Table S1. PK/PD Model Equations

(A) PCCA/PCCB mRNA PK model

$d(A_1)/dt = input - CL_{12}*C_1$
$d(A_2)/dt = CL_{12} * C_1 - CL_{23} * C_2 + CL_{32} * C_3 - CL_{20} * C_2$
$d(A_3)/dt = CL_{23} * C_2 - CL_{32} * C_3$
$C_1 = A_1/V$
$C_2 = A_2/V_2$
$C_3 = A_3/V$
$C_{13} = C_1 + C_3$
$CL_{12} = tvCL_{12} * (BW/0.025) **cla$
$CL_{32} = tvCL_{32} * (BW/0.025) **cla$
$CL_{23} = tvCL_{23} * (BW/0.025) **cl\beta$
$CL_{20} = tvCL_{20} * (BW/0.025) **cl\beta$
V = tvV * (BW/0.025) **1
$V_2 = tvV_2 * (BW/0.025) **1$

A₁, amount in compartment 1 (plasma compartment); A₂, amount in compartment 2 (tissue compartment); A₃, amount in compartment 3 (plasma compartment); BW, body weight; C₁, concentration in compartment 1; C₂, concentration in compartment 2 (tissue compartment); C₃, concentration in compartment 3; CL₁₂, clearance from compartment 1 to compartment 2; CL₂₀, tissue elimination clearance; CL₂₃, clearance from compartment 2 to compartment 3; CL₃₂, clearance from compartment 3 to compartment 2; V, distribution volume of compartment 1 and 3; V₂, distribution volume of compartment 2; Cl₃, total sum of concentrations (C₁ and C₃) in the plasma compartments; cl_α, allometric exponent for CL₁₂ and CL₃₂ parameters (clearance from plasma); cl_β, allometric exponent for CL₂₃ and CL₂₀ parameters (clearance from tissue); mRNA, messenger RNA; PD, pharmacodynamic; PK, pharmacokinetic; tv, typical value.

(B) PCC PD model

$d(C_e)/dt = K_{e0} * (C_{13} - C_e)$
$d(PCC)/dt = K_{syn} * C_e + K_q * (PCP-PCC) - K_{deg} * PCC$
$d(PCP)/dt = K_q^*(PCC-PCP)$
$K_{syn} = C_e * Slope$

 C_{13} , plasma concentration of mRNA-3927; C_e , effect compartment concentration of mRNA-3927; K_{deg} , PCC protein degradation rate; K_{e0} , equilibrium rate constant for effect compartment; K_q , intercompartmental rate constant for PCC protein; K_{syn} , PCC protein synthesis rate; PCC, propionyl CoA carboxylase; PCP, PCC protein in the peripheral compartment; PD, pharmacodynamic.

(C) 2-MC, 3-HP, C3/C2 PD model

$2-MC = E0_{2-MC} + [2-MC_{base} * (1 - I_{max} * PCC/(IC50_{2-MC} + PCC))]$
$3-HP = E0_{3-HP} + [3-HP_{base} * (1 - I_{max} * PCC/(IC50_{3-HP} + PCC))]$
$C3/C2 = E0_{C3/C2} + [C3/C2_{base} * (1 - I_{max} * PCC/(IC50_{C3/C2} + PCC))]$

2-MC, 2-methylcitrate; 2-MC_{base}, baseline 2-MC amenable to suppression; 3-HP, 3-hydroxypropionate; 3-HP_{base}, baseline 3-HP; C2, acetyl carnitine; C3, propionyl carnitine; C3/C2_{base}, baseline C3/C2; E0_{2-MC}, plasma 2-MC levels not affected by mRNA-3927; E0_{3-HP}, plasma 3-HP levels not affected by mRNA-3927; E0_{C3/C2}, plasma C3/C2 levels not affected by mRNA-3927; IC50_{2-MC}, PCC concentration needed for 50% of maximal 2-MC reduction; IC50_{3-HP}, PCC concentration needed for 50% of maximal 3-HP reduction; IC50_{C3/C2}, PCC concentration needed for 50% of maximal C3/C2 reduction; I_{max}, maximum inhibition; PCC, propionyl CoA carboxylase; PD, pharmacodynamic.