

decreased amplitude in peripheral cells (Figure 6H; see Video

S5 for comparison of spatiotemporal activity).

The termination of spindle-like oscillations is

determined by short-term depression and buildup of

intra-reticular inhibition

Several intrathalamic mechanisms have been identified as

contributing to the termination of spindle activity. These include

the Ca2+-dependent upregulation of Ih current in thalamic

cells,68,80 hyperpolarization of reticular neurons, with the activa-

tion of Na+- and Ca++-dependent K+ currents.81 External inputs,

such as desynchronized cortical activity and noradrenergic input

from the locus coeruleus, have also been hypothesized to play a

role in spindle termination.82,83

The model revealed additional cellular and synaptic mecha-

nisms responsible for spindle-like oscillation termination, not

previously investigated. Intrathalamic connections are governed

by depressing synapses (Figure 2), which leads to decreased ef-

ficacy betweenRt and VPL neurons. By scaling the time constant

of recovery from short-term synaptic depression, it was found

that reducing it to 85% of the control value in Rt_RC to

VPL_TC connections caused the oscillation to not terminate (Fig-

ure 6B). Short-term depression in the VPL_TC to Rt_TC pathway

had limited effect on termination and could even be removed if

present in Rt_RCs to VPL_TCs. Rt_RC bursting activity is impor-

tant for spindle-like oscillation initiation and duration, but these

cells inhibit each other through GABAergic synapses. Inhibitory

Rt-Rt synapses were studied and found to be crucial, as

reducing their conductance led to non-terminating oscillations

(Figure 6C) with an increase in Rt_RC cells participating in

each cycle.

Waxing and waning of spindle-like oscillations emerges

due to intrinsic cellular and synaptic mechanisms

Waxing and waning are defining characteristics of spontaneous

sleep spindles recorded at the cortical level in the electroen-

cephalogram (EEG), local field potential, and in thalamic record-

ings.6 Despite this characteristic pattern of activity, the mecha-

nisms underlying the spindle-shaped oscillation have not been

clear.84 It has been thought that TC and corticothalamic interac-

tions were responsible for waxing and waning.83,85–87

In the model, we found that the waxing and waning of spindles

can be generated within the thalamoreticular microcircuit alone

(Figure 6L). Specifically, the waxing of a spindle oscillation is
Figure 5. Frequency-dependent sensory adaptation and cortical modu

(A) Left: example of a VPL_TC cell response to a train of eight sensory stimuli del

demonstrating adaptation. Right: comparison of the firing probability of VPL_TC c

(blue). The blue line represents an increase in firing probability with cortical activa

with the vertical line showing the standard deviation.

(B) The adaptation in the VPL to sensory responses increases with increasing fre

(C) Comparison of population voltage rasters in the control condition andwith cort

conditions, with visible hyperpolarization in the VPL.

(D) Left: the effect of different mean firing rates of cortical input on response proba

cortical input in counterbalancing sensory adaptation for different sensory freque

(E) A schematic explaining why cortical enhancement is greater for sensory stimu

stimuli around 10 Hz are timed with post-inhibitory rebounds and activation of lo

with cortical activation. For higher stimulus frequencies, EPSPs decrease in ampl

reach the firing threshold and counterbalance the adaptation.
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created by the rhythmic recruitment of neurons, first in the Rt,

and second through the ping-pong interactionwith the thalamus:

each ping from the Rt successively recruits additional neurons

and generate a stronger pong, via low-threshold bursts in

VPL_TC cells. GJs augment this process through their ability to

rapidly recruit Rt neurons. The waning of the spindle-like oscilla-

tion is a result of the progressive reduction in the probability of

synaptic release (due to short-term synaptic depression), the

subsequent decrease in postsynaptic potential (PSP) ampli-

tudes, and the consequential reduction in recruitment of neuron

firing during the ping-pong interaction between Rt and VPL

neurons. At the same time, mutual inhibition between Rt_RCs

progressively builds up, as additional Rt_RCs are recruited,

and prevents the spread of the activity, acting as a self-limiting

mechanism.

Depolarizing the Rt decreases spindle-like oscillation

duration

Spindle oscillations in naturally sleeping (i.e., non-anesthetized)

rodents are more easily evoked when thalamic activity is mildly

synchronized and thalamic neurons are less active.74,88 Their

features, such as frequency and duration, evolve during NREM

episodes.88,89 In the model, we show that spindle duration can

vary as a result of the membrane potential in the thalamus and

the Rt.

We studied how membrane potential levels in Rt and VPL

affect spindle-like oscillation duration, frequency, and peak firing

(Figure 7). This was done by injecting noisy current into Rt_RCs

and VPL_TCs to approximate the influence of neuromodulators

on thalamic and reticular activity. A range of depolarization levels

was explored, from hyperpolarized to near firing threshold.

Stimulating a subset of Rt_RCs with a 20-ms current pulse re-

sulted in different spiking responses based on the depolarization

level. When Rt_RCs were depolarized, spindle-like oscillation

duration decreased (Figure 7A) and the number of spikes per

burst decreased (Figure 7B), leading to reduced inhibition to

VPL and decreased VPL_TC firing. As small as a 2- to 3-mV in-

crease in membrane potential was sufficient to observe this ef-

fect. The waxing and waning in firing responses also tended to

become predominantly waning when the Rt was depolarized

(Figure 7A).

Depolarizing the thalamus increases spindle-like

oscillation duration and frequency

When the membrane potential in the Rt is held constant (around

₋76 mV) and the VPL is depolarized, the oscillation increases in
lation of sensory responses in wakefulness

ivered at 8 Hz (green). The cell only responded to the first stimulus in the train,

ells in response to the sensory stimulus alone (red) and with cortical activation

tion. The markers indicate the mean probability in response to each stimulus,

quency of the sensory stimulus.

ical activation. The Rt responds to the first two or three stimuli in the train in both

bilities for sensory stimuli at 10 and 20 Hz. Right: a map showing the efficacy of

ncies and cortical mean firing rates.

li at around 10 Hz compared with higher frequencies (around 20 Hz). Sensory

w-threshold calcium and produce larger EPSPs that can reach firing threshold

itude due to synaptic depression, and cortical inputs are no longer sufficient to



A

D

F

H

L

I

G

E

B C

(legend on next page)

Cell Reports 42, 112200, March 28, 2023 11

Resource
ll

OPEN ACCESS



Resource
ll

OPEN ACCESS
duration and frequency (Figure 7C). VPL depolarization results in

deeper and faster IPSPs (Figure 7D). Deeper IPSPs result in

stronger post-inhibitory rebound responses in VPL_TCs, which

in turn excite more Rt_RCs causing a longer period of ping-

pong interactions between the two populations, increasing the

oscillation duration. Faster repolarization after the IPSPs is asso-

ciated with post-inhibitory rebound responses occurring at

shorter intervals, driving the ping-pong of activity at higher

frequencies.

Differential depolarization of the Rt and thalamus

modulates spindle properties

For each combination of membrane potentials in Rt_RCs and

VPL_TCs, we calculated oscillation duration, frequency, and

peak firing (Figures 7E–7G). The oscillation duration map shows

that clear spindle-like oscillations (duration R 500 ms) can only

be evoked in a region where Rt_RC membrane potentials are

below ₋75 mV and VPL_TCs are more depolarized than

Rt_RCs. If we assume that VPL_TCs neurons are in general

more depolarized during wakefulness than during sleep, and

that Rt_RC neurons are more hyperpolarized, this result

suggests that spindle-like oscillations are easier to evoke at

the transition between wakefulness-like and sleep-like states,

consistent with experimental observations.8,90,91 When both

VPL_TCs and Rt_RCs are at their baseline membrane potential,

the frequency decreases to 5–6 Hz.

Simulating the effects of neuromodulation on thalamic

and reticular neurons causes spindle-like oscillations to

cease

Sleep spindles are a defining characteristic of stage 2 NREM

sleep, and appear less frequently in deeper stages of NREM

sleep.8,90,91 The change in the incidence of spindles are due,

at least in part, to neuromodulatory changes.92–94 Our previous

simulations, in the in vitro-like condition, showed that membrane

potentials have a strong effect on oscillation duration and fre-

quency (Figure S5). They also indicated that, when the VPL is hy-

perpolarized and the Rt is depolarized, spindles are less easy to

evoke. We hypothesized that such differential polarization levels

of the Rt and VPLwould resemble the transition to deeper stages

of NREM sleep and result in decreased incidence of spindles.

We tested this hypothesis with the model in the in vivo-like con-

dition using simulated cortical up and down states (as in Figure 4).

We then progressively depolarized the Rt and hyperpolarized the

VPL, approximating the differential effect of neuromodulators on

thalamic and reticular populations.95–97 These simulated neuro-
Figure 6. Spindle-like oscillations arise from intrinsic cellular and synap

threshold spikes in reticular cells

(A and B) In this figure, the circuit is in an in vitro-like environment, leading to h

thousand Rt_RC cells are stimulated with a 20-ms current pulse. The parameter m

VPL_TC cells on oscillation strength. In (B), the map shows the effect of short-te

(C) The inhibitory connections between Rt_RC cells play a role in termination.

(D) The spindle-like oscillation in control conditions (left) and with GJs removed (

(E) The topographical activity maps at 10 and 40 ms after the stimulus.

(F) The membrane potential along the lateral extent of the microcircuit.

(G) The same for VPL_TC cells.

(H) Single-cell recordings of Rt_RC.

(I) The same for VPL_TCs.

(L) Left: schematic of mechanisms underlying the waxing and waning of spind

oscillations.
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modulatory changes cause the spindle-like oscillations to occur

with reduced amplitude and then to cease, while the cortically-

generated up-down states continue (Figure S5).

DISCUSSION

In this study, we developed a detailed model of the thalamoretic-

ular microcircuit, a network of brain cells involved in sensory

processing and rhythm generation. The model incorporates

experimental data on the anatomy, physiology, and connectivity

of individual neurons, as well as the three-dimensional (3D) orga-

nization of the reticular and VPL nuclei. It was validated across

different simulated conditions, including wakefulness and sleep.

The model showed that short-term synaptic plasticity and mutual

inhibition within the Rt play key roles in the termination of spindle-

like oscillations. It also found that GJs, corticothalamic feedback,

and membrane potentials play a key role in modulating the dura-

tion and frequency of spindle-like oscillations. Themodel provides

a comprehensive account of thalamoreticular network dynamics

and can be used to interpret alterations in corticothalamic feed-

back and rhythm generation in health and disease. The model

and accompanying data are openly available for future research

(see section ‘‘data and code availability’’ below).

Comparison with prior work
The model differs from previous ones in several aspects,

including scale (in terms of number of neurons), the level of bio-

logical detail, and scope.68,69,83,98–102 While previous models

were explicitly built and tuned to study network phenomena,

such as sleep spindles, oscillations emerge in our model only

by fitting cellular and synaptic properties, without tuning for

network behavior. This data-driven approach enables novel

insights on spindle generation and termination (see below).

Prior models have largely used single-compartment neurons or

simplified multicompartmental models,103 while this model

uses reconstructed 3D neuron morphologies to constrain the

biophysical models and connectivity.

Morphological constraints on thalamoreticular
connectivity
Themodel suggests thatmanypropertiesof intrathalamic connec-

tivity can be predicted by the axodendritic and dendrodendritic

overlap of neuron morphologies. This includes the distribution of

synapse locations and the number of synapses per connection
tic dynamics, with GJs enhancing the oscillations by recruiting low-

yperpolarized membrane potentials and stronger synaptic interactions. One-

ap in (A) shows the effect of synapse release probability between Rt_RC and

rm synaptic depression on the evoked oscillations.

right).

le-like oscillations. Right: connections can have positive/negative effects on
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B Figure 7. Depolarization levels affect spin-

dle-like oscillation properties

(A) Voltage rasters and firing rate histograms of

Rt_RCs showing decrease in oscillation duration

with increased Rt depolarization.

(B) Single Rt_RC showing fewer spikes per burst

with increased depolarization.

(C) Voltage rasters and firing rate histograms of

VPL_TCs showing increase in oscillation duration

and frequency with VPL depolarization.

(D) Single VPL_TC recording showing increased

rebound responses and faster responseswith VPL

depolarization.

(E–G) Parameter maps showing effect of depola-

rizing VPL and Rt on oscillation (E) duration,

(F) frequency, and (G) peak firing rate/power

spectral density (PSD), respectively. VPL depo-

larization increases duration and frequency, while

Rt depolarization decreases them.
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established by thalamic INs, aswell as the convergence of synap-

ses from TC axon collaterals, other reticular neurons, and cortico-

thalamic afferents onto reticular neurons. The model accurately

recreates the distribution of single and multi-synaptic connec-

tions,36 and it recapitulates distance-dependent GJ connectivity

between reticular neurons, as observed in experimental studies.45

The model also shows that dendrodendritic appositions provide a

sufficientbasis fordeterminingGJ locations,and that thedistance-

dependent distribution of GJs between reticular neurons is deter-

mined by the extent of their dendrodendritic overlap.

Common cellular and synaptic mechanisms between
sensory enhancement and spindle generation
The model recreates the network dynamics of spontaneous and

sensory-evoked activity in wakefulness-like states. It allows for

simultaneous observation of direct and indirect sensory re-

sponses in the thalamus and Rt. Responses to stimuli are clearly

visible in the Rt, as has been shown experimentally with sensory,

auditory, or visual stimuli.50,53,104 The model also shows that

robust inhibition from the Rt generates strong surround inhibition

in the VPL, and that cortical activation sharpens the spatial prop-
C

erties of sensory inputs by evoking stron-

ger Rt-mediated surround inhibitions.

This is in line with recent research on

the visual thalamus.49

As previously reported in anesthetized

animals, the responses to trains of sensory

stimuli were adapting for relatively low fre-

quencies of 4–5 Hz, and the degree of

adaptation increased with the increase of

stimulus frequency.59,60,62 The adaptation

was reduced by simulated cortical activa-

tion, approximating cortical activity during

activated states, allowing the transmission

of high-frequency inputs.63

The model showed that the thalamore-

ticular microcircuit exhibits frequency-

selective cortical enhancement. When
simulating different frequencies of input and corticothalamic

activation, peak enhancement of thalamic responses was

observed for lemniscal inputs around 10 Hz. This enhancement

occurs because cortical activation recruits sufficient Rt inhibition

to activate Ih and low-threshold Ca2+ currents, enhancing the

gain of input to TC cells at�10 Hz. This is notable because rhyth-

mic activity around this frequency emerges in TC networks dur-

ing different behavioral states such as sleep spindles and alpha

oscillations during attention.105

Our simulations suggest that �10-Hz rhythms are intrinsic

to thalamoreticular networks and could be responsible for

enhanced gain of sensory inputs and TC activity around that fre-

quency. These results are consistent with the observation of

overlapping thalamic mechanisms between sensory processing,

attention, and sleep.105

A novel cellular and synaptic account of spindle
generation
The model provides novel insights into the mechanisms underly-

ing the generation of sleep spindles in thalamic networks,

including the role of TC-Rt synapse efficacy, short-term synaptic
ell Reports 42, 112200, March 28, 2023 13
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depression, mutual inhibition between Rt neurons and GJs

in the thalamic generation of waxing-and-waning spindle-like

oscillations.

The model generates spindle-like oscillations without being

explicitly designed for this purpose. The model is based on

in vitro findings, but many aspects closely resemble thalamic

activities during spindle oscillations in rodents in vivo.88,89,106

This indicates that the model is robust and can generate spin-

dle-like oscillations within experimentally plausible parameter

ranges.

Consistent with previous experimental and modeling studies,

spindle oscillations in the model are generated through a combi-

nation of intrinsic mechanisms, namely low-threshold calcium

bursting in reticular neurons75,77 and the synaptic interactions

between reticular and TC neurons.67,68,107

Dendrodendritic GJs between reticular neurons have been

known to transmit low-threshold bursts between cells, promote

spiking correlations and synchronized activity.44,46 The model

shows that GJs also influence spindle duration. Furthermore,

the spatial organization of Rt dendrites and their connections

through GJs also shows a clear functional role in propagating

the stimuli along the horizontal dimension of the microcircuit

and enhancing spindle-like oscillations.

The model showed that spindle termination can occur through

synaptic mechanisms alone, without requiring specific ionic

mechanisms such as Ca2+-dependent Ih current upregulation

in TC cells or cortical input desynchronization.68,83,100,102 The

model revealed that mechanisms such as short-term synaptic

depression and mutual inhibition between reticular neurons limit

the duration of the oscillation. While mutual inhibition has been

previously suggested as a factor,11,13,14,70,108 short-term synap-

tic depression has not been considered as a termination mech-

anism. Based on the role of Rt-Rt mutual inhibition, which de-

creases spindle duration, and GJs, which tend to prolong it,

we propose that Rt interactions have a self-limiting contribution

to spindle oscillations. GJ coupling promotes synchronized

IPSPs and TC excitation, recruiting more Rt neurons. When a

critical recruitment level is reached, the overall excitation is

countered by reciprocal inhibition and short-term synaptic

depression, and the oscillatory activity limits itself.

Thalamoreticular circuitry is responsible for the waxing
and waning of spindles
The gradual increase in amplitude (waxing) and the gradual

decline (waning) of spindle oscillations has been hypothesized

to be due to changes in cortical activity impinging on the Rt

and thalamus.83,85–87 However, the model demonstrates that

cellular and synaptic mechanisms of thalamoreticular circuitry

that underlie the increased recruitment of additional neurons

during each cycle of a spindle can produce the waxing phenom-

ena, while synaptic depression and the buildup of inhibition

within the Rt are sufficient to explain the waning phenomena.

Relative differences in the excitability of thalamic and
reticular nuclei can explain differences in spindle
frequency, density, and amplitude
We found that changes in depolarization level of thalamic and

reticular neurons affect oscillation frequency, duration, strength,
14 Cell Reports 42, 112200, March 28, 2023
and incidence of spindle-like oscillations. Our model approxi-

mates the dynamic change of thalamic network states during

transitions between wakefulness and sleep, based on known

mechanisms of action of neuromodulators such as acetylcholine

(ACh) and noradrenaline (NA). ACh levels decrease during the

transition fromwakefulness to NREM sleep, causing hyperpolar-

ization of the Rt and depolarization of the thalamus.95–97 NA

levels fluctuate during NREM sleep in vivo, leading to depolar-

ized membrane potentials that affect low-threshold bursting ac-

tivity underlying sleep spindles.93 Other alterations in thalamic

and reticular excitability could be due to changes in synaptic ac-

tivity and plasticity of corticothalamic and corticoreticular

projections.109

These findings have important implications when considering

changes in sleep spindle frequency, density, and amplitude as po-

tential biomarkers of disease. The model could be used to study

the mechanisms that affect spindle oscillations and their proper-

ties during sleep in conditions such as schizophrenia,16–19,21

ADHD,22 and Alzheimer’s disease.23 For example, spindle den-

sities have been found to decrease in patients with Parkinson’s

disease, and their density and duration are sensitive to Alz-

heimer’s disease.23,110–112 Previous research has suggested

that the cortex is required for the generation of slow spindles,113

but the present model shows that the thalamus can modulate

the frequency of spindle-like oscillations, indicating that thalamic

mechanismsmay be sufficient to generate both types of spindles.

Limitations of the study
The model presented here is a first-draft reconstruction of thala-

moreticular microcircuitry and is not intended to be a complete

representation of the full circuitry. The model does not account

for reciprocal connectivity with the cortex and therefore is not

sufficient to explore the role of the thalamus in higher-order func-

tions that depend on the cortex, such as attention and cognition.

We are making the model openly available to facilitate future ex-

tensions and refinements.

This model represents a primary somatosensory microcircuit

and includes only the "core" cell characteristic of sensory

thalamic nuclei that target cortical layers III and IV, rather than

the ‘‘matrix’’ cells, found in higher-order thalamic nuclei that

target supragranular layers. Different thalamic nuclei have

different mixtures of excitatory cells that have unique projection

characteristics to the cortex.114,115 Future refinements could

take into account these different cell populations.

In addition, the cellular e-types in the present model do not

capture the full diversity of known ion channels implicated in

bursting behavior in reticular neurons or dendritic properties of

thalamic INs. Inclusion of additional and more specific ion chan-

nel mechanisms, (e.g., variants of low-threshold Ca2+ Cav3.1,

Cav3.2, and Cav3.3) in TC and Rt neurons couldmore accurately

reproduce differences in bursting behavior in thalamic and

reticular neurons, as well as dendritic properties of thalamic

INs.75,77,80,116,117

Further refinements of themodel, such as including the distribu-

tion of different morphological types within the thalamic and retic-

ular domains, could improve its accuracy.118–121 Additionally,

incorporating the laminar structure120,122,123 of the Rt and

coupling the thalamoreticular model with cortical microcircuitry24
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could provide a more comprehensive understanding of the role of

TC interactions in sensory processing, attention, and rhythm gen-

eration across wakefulness and sleep.
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85. Kandel, A., and Buzsáki, G. (1997). Cellular-synaptic generation of sleep

spindles, spike-and-wave discharges, and evoked thalamocortical re-

sponses in the neocortex of the rat. J. Neurosci. 17, 6783–6797.

86. L€uthi,A. (2014).Sleepspindleswhere theycome from,what theydo.Neuro-

scientist 20, 243–256. https://doi.org/10.1177/1073858413500854.

87. Timofeev, I., Bazhenov, M., Sejnowski, T.J., and Steriade, M. (2001).

Contribution of intrinsic and synaptic factors in the desynchronization

of thalamic oscillatory activity. Thalamus Relat. Syst. 1, 53–69. https://

doi.org/10.1016/S1472-9288(01)00004-8.
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tion of single thalamic reticular neurons in the somatosensory thalamus

of the rat. Eur. J. Neurosci. 7, 31–40.

164. Kozloski, J., Sfyrakis, K., Hill, S., Schurmann, F., Peck, C., and Markram,

H. (2008). Identifying, tabulating, and analyzing contacts between

branched neuron morphologies. IBM J. Res. Dev. 52, 43–55. https://

doi.org/10.1147/rd.521.0043.

165. Lee, S.-C., Cruikshank, S.J., and Connors, B.W. (2010). Electrical and

chemical synapses between relay neurons in developing thalamus.

J. Physiol. 588, 2403–2415. https://doi.org/10.1113/jphysiol.2010.

187096.

166. Cox, C.L., and Sherman, S.M. (2000). Control of dendritic outputs of

inhibitory interneurons in the lateral geniculate nucleus. Neuron 27,

597–610. https://doi.org/10.1016/S0896-6273(00)00069-6.

167. Zhu, J., and Heggelund, P. (2001). Muscarinic regulation of dendritic and

axonal outputs of rat thalamic interneurons: a new cellular mechanism for

uncoupling distal dendrites. J. Neurosci. 21, 1148–1159.

168. Shishido, S.-I., and Toda, T. (2017). Temporal patterns of individual

neuronal firing in rat dorsal column nuclei provide information required

for somatosensory discrimination. Tohoku J. Exp. Med. 243, 115–126.

https://doi.org/10.1620/tjem.243.115.

169. Monconduit, L., Lopez-Avila, A., Molat, J.-L., Chalus, M., and Villanueva,

L. (2006). Corticofugal output from the primary somatosensory cortex

selectively modulates innocuous and noxious inputs in the rat spinotha-

lamic system. J. Neurosci. 26, 8441–8450. https://doi.org/10.1523/

JNEUROSCI.1293-06.2006.

170. Sherman, S.M., and Koch, C. (1986). The control of retinogeniculate

transmission in the mammalian lateral geniculate nucleus. Exp. Brain

Res. 63, 1–20.

171. Mo, C., Petrof, I., Viaene, A.N., and Sherman, S.M. (2017). Synaptic prop-

erties of the lemniscal and paralemniscal pathways to the mouse so-

matosensory thalamus. Proc. Natl. Acad. Sci. USA 114, E6212–E6221.

https://doi.org/10.1073/pnas.1703222114.

172. Sherman, S.M., and Guillery, R.W. (1998). On the actions that one nerve

cell can have on another: distinguishing ‘‘drivers’’ from ‘‘modulators.

Proc. Natl. Acad. Sci. USA 95, 7121–7126. https://doi.org/10.1073/

pnas.95.12.7121.

173. Arsenault, D., and Zhang, Z.w. (2006). Developmental remodelling of the

lemniscal synapse in the ventral basal thalamus of the mouse. J. Physiol.

573, 121–132. https://doi.org/10.1113/jphysiol.2006.106542.

174. Miyata, M., and Imoto, K. (2006). Different composition of glutamate re-

ceptors in corticothalamic and lemniscal synaptic responses and their

roles in the firing responses of ventrobasal thalamic neurons in juvenile

mice. J. Physiol. 575, 161–174. https://doi.org/10.1113/jphysiol.2006.

114413.

175. Warren, R.A., Agmon, A., and Jones, E.G. (1994). Oscillatory synaptic in-

teractions between ventroposterior and reticular neurons in mouse thal-

amus in vitro. J. Neurophysiol. 72, 1993–2003. https://doi.org/10.1152/

jn.1994.72.4.1993.

176. Zhu, J.J., and Lo, F.S. (1999). Three GABA receptor-mediated postsyn-

aptic potentials in interneurons in the rat lateral geniculate nucleus.

J. Neurosci. 19, 5721–5730.

177. Tsodyks, M.V., and Markram, H. (1997). The neural code between

neocortical pyramidal neurons depends on neurotransmitter release

probability. Proc. Natl. Acad. Sci. USA 94, 719–723. https://doi.org/10.

1073/pnas.94.2.719.

178. del Castillo, J., and Katz, B. (1954). Quantal components of the end-plate

potential. J. Physiol. 124, 560–573.

179. Korn, H., and Faber, D.S. (1991). Quantal analysis and synaptic efficacy

in theCNS. Trends Neurosci. 14, 439–445. https://doi.org/10.1016/0166-

2236(91)90042-s.

180. Antille, N., Courcol, J.D., Abdellah, M., Adaszewski, S.R., Ramaswamy,

S., Arsever, S., Atenekeng, G., Bilgili, A., Brukau, Y., Chalimourda, A.,

http://refhub.elsevier.com/S2211-1247(23)00211-5/sref145
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref145
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref145
https://doi.org/10.1152/jn.00647.2013
https://doi.org/10.1371/journal.pcbi.1002107
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref148
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref148
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref148
https://doi.org/10.1126/science.273.5282.1709
https://doi.org/10.1038/nn0602-857
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref151
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref151
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref151
https://doi.org/10.1523/JNEUROSCI.3664-05.2006
https://doi.org/10.1523/JNEUROSCI.3664-05.2006
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref153
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref153
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref153
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref153
https://doi.org/10.1111/j.1469-7793.2000.00621.x
https://doi.org/10.1111/j.1469-7793.2000.00621.x
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref155
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref155
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref155
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref155
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref156
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref156
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref156
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref156
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref157
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref157
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref157
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref157
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref157
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref158
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref158
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref158
https://doi.org/10.1038/nn.2124
https://doi.org/10.1038/nn.2124
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref160
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref160
http://devmag.org.za/2009/05/03/poisson-disk-sampling/
http://devmag.org.za/2009/05/03/poisson-disk-sampling/
https://doi.org/10.1002/cne.902510405
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref163
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref163
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref163
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref163
https://doi.org/10.1147/rd.521.0043
https://doi.org/10.1147/rd.521.0043
https://doi.org/10.1113/jphysiol.2010.187096
https://doi.org/10.1113/jphysiol.2010.187096
https://doi.org/10.1016/S0896-6273(00)00069-6
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref167
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref167
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref167
https://doi.org/10.1620/tjem.243.115
https://doi.org/10.1523/JNEUROSCI.1293-06.2006
https://doi.org/10.1523/JNEUROSCI.1293-06.2006
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref170
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref170
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref170
https://doi.org/10.1073/pnas.1703222114
https://doi.org/10.1073/pnas.95.12.7121
https://doi.org/10.1073/pnas.95.12.7121
https://doi.org/10.1113/jphysiol.2006.106542
https://doi.org/10.1113/jphysiol.2006.114413
https://doi.org/10.1113/jphysiol.2006.114413
https://doi.org/10.1152/jn.1994.72.4.1993
https://doi.org/10.1152/jn.1994.72.4.1993
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref176
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref176
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref176
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1073/pnas.94.2.719
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref178
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref178
https://doi.org/10.1016/0166-2236(91)90042-s
https://doi.org/10.1016/0166-2236(91)90042-s


Resource
ll

OPEN ACCESS
et al. (2015). The neocortical microcircuit collaboration portal: a resource

for rat somatosensory cortex. Front. Neural Circ. 9, 44. https://doi.org/

10.3389/fncir.2015.00044.

181. Cox, C.L., Huguenard, J.R., and Prince, D.A. (1997). Nucleus reticularis

neurons mediate diverse inhibitory effects in thalamus. Proc. Natl.

Acad. Sci. USA 94, 8854–8859.

182. Gentet, L.J., and Ulrich, D. (2003). Strong, reliable and precise synaptic

connections between thalamic relay cells and neurones of the nucleus re-

ticularis in juvenile rats. J. Physiol. 546, 801–811.

183. Miyata, M. (2007). Distinct properties of corticothalamic and primary sen-

sory synapses to thalamic neurons. Neurosci. Res. 59, 377–382. https://

doi.org/10.1016/j.neures.2007.08.015.

184. Jurgens, C.W.D., Bell, K.A., McQuiston, A.R., and Guido, W. (2012). Op-

togenetic stimulation of the corticothalamic pathway affects relay cells

and GABAergic neurons differently in the mouse visual thalamus. PLoS

One 7, e45717. https://doi.org/10.1371/journal.pone.0045717.

185. Landisman, C.E., and Connors, B.W. (2007). VPM and PoM nuclei of the

rat somatosensory thalamus: intrinsic neuronal properties and cortico-

thalamic feedback. Cerebr. Cortex 17, 2853–2865. https://doi.org/10.

1093/cercor/bhm025.

186. Reichova, I., and Sherman, S.M. (2004). Somatosensory corticothalamic

projections: distinguishing drivers from modulators. J. Neurophysiol. 92,

2185–2197. https://doi.org/10.1152/jn.00322.2004.

187. Barros-Zulaica, N., Rahmon, J., Chindemi, G., Perin, R., Markram, H.,

Muller, E., and Ramaswamy, S. (2019). Estimating the readily-releasable

vesicle pool size at synaptic connections in the neocortex. Front. Synap-

tic Neurosci. 11, 29.
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189. Häusser, M., and Roth, A. (1997). Estimating the time course of the excit-

atory synaptic conductance in neocortical pyramidal cells using a novel

voltage jump method. J. Neurosci. 17, 7606–7625.

190. Deleuze, C., and Huguenard, J.R. (2016). Two classes of excitatory syn-

aptic responses in rat thalamic reticular neurons. J. Neurophysiol. 116,

995–1011. https://doi.org/10.1152/jn.01121.2015.

191. Sarid, L., Bruno, R., Sakmann, B., Segev, I., and Feldmeyer, D. (2007).

Modeling a layer 4-to-layer 2/3 module of a single column in rat

neocortex: interweaving in vitro and in vivo experimental observations.

Proc. Natl. Acad. Sci. USA 104, 16353–16358. https://doi.org/10.1073/

pnas.0707853104.

192. Jahr, C.E., and Stevens, C.F. (1990). Voltage dependence of NMDA-acti-

vated macroscopic conductances predicted by single-channel kinetics.

J. Neurosci. 10, 3178–3182.

193. Ulrich, D., and Huguenard, J.R. (1997). Nucleus-specific chloride homeo-

stasis in rat thalamus. J. Neurosci. 17, 2348–2354.

194. Hines, M.L., and Carnevale, N.T. (1997). The NEURON simulation envi-

ronment. Neural Comput. 9, 1179–1209. https://doi.org/10.1162/neco.

1997.9.6.1179.

195. Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalon-

dre, F., and Sch€urmann, F. (2019). CoreNEURON : an optimized compute

engine for the NEURON simulator. Front. Neuroinf. 13, 63.

196. Minnery, B.S., Bruno, R.M., and Simons, D.J. (2003). Response transfor-

mation and receptive-field synthesis in the lemniscal trigeminothalamic

circuit. J. Neurophysiol. 90, 1556–1570. https://doi.org/10.1152/jn.

00111.2003.

197. Pauzin, F.P., and Krieger, P. (2018). A corticothalamic circuit for refining

tactile encoding. Cell Rep. 23, 1314–1325. https://doi.org/10.1016/j.cel-

rep.2018.03.128.
Cell Reports 42, 112200, March 28, 2023 21

https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.3389/fncir.2015.00044
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref181
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref181
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref181
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref182
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref182
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref182
https://doi.org/10.1016/j.neures.2007.08.015
https://doi.org/10.1016/j.neures.2007.08.015
https://doi.org/10.1371/journal.pone.0045717
https://doi.org/10.1093/cercor/bhm025
https://doi.org/10.1093/cercor/bhm025
https://doi.org/10.1152/jn.00322.2004
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref187
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref187
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref187
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref187
https://doi.org/10.1002/hipo.23220
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref189
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref189
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref189
https://doi.org/10.1152/jn.01121.2015
https://doi.org/10.1073/pnas.0707853104
https://doi.org/10.1073/pnas.0707853104
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref192
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref192
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref192
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref193
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref193
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1162/neco.1997.9.6.1179
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref195
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref195
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref195
http://refhub.elsevier.com/S2211-1247(23)00211-5/sref195
https://doi.org/10.1152/jn.00111.2003
https://doi.org/10.1152/jn.00111.2003
https://doi.org/10.1016/j.celrep.2018.03.128
https://doi.org/10.1016/j.celrep.2018.03.128


Resource
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Microcircuit Portal https://identifiers.org/bbkg:thalamus/studios/e9ceee28-

b2c2-4c4d-bff9-d16f43c3eb0f

N/A

Experimental models: Organisms/strains

Mouse: GAD67-eGFP Laboratory of Sensory Processing, EPFL N/A

Mouse: C57Bl/6J Charles River Laboratories, France N/A

Mouse: SSt-Cre; Ai139 JAX Strain 013,044, USA MGI Ref ID J:151,755

Software and algorithms

Blue Brain Nexus software https://www.w3.org/standards/semanticweb/data RRID: SCR_022029

NeuroM https://www.w3.org/standards/semanticweb/data N/A

eFEL https://www.w3.org/standards/semanticweb/data N/A

Janelia MouseLight Project http://ml-neuronbrowser.janelia.org/ RRID: SCR_016668;

Mouse Genomics Information database http://www.informatics.jax.org/downloads/reports/MGI_Strain.rpt N/A

Data type schemas http://neuroshapes.org/ N/A

BBP Cell Atlas https://portal.bluebrain.epfl.ch/resources/models/cell-atlas/ RRID: SCR_019266

InterLex RRID: SCR_016178

Allen Common Coordinate Framework https://www.zotero.org/google-docs/?MGapw0 RRID: SCR_020999

Neocortical Microcircuit Portal https://www.zotero.org/google-docs/?TzYZzH RRID: SCR_022032
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Sean Hill (sean.hill@

epfl.ch).

Materials availability
Experimental data, model entities andmetadata aremade available in the Thalamoreticular Microcircuit Portal (https://identifiers.org/

bbkg:thalamus/studios/e9ceee28-b2c2-4c4d-bff9-d16f43c3eb0f). The portal includes data and model entities, including single

neuron models, circuit files in SONATA format1 and simulation output.

All data were integrated, and aligned to FAIR principles (Findible, Accessible, Interoperable, Reusable) using the Blue Brain Nexus

software (RRID:SCR_022029). At the center of Blue Brain Nexus lies a knowledge graph which supports W3-standard ‘‘linked data’’

(https://www.w3.org/standards/semanticweb/data) storage and indexing. In the context of the knowledge graph, W3C (World Wide

Web Consortium) Shapes Constraint Language (https://www.w3.org/TR/shacl/) was used to define FAIR data models (i.e. ‘shape’

the data and apply constraints). To support indexation of the datasets, specific data models were developed. Each individual

data type was modeled according to a schema, available from Neuroshapes (http://neuroshapes.org/), to ensure standardization

across different projects. This process made sure existing schemas, semantic markups, existing ontologies and controlled vocab-

ularies were used.

For each data type, a minimum set of metadata was required to guarantee reusability of the data. We provide a concrete example

of integration for an exemplar dataset consisting of neuron morphological reconstructions.

1. Identification of the dataset: 99 morphological reconstructions collected from acute brain slices through whole-cell patch

clamp recording and biocytin filling, stored in.asc Neurolucida (rrid:SCR_001775) file format;

2. Identification of the metadata: A spreadsheet containing all the information related to the specimen, experimental protocol,

date of the experiment, human agents involved in the experiment and reconstruction;

3. Creation of a data model: A schematic was developed according to the W3C PROV-O specification (https://www.w3.org/

2011/prov/wiki/Diagrams), describing how the morphology was obtained in the form of a provenance graph;

4. Vocabulary and ontologies to integrate the dataset and metadata: Cell type terms from InterLex (rrid:SCR_016178) were used.

InterLex is a dynamic lexicon of biomedical terms. For brain region, terms from the Allen Common Coordinate Framework

version 3 were used124(rrid:SCT_020999). To store species information, the NCBI organismal classification was used.125
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For storing information about strain, the Mouse Genomics Informatics database (http://www.informatics.jax.org/downloads/

reports/MGI_Strain.rpt) was used. To store sex information, the Phenotype And Trait Ontology was used.

Data and code availability
d The experimental data, including neuronmorphologies, in vitro electrophysiological recordings, cell and bouton densities are all

available under an open access license on the Thalamoreticular Microcircuit Portal (https://identifiers.org/bbkg:thalamus/

studios/e9ceee28-b2c2-4c4d-bff9-d16f43c3eb0).

d The Thalamoreticular Microcircuit Portal (https://identifiers.org/bbkg:thalamus/studios/e9ceee28-b2c2-4c4d-bff9-d16f43c3eb0)

includes code for the ion channel models, single neuron models, synapse models, circuit files in SONATA format,1 simulation

output.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental data were collected in conformity with the Swiss Welfare Act and the Swiss National Institutional Guidelines on Animal

Experimentation for the ethical use of animals. The Swiss Cantonal Veterinary Office approved the project following an ethical review

by the State Committee for Animal Experimentation.

In vitro-stained TC and Rt morphologies were obtained from P12-35 mice (GAD67-eGFP or C57Bl/6J strains).

In vivo-stained TC and Rt morphologies were obtained from C57Bl/6J 3 month-old male mice.

In vivo labeling of reticular neurons were employed in SSt-Cre; Ai139 P54 mice.

Electrophysiological data for TC and Rt neurons and interneurons (INs) were characterized in vitro from brain slices of P12-35

GAD67-eGFP or C57Bl/6J mice.

For all mouse lines, if not otherwise specified, both male and female subjects were used.

METHOD DETAILS

Constraining and validating the model with experimental data
The model microcircuit was built by constraining and validating it at multiple levels, using experimental data and algorithmic ap-

proaches, based on methods published previously.24 For validation we performed direct comparison of the model properties with

experimental measurements that were not used during the model building steps. Before describing the details of the reconstruction,

validation and simulations, we provide a list of data used for constraining the model, the validation data and further validations at the

network level.

Experimental data used to constrain the model
The following experimental data was used to constrain the model, further details on the experimental procedures and literature ref-

erences are provided below.

d Three-dimensional reconstructions of neuron morphologies, from in vitro and in vivo labeling

d Ion channel kinetic parameters

d Electrophysiological data from in vitro patch-clamp recordings (current step stimuli)

d Neuron densities

d Fraction of inhibitory and excitatory neurons

d Fraction of electrical types for each morphological type

d Axonal bouton densities (i.e. number of boutons per axonal unit length)

d Volumetric densities of lemniscal boutons (number of boutons per unit volume)

d Ratio of corticothalamic to lemniscal bouton densities and ratio of corticothalamic to thalamocortical bouton densities (volu-

metric data from the literature)

d Postsynaptic potential amplitudes and their change in response to trains of presynaptic inputs from in vitro paired-recordings

(short-term plasticity protocols)

d Number of neurons connected through gap junctions

d Synaptic current kinetic parameters

Experimental data used for model validation
The following experimental measurements were not used for constraining the model during the building process but were used for

validation.

d Electrophysiological data from in vitro patch-clamp recordings (current ramps and noise)
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d Number of synapses per connection between interneurons and thalamocortical neurons (i.e. number of synapses between

each pair of neurons)

d Synaptic convergence onto reticular neurons

d Postsynaptic potential amplitudes (different subset of neuron pairs than the ones used to constrain the model)

d Coefficient of variation of first postsynaptic potential amplitudes

d Distance-dependent gap junction connectivity between reticular neurons

d Gap junctions coupling coefficients

Validations at the network level
We identified the following network responses during simulated activity as a general validation of the reconstruction process.

d Spontaneous in vivo-like activity, characterized by uncorrelated firing and low firing rates in TC and Rt cells49–51

d Evoked activity with simulated sensory input in TC as well Rt cells50

d Adaptation to repeated sensory stimuli at different frequencies59

d Corticothalamic inputs counterbalance sensory adaptation63

d Increased thalamic bursts after brief stimulation of the reticular nucleus and evoked spindle-like oscillations74

d Initiation of spindle-like oscillations during cortical UP-states55–57

Reconstructing the morphological diversity of neurons
Reconstruction of morphologies

A subset of 3D reconstructions of biocytin-stained thalamocortical (TC) neurons, reticular thalamic (Rt) neurons and thalamic inter-

neurons (IN) were obtained from in vitro patch-clamp experiments from 300 mm slices of P12-35 mice (GAD67-eGFP or C57Bl/6J

strains) as previously described.24,26 During the electrophysiological recordings neurons were stained intracellularly with biocytin.

In vitro-stained neurons were mainly located in primary somatosensory nuclei (VPL, and ventral posteromedial nucleus - VPM)

and the somatosensory sector of the reticular nucleus.34,126,127 Although the main focus of our model was the VPL, we found that

specifically targeting this nucleus was challenging. To increase the available experimental data we thus included recordings from

the VPM. Reconstructions used the Neurolucida system (MicroBrightField) and were corrected for shrinkage along the thickness

of the slice. Shrinkage along other dimensions was taken into account during the unraveling step (see below). Dendrites were recon-

structed with a 1003 magnification (oil immersion objective) and axons at 603 (water immersion objective).

In vivo-stained TC and Rt morphologies were obtained through different experimental techniques. In some cases, neurons were

labeled by injection of replication-defective Sindbis virus particles in the thalamus or Rt nucleus in C57Bl/6J adult mice128 or elec-

troporation of RNA of the same virus.129 The virus labeled the membrane of the neurons thanks to a palmitoylation signal linked to a

green fluorescent protein (GFP). Brainswere cut in 50 mmserial sections and immunostained against GFP and enhancedwith glucose

oxidase-nickel staining.130 Neurons were reconstructed from sequentially-ordered slices under bright-field optics using the Neuro-

lucida system (MicroBrightField). The complete method is described elsewhere.131

In vivo-labelled TC morphologies were obtained from the Janelia Mouselight project, from sparsely-labeled adult C57/BL6 mice

brains; the method is described in detail elsewhere25 and summarized here. Brains were then delipidated, fluorescence was

enhanced by immunolabeling and imaged with a 403 oil-immersion objective. This procedure generated large datasets of high-res-

olution image stacks. The 3D reconstructions were conducted combining semi-automated segmentation of the neurites, human

annotation and quality control. Janelia Mouselight reconstructions lacked diameter variations in their neurites, which is important

for accurate electrical modeling of neurons.132 For this reason, we only used their axons in order to increase the variability of our

axonal reconstructions. We obtained 96 morphologies whose soma was located in the thalamus and we visually inspected their

shape along with 3D meshes of the reticular nucleus of the thalamus using the Janelia MouseLight Project (RRID:SCR_016668;

http://ml-neuronbrowser.janelia.org/). Since most thalamocortical neurons project to the Rt on their path to the cortex,114,127 we

selected the 41 morphologies which gave off collaterals in the reticular nucleus. We assumed that neurons without collaterals in

the Rt were partially labeled and/or reconstructed, since those collaterals are often very thin.133 Given the limited number of recon-

structed morphologies of neurons in VPL and VPM in the Janelia MouseLight dataset, we included 27 axons (with collaterals to Rt)

from other thalamic nuclei. To ensure that the connectivity would not be impacted, we analyzed the geometrical properties of the Rt

collaterals and found that the difference within the same nucleus was as high as the difference between nuclei.

For in vivo labeling of reticular neurons virus injections for sparse labeling of whole brain neuron morphologies were employed in

SSt-Cre; Ai139 adult mice.134,135 Brains were imaged using fluorescence micro-optical sectioning tomography (fMOST).136 Neurons

were manually reconstructed from high resolution image stacks obtained after slicing. Further details of the method are available in

related publications.137

Morphology analysis, alignment and visualization
Raw morphological data did not have a common orientation along a principal axis, which is necessary to place them in the micro-

circuit volume according to biologically-plausible constraints (see below). We thus computed a rotation matrix so that the principal

axis of the morphology was parallel to the vertical axis of the microcircuit. The principal axis of TC morphologies was the one
24 Cell Reports 42, 112200, March 28, 2023
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connecting the center of the soma and the center of mass of the axon collaterals in the Rt nucleus (see below). For Rt neurons, the

principal axis connected the soma and the center of mass of the axonal arborization in the thalamus. After rotating the morphologies,

we visually validated the results. Rotation of the INs was not performed, since no orientation information relative to known landmarks

was available.

Formorphology analysis we used the open-source library NeuroM (https://github.com/BlueBrain/NeuroM). To identify the TC axon

collaterals projecting to the Rt we selected themorphological sections which had branch orderR 1 and path distance from the soma

<2,500 mm and visually validated the results. For somemorphologies, we selected those having path distance% 2,000 mm, because

some TC neurons have collaterals projecting to other subcortical regions (e.g striatum), see Clascá et al.114

Raw morphological data were algorithmically corrected for slicing artifacts and processed to generate a large pool of unique mor-

phologies for building themicrocircuit and connectivity. Spurious sections, which were accidentally introduced duringmanual recon-

struction, were identified as those having 0 mm diameter and removed. The details are described in Supplemental Experimental Pro-

cedure of the neocortical microcircuit model, and summarized below.24

The morphology images in Figure 2 were created using NeuroMorphoVis.138

Unraveling morphologies
Since we found that 3D reconstructions from in vitro-stained neurons had increased tortuosity in their dendrites as a result of tissue

shrinkage, we unraveled them using an existing algorithm.24 This process resulted in an increase of the reach of the morphologies,

while preserving the original length of the branches. Briefly, unraveling was performed by sections and for each section a sliding win-

dow composed of a given number of successive points was created. The number of points in the sliding window (N) was the only

parameter of the algorithm and we found that N = 5 previously used performed well on thalamic morphologies. The general direction

of the points in the window was computed using principal component analysis (PCA). The segment at the middle of the window was

then aligned along this direction. It meant that its direction was set to the one of the sliding windows but it retained its original length.

The sliding window was moved over all points of the section and the algorithm was applied to all sections.

Repairing morphologies
Most of the in vitro-stained morphologies were truncated at slice edges and in the case of some TC morphologies, which have very

dense dendritic arborization, this resulted in a significant decrease in dendritic mass. We applied an existing algorithm24,139 to repair

missing dendritic branches. First, the algorithm detects cut points on the XY plane, i.e. the plane parallel to the slice, along the Z di-

rection (parallel to the slice thickness). The 3D coordinate systemwas centered on themorphology soma. Although the algorithmwas

designed to detect cut points on two planes, we found that our morphologies were truncated on the top plane. We improved the

algorithm by searching the cut points before unraveling the morphologies and updated their position during the unraveling step.

Cut detection required a tolerance parameter to detect terminal points within a certain distance from maximum Z extents. We found

that 15 mm gave the most accurate results by visual inspection of the morphology. Some terminal points were then tagged cut points

and dendrites were repaired.

The dendrite repair process created new dendritic sections starting at the identified cut points. Dendrite repair did not aim to

recover the initial morphology, but rather recreated it in a statistical manner, under the assumption of statistical symmetry of the

morphology. This method analyzed the behavior of intact branches as a function of branch order and euclidean distance from the

soma. For each branch order, probability density clouds of branch continuation, bifurcation or termination were calculated in a series

of concentric spheres.140 At each cut point, the behavior of the branch was sampled according to the calculated probabilities. The

factor governing the direction of the re-grown brancheswas adjusted to achieve final branches tortuosity comparable with our exper-

imental data. To address neurite swelling artifacts at cut points, the diameters of the re-grown branches were set to the average

diameter of the last section.

Morphology diversification
We increased the variability of the reconstructed and repaired morphologies to ensure robust and invariant connectivity pat-

terns.35,141 We followed a previously published method24 to generate a unique branching pattern for each morphology, while main-

taining the general morphological and electrical structure for each m-type. In summary, branch lengths and rotations at each bifur-

cation point were varied according to random numbers drawn from Gaussian distributions with mean 0% and standard deviation

20% for branch lengths and mean 0� and standard deviation 20� for branch rotations. A sample of the resulting morphologies

was visually validated, and we did not find significant alterations of their structure for any of the m-types (Figure S1).

We then applied a mix-and-match procedure to maximize the utilization of good morphological reconstruction data. This pro-

cedure divided dendrites from axons and allowed us to combine good dendritic reconstructions of TC and Rt dendrites from

in vitro and in vivo-stained neurons and good axonal reconstructions from in vivo-stained neurons. In vitro-stained neurons typi-

cally lacked reconstruction of the full axon due to the slicing procedure and/or poor labeling. For each morphology, we manually

annotated which dendrites and axons were to be kept. The decision in most cases depended on the labeling method (in vitro vs.

in vivo).
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To increase the probability that in vivo-stained morphologies and in particular the axons of TC and Rt morphologies were compat-

ible with the microcircuit dimensions (see below) we duplicated and scaled the morphologies along their principal axis (Y axis)

by ± 2.5%.

Reconstructing the electrical diversity of neurons
Electrophysiological data

The firing patterns of TC, Rt neurons and interneurons (INs) were characterized in vitro from brain slices of P12-35 GAD67-eGFP or

C57Bl/6J mice and expert-classified into five electrical types (see results). The detailed electrophysiological protocol has been pub-

lished elsewhere.26 Neurons were sampled from the ventrobasal complex of the thalamus (VPL and VPM nuclei) and the somatosen-

sory sector of the reticular nucleus.126,127

We used responses to step-like currents to build electrical models, ramp and noise currents to validate them,26 along with excit-

atory postsynaptic-like currents (EPSC) injected into the dendrites. All the recordings were corrected for liquid junction potential by

subtracting 14 mV from the recorded voltage.

Neuron models

Multicompartmental conductance-based models employed 3D morphological reconstructions. Active ion currents and a simple

intracellular calcium dynamics model were distributed in the somatic, dendritic and axonal compartments. Only the axonal initial

segment (AIS) – not the complete axon – was modeled.24 The axons were substituted by a 60 mm stub constituted by two sections,

five segments each. For each segment, the diameter was extracted from the original axon in order to preserve its tapering. Morphol-

ogies were divided into compartments of 40 mm maximal length. Specific membrane capacitance was set to 1 mF/cm2 and specific

intracellular resistivity to 100 Ucm.

Ion channel models

We included ion current models whose kinetics were obtained from previously published ion current models or published experi-

mental data. All ion channel models were corrected for liquid junction potential and for simulation at different temperatures whenever

possible. Simulation temperature was always set to 34�C.
The details of the ion channel kinetics and calcium dynamics used for low-threshold bursting neurons (TC and Rt) have been

described elsewhere26 and are summarized here. The type of ionic currents present in TC and Rt were: transient sodium current,

delayed potassium current and low-threshold calcium from a previous model of TC neurons142; h-current model (Ih) was built

from published data26,143–145; persistent sodium, based on an existing models146,147 and published data,148 A-type transient potas-

sium was taken from an existing model,146 based on published data144; high-threshold calcium was based on published models and

data,144,146 SK-type calcium-activated potassium, was taken from previous models and published data.147,149 Intracellular calcium

dynamics was modeled with an exponential decay mechanism that linked low-threshold and high-threshold calcium currents to the

calcium-activated potassium.

Since interneurons had firing patterns similar to cortical ones, we used the same ion channel models of the cortical microcircuit

model,24 which were based on existing models or published data. The type of ionic currents were transient sodium,150 low-threshold

calcium,151 h-current,152 persistent sodium,153 transient potassium,154 high-threshold calcium155 and potassium Kv3.1.156 The

reversal potential of sodium, potassium and h-current were set to 50 mV, �90 mV and �43 mV, respectively.

Ion channel models were distributed uniformly and with different peak conductance values for somatic, dendritic and axonal com-

partments, except for the h-current in the interneurons, whose distribution increased exponentially from the soma to the dendrites.24

Optimization of neuron models

Five electrical models (e-models), corresponding to each electrical-type (e-type), were fitted using a multiobjective optimization al-

gorithm using the Python library BluePyOpt.26,157 The free parameters of the model were the peak conductances of the different

mechanisms, parameters of the intracellular calcium dynamics (time constant of decay and percent of free calcium, gamma) and

the reversal potential of the passive mechanism that contributes to the resting membrane potential. Each e-model was fitted with

an exemplar morphology.

The optimization objectives were the electrical features extracted from the electrophysiological recordings. All modeled neurons

included transient sodium, persistent sodium, A-type transient potassium, delayed potassium, low-threshold calcium, high-

threshold calcium, calcium-activated potassium (SK-type), h-current ion channel currents. All cellular compartments (i.e. somata,

dendrites and axon initial segments) contained active membrane mechanisms. Rt_RC e-models followed the same approach as

for VPL_TC cells, as previously published,26 with the additional electrical features to quantify the deeper post-burst afterhyperpola-

rization observed in Rt_RCs.158,159 To validate and test the generalization of the neuronmodels, we used features from current stimuli

not used during the optimization phase.

The detailed experimental protocol and the type of current stimuli and features are described elsewhere,26 and summarized here.

For all the e-types, two hyperpolarizing steps (�20/�40% and�120/�140%of the threshold current) were used to constrain passive

properties (input resistance, resting membrane potential) and current activated by hyperpolarization, e.g. h-current (sag amplitude).

Three levels of depolarizing steps (150%, 200%, 250% of the threshold current) were used to constrain firing pattern (adaptation in-

dex or inverse of the first and last interspike intervals, spike count, mean frequency) and spike shape-related features (action potential

amplitude, depth of the after-hyperpolarization, action potential duration). All these protocols were applied in combination with a hy-

perpolarizing holding current (to reach stable membrane potential of �84 mV, after liquid junction potential correction).
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When low-threshold bursting cells are hyperpolarized compared to their resting membrane potential and then stimulated, they fire

stereotypical low-threshold bursts. One step (200% of firing threshold) on top of a hyperpolarizing current was therefore used to

constrain the bursting response, while three depolarizing steps on top of a depolarizing holding current (to reach �64 mV) were

used to constrain the tonic firing responses, as explained above. For reticular neurons, a new feature (initburst_sahp) was added

for the afterhyperpolarization after the burst. For Rt and TC cells, two additional protocols without any current injection or only holding

currents were used to ensure that the e-models were not firing without stimulus or with the holding current only.

Electrical features from the experimental recordings and model traces were extracted using the open source library eFEL (https://

github.com/BlueBrain/eFEL).

We considered a model a good fit to the experimental data if all the feature errors (i.e. the Z-scores) were below 3.

Quality assurance of morpho-electrical models

After fitting the five e-models, they were combined with the 92,970 morphologies generated as output of the morphology diversifi-

cation step. An automated pipeline tested the e-models in combination with the different morphologies (me-models) and filtered out

those that deviated significantly from the experimental electrical features. To decide which me-model was to be accepted, we used

the repaired exemplar morphology (i.e. the morphology used during the optimization, after being repaired) as a benchmark: a me-

model passed if it had all the feature errors were below 5 standard deviations of the repaired exemplar.24 To account for the input

resistance given by the different morphologies, we devised an algorithm, based on binary search, to find the appropriate holding

and threshold current for each me-model.26

In addition, we first ran this pipeline on a small subset of themorphologies generated after morphology repair. In this way, we could

visually inspect if the accepted me-models were generating biologically plausible firing behavior and the reasons why other me-

models had high feature errors. In some cases, after inspecting the me-model voltage responses, we set less stringent criteria on

some features, to ensure that we had enough different me-models for building the microcircuit. At the same time, we set more strin-

gent criteria to reject me-models that were active without any input, since we did not find neurons that were spontaneously active in

our experimental recordings.

Measuring neuron density
Immunohistochemistry of Rt and VPL for cell counting

We complemented the neuron densities values from the Blue Brain Cell Atlas32 (RRID:SCR_019266) by counting neurons in adult

mouse brain slices. The brain was cryosliced at 50 mm on the sagittal plane and stained following standard immunohistological pro-

cedures with antibodies anti-GABA (for inhibitory neurons), anti-NeuN (for neurons) and DAPI (for all cells), using an existing proto-

col.24 The slices were imaged with a confocal microscope (Zeiss, 710). The immunohistology and imaging of the region of interest

(ROI) was completed for one P21 C57B1/6J mouse.

Semi-automated cell counting and cell densities

The images were aligned to the Allen Reference Atlas to create proper boundaries for the Rt and VPL. We used Imaris software (Bit-

map) to create the ROI, for counting the neurons and to estimate the volume for density calculation. For a chosen ROI, the software

detected the difference of signal intensity, created a 3D shape around the detected cells and extracted statistics (e.g. count, posi-

tions) following given parameters. These parameters were defined by running multiple trials so that the results from semi-automated

cell counting were as close as possible to those frommanual cell counting. The semi-automated counting method results in very low

error rates compared to manual counting (2.25%) and is less time consuming. A 3D shape of the entire ROI was created in order to

extract the volume for density calculation. Neuron densities were calculated as the ratio between neuron counts in a ROI and the

volume as calculated in Imaris for each slice. For modeling we used the average cell densities for Rt and VPL neurons.

Reconstructing the dimensions and structure of a thalamoreticular microcircuit
Since the thalamus does not have a clear laminar structure, we approximated a thalamic microcircuit as a cylindrical volume having

its base parallel to a portion of the Rt and its vertical dimension (y axis) running through the VPL and Rt (see Figure 1C).

The horizontal dimensions of the microcircuit were calculated from the density of dendritic fibers at the center of the circuit,

following an approach published previously.24 For each m-type, we began by considering all the morphologies (after repairing

them) that had their somata located within 25 mm from the circuit center on the horizontal plane (XZ). We then increased the maximal

distance in steps of 25 mm which resulted in an increase of dendritic densities at the center. The microcircuit horizontal dimension

(radius) resulting from this process was 294 mm, corresponding to the distance where 95% of the asymptotical maximal density

of reticular neuron dendrites was reached. As a comparison, considering only thalamocortical cell morphologies would have resulted

in a circuit with radius 125 mm, while considering only interneurons the radius would have been 279 mm.

We used hexagonal boundaries with the same area as the resulting circle to facilitate tiling of multiple microcircuits, while keeping

asymmetrical edge effects minimal. The resulting side of the hexagon was 323 mm and the longest diagonal (vertex-to-vertex)

measured 646 mm.

To calculate the vertical dimension of themicrocircuit, we extracted a 3D subvolumewithin the VPL and the Rt.We started from the

thalamus parcellation of the Allen Brain Atlas version 3 (25 mm resolution).29 A spherical coordinate systemwas fitted to the volume of

the Rt, which can be approximated by a spheroidal surface. We chose a ROI located approximately in the middle of the VPL nucleus

and computed the probability distribution of widths in the ROI for the VPL and Rt. The widths were calculated along the radius of the
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spherical coordinate system. The resulting thickness corresponds to the median of the distributions, which was 550 mm for the VPL

and 250 mm for the Rt.

Soma positions and me-type model assignment
The horizontal and vertical extents resulted in a microcircuit having the shape of a hexagonal prism, that was 646 mm wide (at the

widest point) and 800 mm high; 69% of the volume was occupied by the VPL and 31% by the Rt. This volume was then populated

by defining somata positions according to the experimentally measured neuron densities in the Rt and VPL. The positions were

distributed according to an algorithm based on Poisson disc sampling.160,161 This algorithm avoids clustering normally obtained

with sampling according to uniform distributions, by using a parameter for the minimum distance between points. To calculate

the minimum distance, we used the cell densities to calculate the expected number of cell positions per voxel. Each soma position

was assigned an m-type according to the excitatory/inhibitory fractions and an electrical model in agreement with the me-types

composition (Figures 1E–1G). Moreover, each position was associated with a random rotation around the y axis to be applied to

each morphology.

Morphology placement
Our pool of experimental morphologies and the ones derived from the morphology diversification process contained morphologies

with different sizes and shapes. Moreover, it contained TC morphologies whose somata was not located in the VPL nucleus and Rt

morphologies whose axons were not arborizing in the VPL nucleus. We adapted a placement scoring algorithm24 to ensure that each

position was assigned a suitable morphology considering its geometrical properties and the microcircuit vertical dimension.

We thus defined placement rules that took into account the known properties of Rt and TC neurons’ arborizations relative to the

anatomical boundaries of thalamic nuclei.162,163 Each reconstruction of TC and Rt neuronmorphologies wasmanually annotated ac-

cording to the placement rules. For TC cells, we identified the axonal arborization projecting to the Rt (and that should be located in

the Rt part of the model). For Rt cells, the densest part of axonal arborization was annotated, which should be located in the VPL. For

IN, the only constraint is that the full morphology should be contained within the VPL and not crossing into the Rt.36 Each annotation

was automatically carried over during the unraveling, repairing and diversification steps.Moreover, we included a stricter rule to avoid

that Rt morphologies were located outside the top of the circuit boundary, with a 30 mm tolerance.

Given the placement rules, each morphology was assigned a score based on the microcircuit position and the constraints set by

the placement rules.24

Generating different microcircuit instances
We created five different microcircuit instances to assess the model robustness to different input parameters. The experimentally-

measured cell densities were jittered by +/� 5%, resulting in microcircuits with different total number of neurons and number of neu-

rons for each m-type (see Figure 1F).

Reconstructing the synaptic connectivity of a thalamoreticular microcircuit
Connectivity based on morphological appositions

After placing the morphologies in the 3D microcircuit volume we generate the first version of the connectivity by detecting zones of

geometrical overlap (‘‘touches’’) using an existing touch detection algorithm.24,164 Briefly, this algorithm sub-divided the circuit 3D

space into sub-volumes ensuring that each sub-volume contained the same amount of data, i.e. the same number of morphological

segments. Each sub-volume was processed in parallel on different cores and written in parallel to disk. All geometrical overlaps were

considered as touches if their distance was smaller or equal to 1 mm (‘‘touch distance’’).

Touches were then filtered according to biological rules: touches were allowed between all m-types, except between interneurons

and reticular cells, because interneurons are only located in the thalamus and are not expected to have neurites extending into the

reticular nucleus.36 Touches between VPL neurons were removed, in agreement with experimental findings showing that excitatory

connections between TC neurons disappear during development.165

Interneurons also form axonal and dendritic inhibitory synapses.116,166,167 For all other m-type combinations, touches were formed

between presynaptic axons, postsynaptic dendrites and somata.

The same algorithm was used to detect touches between Rt_RC dendrites, i.e. the locations of putative gap junctions. Since gap

junctions are established with close appositions of cell membranes, we used a touch distance of 0 mm in this case.

At the end of this process the resulting contacts (or ‘‘appositions’’) are normally higher compared to experimental findings and are

pruned further to arrive at the final functional synapses.33

Determining functional synapse positions

We employed an existing algorithm to decide which appositions were to be pruned according to biological constraints.33 The main

constraints were the experimental bouton densities (number of boutons/axonal length) from 3D neuron reconstructions (n = 9 TC

axons and n = 2 Rt axons) and the coefficient of variation of number of synapses per connections (i.e. the number of functional syn-

apses, between a pair of neurons) from presynaptic INs and post-synaptic INs and TCs.36

In the first two steps, the algorithm tried to match the distribution of synapses per connection, using the coefficient of variation of

appositions per connections and the coefficient of variation of synapses per connection. Then, in step 3, it compared the current
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bouton density to the target value and removed multi-synaptic connections until the target value was matched. The number of syn-

apses per connections,Nfunc, was predicted from the number of appositions per connections (Napp) resulting from the previous steps,

similarly to uncharacterized pathways in corticalmicrocircuitry.33Nfuncwas predicted fromNapp according to a simple formula (Nfunc=

1 , Napp) for each m-type to m-type connection. We used a generalized coefficient of variation for Nfunc of 0.9 for all connections,

extracted from published data (Morgan and Lichtman,36 Figure 2E). The coefficient of variation was combined with the predicted

Nfunc to calculate its standard deviation, as detailed in Reimann et al.33 At the end of this pruning process, we verified that the bouton

densities in themodelmatched the experimental ones (see Figure 2A). The shape of a geometric distribution forNfuncwas a prediction

from our touch detection process.

Connections from lemniscal and corticothalamic afferents

We followed an approach similar to the generation of thalamic input to the cortical microcircuit model24 to model afferent syn-

apses in the thalamus from the sensory periphery (medial lemniscus) and from the cortex. The algorithm uses volumetric bouton

densities and the morphologies already placed in a circuit to map synapses from afferent ‘‘virtual’’ fibers to postsynaptic

morphologies.

We built medial lemniscus (ML) and corticothalamic (CT) afferents separately for one microcircuit. Since data for lemniscal inner-

vation in the mouse VPL was not available we calculated volumetric bouton density from data of mouse VPM,38 see Figure 2D for the

exact values. Volumetric bouton densities for the CT pathway were derived from known proportions between CT synapses and other

synapses onto TC and Rt neurons, as found in electron microscope investigations.39,40

Each synapse was assigned a virtual ML or CT fiber. We estimated a number of 2,601 ML fibers; this number took into account the

ratio between the putative number of neurons from the dorsal column nuclei projecting to the thalamus168 and the number of neurons

in the VPL (see Jones2 for a similar calculation). The number of CT fibers was 75,325, about ten times the number of thalamocortical

fibers in a microcircuit.64,169,170

To take into account the correlation between synaptic inputs onto postsynaptic neurons innervated from the same afferent fiber,

the mapping between postsynaptic synapses and fibers took into account their respective positions, i.e. synapses that were closer

together weremore likely to be innervated by the same presynaptic fiber. As in the neocortical microcircuit model,24 the probability (P)

that a synapse was assigned to a fiber depended on the distance between the synapse and the fiber:

PðSpre = iÞfe
� jfi �Tpre j

2s2

where Spre represents the mapping of a synapse S to the presynaptic fiber i, Tpre is its spatial location, fi the spatial location of fiber i

and s denoted the degree of spatial mapping, that was set to 25 mm.

Modeling synapse physiology
Stochastic synaptic transmission and short-term plasticity

We used available paired-recording data and generalization principles to assign synaptic conductance values (gsyn) to match exper-

imentally recorded PSP amplitudes. We predicted that single gsyn from inhibitory neurons are in general small (e.g. 0.9 ± 0.23 nS for

VPL_IN to VPL_IN), while conductances from VPL_TCs and lemniscal afferents are larger (>2 nS), consistent with being ‘‘driver’’ syn-

apses,171,172 while corticothalamic synapses have small gsyn (<0.5 nS), but are facilitating.

To model synapse kinetics, we used existing models of synaptic currents24 and included literature findings on decay time con-

stants, reversal potentials and the relative contribution of AMPA, NMDA, GABAA and GABAB currents, summarized in

Table S1.118,173–176

These models consist of a 2-state Markov process, with recovered and unrecovered states. When a pre-synaptic event oc-

curs (pre-synaptic spike or spontaneous release) the synapse will release if it is the recovered state. If there is release, the syn-

apse will transition to the unrecovered state. The ensemble average response is equivalent to the phenomenological Tsodyks-

Markram model.42,177 The underlying assumptions were derived from the classical model of quantal synaptic release, in which

each synapse is assumed to have N independent release sites, each has a probability p of releasing a single quantum q.178,179

The number of release sites was assumed to be equivalent to the number of synapses per connection.24 The detailed imple-

mentation of the synapse models can be downloaded from the neuron model packages in the Neocortical Microcircuit Portal180

(rrid:SCR_022032).

We modeled short-term synapse plasticity with depressing (E2 and I2) and facilitating synapses (E1), see Figure 2H. In our exper-

imental recordings, in agreement with experimental findings, all existing intrathalamic (between TC, Rt neurons and INs) and

lemniscal connections were depressing,27,171,181–183 while corticothalamic ones were facilitating.64,183–186 When sufficient experi-

mental paired recordings data were available, the parameters of the Tsodyks-Markram model of short-term synaptic plasticity

were fitted (see above). The data used for fitting were the excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic po-

tentials (IPSPs) peaks amplitudes (or EPSCs/IPSCs in the case of voltage-clamp recordings), evoked by stimulating the presynaptic

cell with a train of eight pulses followed by a recovery pulse (see Figure 2G). The parameters were: U - release probability, D - time

constant of recovery from depression, and F - time constant of recovery from facilitation. Postsynaptic data were filtered and decon-

volved for easier automatic identification of the peaks.187 Amulti-objective optimization algorithmwas used to find the values for U, D

and F.157
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Data to fit the UDF parameters was available for some of the pathways: Rt neurons to TCs, IN to TCs, INs to INs and ML to INs

connections; for all the other pathways we followed these generalization rules:

d TC to Rt synapses were shown to be strong, reliable and depressing.182 We used parameters for L4Exc to L4Exc connections

from the neocortical microcircuit model24 as they had the highest release probability (analogous to the U value in the case of

depressing synapses.188

d All uncharacterized inhibitory to inhibitory synapses (i.e. Rt to Rt and Rt to IN) had the same dynamics of an inhibitory-inhibitory

characterized pathway (i.e. IN to IN).

d CT synapses onto first order thalamic nuclei (e.g. VPL, VPM, dorsal part of the lateral geniculate complex) have been consis-

tently reported to be facilitating. As we did not have paired recordings to estimate synapse parameters for CT to TCs, CT to INs

and CT to Rt pathways, we took parameters from excitatory facilitating synapses (E1: L5TTPC-L5MC, Markram et al.24)

d ML inputs to first order sensory thalamic nuclei (e.g. VPM) were shown to be depressing,59,171,183,186 as shown in our ML

to INs recordings. We thus extrapolated the parameters for ML to TC connections from ML to INs ones (for which data

was available).

Synapse dynamic parameters in the model were different for each synapse and drawn for truncated Gaussian distributions.

Spontaneous miniature potentials were modeled as independent Poisson processes at each synapse that triggered release at low

rates (0.01 Hz).

Synapse models
Excitatory synaptic transmission was modeled with AMPA and NMDA receptor kinetics, and GABAA receptors were used for inhib-

itory connections. The rise and decay phases of the currents were described using mono-exponential functions. We used time con-

stants from thalamic experiments performed at 34–35�C, when available, or from cortical synapses models when thalamic-specific

ones were missing. The rise time and decay time constants for AMPA receptors were 0.2 ms and 1.74 ms, respectively.189 For TC to

Rt connections the AMPA decay time constant was 1.58ms andCT afferents to Rt was 2.74ms.190 The rise and decay time constants

of the NMDA component were 0.29 and 43ms.191 Themagnesium concentration was set to 1mM192 and the reversal potential of the

AMPA and NMDA currents was 0 mV. Experimentally measured ratios of NMDA and AMPA conductances were gathered from the

literature and are summarized in Table S1.173,174,190

Inhibitory synaptic transmission was modeled with GABAA receptor kinetics. The rise and decay time constants were 0.2 ms and

8.3 ms, respectively.24 The reversal potential of GABAA current was set to �82 mV for all inhibitory pathways, except for connections

ontopostsynaptic TCneurons,where itwas�94mV, consistentwith lower chloride reversal potentials inTCcompared toRtneurons.193

Constraining synapse conductance values
Synaptic conductance values were optimized by performing in silico paired recordings to match the postsynaptic potential (PSP)

amplitudes measured experimentally whenever data was available, similarly to other morphologically detailed models.24,188 For

each pathway, 50 neuron pairs were simulated, and each pair was recorded for 30 trials. Experimentally characterized values in ro-

dents are summarized in Table S2. For all other pathways, we extrapolated the quantal synapse conductances from similar path-

ways, according to the same generalization principles applied for short-term plasticity parameters (see Table S1).

Modeling gap junctions
Along with excitatory and inhibitory chemical synapses, the microcircuit included detailed gap junction (GJ) connectivity established

between the dendrites of Rt neurons. We used the same touch detection algorithm described above to find appositions between Rt

neuron dendrites and somata. Since we did not have any experimental data on the number of GJs between connected neurons or the

density of GJs (number of GJs per unit length of dendrite or volume), in this first draft we randomly removed a certain fraction of GJs

until we matched data on neuron divergence (Figure 3A). To analyze the number of coupled neurons and their spatial properties, we

reproduced the experimental protocol,45 by analyzing a sample of 33 Rt neurons in a 90 mm vertical slice located at the center of the

microcircuit.

Functionally, GJ were modeled as conductances that coupled the membrane potential of the adjacent morphological compart-

ments (simple resistors). We predicted the value of GJ conductance for all GJs and validated their functional properties by comparing

coupling coefficient values with experiments.43–46

Once the structural properties of GJs-coupled neurons were validated, we performed in silico paired recordings andmeasured the

coupling coefficients for each pair of neurons. We found that the mean coupling coefficients in the model compared well with the

experiments for GJ conductance values of 0.2 nS (nS).

After adding GJs to the circuit, the input resistance of the neurons changed. To guarantee that the electrical properties of the neu-

rons did not change, thus changing the responses to synaptic inputs, we devised an algorithm to compensate for the change in input

resistance.48 The algorithm changed the conductance of the leak current (gpas) to restore the input resistance of the neuron before

adding gap junctions. This compensation resulted in a different gpas value for each neuron.
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Simulation methods and conditions
Simulation software and high-performance computing resources

The reconstructed microcircuit was simulated using software based on the NEURON simulation package194 (RRID:SCR_005393). A

collection of tools and templates were written in order to handle simulation configuration, in silico network experiments and to save

the results. We used the CoreNEURON simulator engine,195 which has been optimized for efficient large-scale simulations. A typical

simulation run of a microcircuit for 3,500 ms of simulation time took �45 min on 16 Intel Xeon 6140 CPUs (288 cores, with

HyperThreading enabled).

Simulating in vivo-like conditions

To simulate spontaneous activity in in vivowakefulness-like states, we activated lemniscal and CT fibers with Poisson spike trains at

25 and 4 Hz, respectively. To find the optimal value of lemniscal and cortical spontaneous rates we started from literature

values196,197 and then explored different combinations until we reached a biologically-plausible level of spontaneous activity in

the model. We considered it as biologically plausible uncorrelated (asynchronous) firing in all cell types. From the literature, we

know that spontaneous activity from L6 corticothalamic afferents is low in spontaneous conditions and is lower than lemniscal ac-

tivity. We lowered the extracellular calcium concentration from 2 mM (in vitro-like conditions) to 1.2 mM, with the effect of reducing

synapse release probabilities and PSPs amplitudes.24 Since the dependence of PSP amplitudes on the extracellular Ca2+ concen-

tration in the thalamus is not known, we assumed that PSPs were dependent on calcium concentration in the same way as unchar-

acterized pathways as previously published (Markram et al.,24 Figure S11 – Intermediate [Ca2+]o dependence). This condition was

used in all simulations of in vivo wakefulness-like activity, if not stated otherwise.

To simulate cortical UP and DOWN states, we removed the background activity from the CT afferents (Figures 4 and S5).

Simulating lightly-anesthetized in vivo-like conditions

To simulate lightly anesthetized in vivo-like states, we followed the same methodology as for in vivo-like conditions, however the

spontaneous firing induced at the thalamus through theML afferents was reduced from 25Hz to 10 Hz to reflect the presumed hyper-

polarizing influence of the anesthetic (Figure 4). After exploring different values for the ML background activity, we found that for the

10 Hz ML background TC cells responded to the stimulus with low-threshold spikes of bursts as shown in the related publication.63

Simulating in vitro-like conditions

To simulate in vitro-like states, all neurons were left at their resting potentials (which ranged between �75 and �70 mV as recorded

experimentally) and the only source of input was the spontaneous synaptic release from intrathalamic, medial lemniscus and cortico-

thalamic synapses (at a rate of 0.01 Hz). The spontaneous synaptic release rate was taken from othermodeling studies. After verifying

that changing this value had no significant effect on the microcircuit network activity, we did not modify it in any simulation condition.

The extracellular calcium concentration was set to 2 mM, as used in our in-vitro experiments.

Simulating depolarization levels

As a first approximation of the action of neuromodulators in the VPL and Rt, we applied constant current injections to the soma of

each neuron. All neurons in the VPL or Rt regions were depolarized to the same target baselinemembrane potential. The amplitude of

the current was different for each neuron, to take into account the different input resistance of each morpho-electrical model.

Simulation analysis

The spectrogram in Figure S4 was calculated using the function scipy.signal.spectrogram, with inputs the sampling frequency of

simulated membrane potential (10 kHz), interval = 5000, overlap = 0.99, and the other parameters with the default values.

Burst probabilities (Figure S4) were calculated as the ratio between the numbers of spikes belonging to a burst and the overall num-

ber of spikes. We considered a spike belonging to a burst when the interspike intervals were% 15 ms and the first spike in the burst

was preceded by a pause R 50ms. For this analysis, we considered neurons that had a baseline activity between 1 and 20 Hz, as

shown in corresponding publication.74

To analyze the percentage of neurons firing for eachm-type during each cycle of the oscillation (Figure 6C) we started by finding the

oscillation peaks. The peaks were extracted from the firing rate histograms as input, using the scipy.signal.find_peaks function. We

then added a peak corresponding to the time of the stimulus injected into Rt neurons (cycle 0). Spikes for each m-type were then

assigned to the different cycles if they occurred within 30 ms of the oscillation peak.

Oscillation strength (Figure 7) was calculated as the maximal value of the power spectral density (PSD). The PSD was obtained

using the function scipy.signal.periodogram.

To calculate the oscillation duration (in ms) we used firing rate histograms for all the neurons and extracted their peaks, using the

scipy.signal.find_peaks function (Figure 7). Peaks were counted only if they were significantly higher than baseline firing rates. Oscil-

lation duration was then calculated as the time difference between the last and the first peak.

To calculate oscillation frequency (Figure 7), we computed the normalized autocorrelation of the firing rate histograms and ex-

tracted the time (oscillation period) corresponding to the first non-zero peak.73 The inverse of the oscillation period corresponded

to the oscillation frequency.
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Table S1

Pathway Synapse type gsyn (nS) τd (ms)
NMDA/AMP

A ratio
USE D F

Rt_RC to
Rt_RC

Inh. Dep. 0.9±0.23 8.3±2.2 NA 0.41±0.14 464±339 54±71

Rt_RC to
VPL_TC

Inh. Dep. 1.1±0.4 8.3±2.2 NA 0.32±0.18 352±46 2±209

Rt_RC to
VPL_IN

Inh. Dep. 0.9±0.23 8.3±2.2 NA 0.41±0.14 464±339 54±71

VPL_TC to
Rt_RC

Exc. Dep. 2.8±0.1 1.58±0.26 0.57 0.86±0.09 671±17 17±5

VPL_IN to
VPL_TC

Inh. Dep. 0.4±0.4 8.3±2.2 NA 0.47±0.18 137±46 239±209

VPL_IN to
VPL_IN

Inh. Dep. 2.7±0.4 8.3±2.2 NA 0.41±0.14 464±339 54±71

ML to
VPL_TC

Exc. Dep. 1.15±0.12 1.74±0.18 0.41 0.3±0.21 2350±315 1±2

ML to
VPL_IN

Exc. Dep. 1.15±0.12 1.74±0.18 0.41 0.48±0.21 690±315 57±53

CT to Rt_RC Exc. Fac. 0.16±0.016 2.74±0.25 0.99 0.09±0.12 138±211 670±830

CT to
VPL_TC

Exc. Fac. 0.16±0.016 1.74±0.18 1.91 0.09±0.12 138±211 670±830

CT to
VPL_IN

Exc. Fac. 0.16±0.016 1.74±0.18 0.99 0.09±0.12 138±211 670±830



Table S1. Synapse kinetics and short-term plasticity parameters, related to Figure 2

Synaptic parameters for all pathways in the model. Quantal synaptic conductance gsyn (in
nanosiemens nS), τd is the decay time constant of AMPA and GABAA currents for excitatory and
inhibitory connections. USE (utilisation of synaptic efficacy, analogous to release probability), D
(time constant of recovery from depression), F (time constant of recovery from facilitation) are
the short-term plasticity parameters. Values are expressed as mean ± standard deviation. All the
parameters were fitted to in-house paired-recordings or generalized from similar pathways.

Table S2

Presynaptic Postsynaptic CV 1st PSP
amplitude,

experiment (mV)

CV 1st PSP
amplitude, model

(mV)

Data source

Rt_RC VPL_TC 0.4600 (n=1) 0.8424 ± 0.3450

(n=47)

In-house

VPL_TC Rt_RC 0.1232 ± 0.0686

(n=11)

0.3089 ± 0.2112

(n=43)

(Gentet and Ulrich,

2003)

VPL_IN VPL_TC 0.5479 ± 0.1744

(n=4)

0.8663 ± 0.386

(n=22)

In-house

VPL_IN VPL_IN 0.5028 ± 0.2783

(n=10)

1.0993 ± 0.4132

(n=49)

In-house

ML VPL_IN 0.5466 ± 0.1195

(n=1)

1.4047 ± 0.7389

(n=49)

In-house

TableS 2. Coefficient of variation (CV) of first PSP amplitudes, related to Figure 2

CV of first PSP amplitudes values as characterized experimentally through in vitro paired
recordings. Values are reported as mean ± standard deviation (of multiple pairs). (Related to Fig.
5C1).



Table S3

Presynaptic Postsynaptic PSP amplitude,
experiment (mV)

PSP amplitude,
model (mV)

Data source

Rt_RC VPL_TC 1.33 ± 0.36 (n=1) 1.31 ± 1.30 (n=47) In-house

VPL_TC Rt_RC 7.4 ± 1.5 (n=11) 6.79 ± 1.30 (n=43) (Gentet and Ulrich,

2003)

VPL_IN VPL_TC 0.55±0.15 (n=4) 1.16 ± 1.56 (n=22) In-house

VPL_IN VPL_IN 1.66±1.44 (n=10) 0.82 ± 0.77 (n=49) In-house

ML VPL_TC 4.58 ± 0.30 (n=11) 3.62 ± 2.30 (n=49) (Mo et al., 2017)

CT VPL_TC 0.085±0.008 (n=3) 0.071 ± 0.022

(n=29)

(Golshani et al.,

2001)

Table S3. Postsynaptic potential (PSP) amplitudes, related to Figure 2

PSP amplitude values as characterized experimentally through in vitro paired recordings. Values
are reported as mean ± standard deviation (of multiple pairs).



Figure S1

Figure S1, morphology diversification, related to Figure 1.

(A) The reconstructed neuron on the left was diversified to generate a sample of unique
morphologies, by introducing variability (jittering in f branch lengths of 0 ± 20% and jittering in
branch rotations of 0° ± 20°, mean ± standard deviation, see Methods) to the branch lengths and
angles (see Methods).



Figure S2



Figure S2. Stimulus-dependent recruitment of reticular nucleus neurons and surround
inhibition of thalamic neurons (in vivo wakefulness-like condition), related to Figure 4.

(A) Simulated sensory inputs with brief activation of increasing numbers of medial lemniscal
fibers (ML). Top: voltage rasters show Rt and VPL responses of a sample of 150 active neurons,
sorted by their vertical position in the microcircuit. Bottom: spiking responses (firing rate
histograms and spike rasters). Note that stimulus-evoked responses in the VPL as well as the
following hyperpolarization increase with increasing stimulus size. (B) Stimulus-response
curves. Response latency decreases with stimulus size (left), while peak firing rates increase the
VPL, as well as in the Rt (right). Mean (lines) and standard deviation (shaded areas) are shown.
The peak firing rate is calculated in the 100 ms following the stimulus and response latency as
the time to first spike after the stimulus (n=1,000 neurons). (C) Stimulus-dependent
hyperpolarization in the VPL. The mean and deepest hyperpolarization in VPL cells are shown
(lines: mean, shaded areas: standard deviation). Note that with increasing stimulus size more
VPL cells are inhibited by Rt neurons and the hyperpolarization becomes stronger. The
hyperpolarization is calculated in a time window of 40-200 ms after the stimulus (same sample
as in B, n=1,000). (D) Topographical activity in a slice through the VPL and Rt showing the
average membrane potentials at different time windows before, during and after the stimulus, as
indicated by colored ticks in A (middle panel), 160 fibers were activated. Time windows of 10
ms starting at the time indicated were used for the average activity. Note that increased activity is
confined to the central part of the VPL in response to the stimulus (t=5 ms), which triggers
spiking activity in the Rt (t=50 ms) in central as well as in peripheral neurons. This result
suggests that the Rt has larger receptive fields compared to the VPL. Consequently (t=50ms), the
central part and the surround in the VPL is inhibited (blue points at t=50ms).



Figure S3



Figure S3. Cortical activation decreases sensory adaptation by depolarizing VPL_TCs and
enhances responses to stimuli at ~10Hz preferentially, related to Figure 5.

(A) Left: Single cell recording of a VPL_TC neuron (3 of 25 repetitions are shown) that
responded to the sensory stimulus (green) with a burst of two spikes. The sensory stimulus was
generated with brief synchronous activation of 160 ML afferent fibers. Right: activation of the
CT afferent fibers (blue) stimulus depolarized the cells and shifted their responses to single
spikes. VPL_TC #2 showed a marked IPSP (arrow) following the stimulus-evoked spike, which
was reduced with cortical activation. CT fibers were activated with noisy input at 4 Hz, 200 ms
before the sensory stimulus to approximate the optogenetic protocol in Mease et al., 2014. (B)
Illustration of different metrics used to quantify subthreshold responses (in a time window of 50
ms after the stimulus to the sensory stimuli (cfr. Mease et al, 2014). (C) Population analysis of
VPL_TC cells (n=50, values are median of the 25 repetitions for each cell) showing the decrease
of EPSP amplitude with cortical activation (EPSPL6). This effect is due to partial inactivation of
the low-threshold Ca2+ conductance, but inhibition from the Rt can’t be excluded. (D) The
amplitude of the EPSPs (both with and without cortical activation) is negatively correlated with
the resting potential of the cell (r=−0.8). This is due to a greater availability of ionic currents
activated at hyperpolarized potentials and greater driving force of excitatory conductances
(whose reversal potential is 0 mV). (E) Correlation between the magnitude of sensory response
change (EPSPL6 − EPSP with sensory stimulus only) and the depolarization induced by the
cortical activation. The line shows the best fit (r=−0.8). This shows that greater cortical activation
corresponds to decreased responses to sensory input (for single stimulation). (F) Single cell
recordings of a VPL_TC neuron (3 of 25 repetitions are shown) with sensory stimulus at 10 Hz
(left) and 20 Hz (right). Note the smaller amplitudes of the EPSPs in response to the 20 Hz
stimulus. (G) Same cell as in F, with activation of cortex (noisy input at 5 Hz). Note a higher
number of spiking failures (red ticks) with 20 Hz sensory stimulation. With 10 Hz stimulus,
cortical activation made the cell fire in response to each pulse of the stimulus (green ticks).



Figure S4



Figure S4. Activating the reticular nucleus increases thalamic bursts and initiates
spindle-like oscillations (in vivo wakefulness-like condition), related to Figure 6.

Spindle-like oscillations are evoked by localized pulse (20 ms) activation of 750 Rt_RC cells
located at the center of the microcircuit. (A) Left: voltage rasters showing spindle-like activity. A
sample of neighboring 25 neurons per each m-type is shown and color-coded according to their
membrane potential. Right: topographical map of activity showing average membrane potential
of Rt and VPL neurons in a 10 ms time window starting at the time indicated. (B) LFP recording
from a central site in the VPL. Note the increased oscillatory activity after the stimulus applied to
the Rt (not shown here). (C) Frequency-time analysis of the LFP in C showing increased power
in the 8-10 Hz frequency range. (D) Example of single cell recordings for 3 cells per m-type.
Note the burst responses in Rt_RCs and the IPSPs-rebound sequences in VPL_TCs. (E) Left:
spike rasters and PSTHs showing the activity of one exemplar Rt_RC neuron (50 trials). Note the
increased activity in response to the stimulus (black dot, 20 ms pulse) and a second peak,
generated by network interactions. Right: Same as in A, for one example VPL_TC, note the
post-inhibitory rebound response ~100 ms after the Rt stimulation. (F) Histogram showing
increased burst probability following the stimulus in VPL_TC (n=100 VPL_TC), as shown in
experiments (Halassa et al., 2011). (G) Left: burst probability in VPL_TCs increases as a result
of Rt_RC stimulus (each dot corresponds to one cell, the same sample as in F, n=100). Right:
analysis of firing rates of VPL_TCs before and after the stimulus, as shown in experiments
(Halassa et al., 2011). Pre-stim./post-stim. data were calculated in the 1s preceding/following the
stimulus

https://www.zotero.org/google-docs/?u7xHyt
https://www.zotero.org/google-docs/?TsOoeO


Figure S5

Figure S5. Spindle-like oscillations cease when simulating the effect of neuromodulation on
thalamic and reticular neurons, related to Figure 7.

(A) Simulated UP and DOWN states evoke reticular and thalamic depolarizations through
afferent input, resulting in the “ping-pong” generation of spindle-like oscillations (as seen in Fig.
11). To approximate the differential effects of neuromodulators (e.g. acetylcholine) onto Rt_RC
and VPL_TC we applied constant currents to depolarize Rt_RC and hyperpolarize VPL_TC
cells. This resulted in spindle-like oscillations (left) being abolished (right). (B) Example single
cell recordings from the simulation in A, note that while Rt_RC cells fire preferentially low
threshold bursts during the cortical UP states (left), they transition to single spike modes when
depolarized (right). The change in Rt_RC firing mode and hyperpolarization of VPL_TC cells
resulted in a significant decrease of large amplitude IPSPs in VPL_TC cells and rebound bursts.
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