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Supplementary Material1

Parameter Estimation2

We estimated the parameters of our mathematical model using the differential-evolution Markov3

chain Monte Carlo (MCMC) zs sampler (MCMC-DEzs) (ter Braak and Vrugt, 2008). We initially run4

few MCMC-DEzs for 3,000 to 4,000 iterations, and we chose one run per analyses to provide initial5

conditions for subsequent longer runs. Because of computational resources, we run several longer6

MCMC-DEzs ranging from 10,000 to 15,000 iterations using different initial conditions depending7

on the analyses. These longer MCMC-DEzs were run in parallel using the computing resources of8

the Open Science Grid (OSG) (Pordes et al., 2007; Sfiligoi et al., 2009). We merged from 4 to 159

independent runs (also depending on the analyses) in order to have two sets of runs to compare10

posterior distributions for each parameter and assess convergence of the chains. We also used the11

Gelman diagnostics to check for convergence.12

The calculation of the likelihood used in the MCMC-DEzs was carried out using the function colik13

in R package phydynR version 0.1 (Volz, 2017). This function implements the structured coalescent14

model (SCM) (Volz, 2012) which model each HIV-1 lineage in the phylogeny assuming that each15

node in the phylogenetic tree corresponds to a single transmission event. For the calculation of16
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the likelihood we provided a demographic model using the build.demographic.process function in17

phydynR, and we set the initial and end time of the calculations to 1978 and 2014, respectively.18

For a list of parameters we estimated and their corresponding prior see Table S1.19

Table S1: Summary of parameters estimated and MCMC priors

Parameter Prior
Transmission rate parameter of linear function gp0 Gamma(3, 3/0.1)
Transmission rate parameter of linear function gp1 Gamma(3, 3/0.1)
Transmission rate parameter of linear function gp2 Gamma(3, 3/0.1)
Linear function interval (time) for gp U(1978, 2014)
Transmission rate parameter of linear function msm0 Gamma(3, 3/0.1)
Transmission rate parameter of linear function msm1 Gamma(3, 3/0.1)
Transmission rate parameter of linear function msm2 Gamma(3, 3/0.1)
Linear function interval (time) for msm U(1978, 2014)
Risk ratio of gpm to transmit to gpf (ψ) U(0.5, 2)
Importation rate Exp(30)
Effective population size of src Exp(1/100)
Probability of infected gpf to transmit to a gpm (p) Beta(16, 4)
Probability of infected msm to transmit to a msm (q) Beta(16, 4)
Initial number of infected msm Exp(1/3)
Initial number of infected gp Exp(1/3)
Removal rate (γ) Fixed at 1/10

Prevalence and Likelihood Calculation20

We computed a statistic to calculate the proportion of infected heterosexual reproductive aged men21

(gpm) that are msm that we could compare to our mathematical model. For that we used available22

HIV-1 prevalence data for gpm in 2010 (4.0%, 95% CI: 14% – 80%) and for msm in 2016 (29.7%,23

95% CI: 21.3% – 38.1%) in Dakar, Senegal (Mukandavire et al., 2018). We also used surveillance24

data on the proportion of men who are msm (1.2%) (Mukandavire et al., 2018), and we assumed25

that this proportion was independent of the estimated HIV prevalence for gpm and msm. Using this26

information, we have:27

X = q × pmsm/(q × pmsm + (1 − q) × pm) (1)

Where q is the proportion of males who are msm; pmsm is HIV prevalence in msm; and pm is28

HIV prevalence in gpm. We also extrapolated and assumed that msm HIV prevalence in 2010 was29

the same as in 2016.30

We then approximate the standard deviation of X to a normal distribution, and recomputed31

X for many replicates of q, pm and pmsm using the differential-evolution Markov chain Monte32

Carlo zs sampler. We also calculated the “observed” X (XOBS) for 2010 in our phylodynamic33

analysis, and the mean and standard deviation of X. Using this information we added the term34

dnorm(Xobs,Xmean,Xsd, log = TRUE) to the calculation of the likelihood. See scripts available35

at https://github.com/thednainus/senegalHIVmodel for further information on how we imple-36

mented these calculations in R.37
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Statistical Analyses38

After estimating the parameters of our mathematical model (Table S1), we calculated statistics of39

interest in molecular epidemiology. We calculated these statistics using the MCMC-DEzs posterior40

distribution, after removing the burnin, and for maximum a posteriori (MAP) estimates. Note41

that in SCM as implemented in phydynR, we provided the ordinay differential equations (ODEs) as42

matrices for birth and migration rates, and a vector for the removal rate (Volz, 2012). The birth43

matrix represents the number of HIV transmissions within the different sub-populations or demes44

(gpf, gpm, msm and src). Similarly, the migration matrix represents allowed transmissions from one45

sub-population/deme to another sub-population/deme, for example, transmissions from gpm to gpf.46

For each parameter estimates in the posterior distribution, and for the MAP, we solved a de-47

mographic model using phydynR and estimated the birth and migration matrices, and the effective48

number of infections for each time point from 1978 to 2014.49

In summary, the statistics we calculated for the dynamics of HIV in Senegal were:50

• The population attributable fraction (PAF) for each group: gpf, gpm and msm, which are51

represented by each row in the birth matrix;52

• The recent proportion of infections in one group attributable to another group. For example:53

proportion of infections in gpf attributable to msm;54

• The effective number of infections for each group: gpm, gpf and msm.55

Results56

Below are the plots for the effective number of infections and population attributable fraction (PAF)57

for each variation of the model not depicted in the main text.58

For the individual analyses for subtype CRF 02 AG and subtype C, the following applies:59

• Model 1: We assigned each sequence to its respective risk-group in the phylogenetic tree a60

value of 1.0 (100% in the respective self-reported risk group);61

• Model 2: We assumed some uncertainty in the self-reported gpm by assigning to every gpm62

sequence a value of 0.5 (50%) of being gpm and 0.5 (50%) of being msm;63

• Model 3: We assigned each sequence to its respective risk-group in the phylogenetic tree a64

value of 1.0 (100% in the respective self-reported risk group) and added the prevalence term65

to the calculation of the likelihood. This plot is only shown in the main text only;66

• Model 4: We assumed some uncertainty in the self-reported gpm by assigning to every gpm67

sequence a value of 0.5 (50%) of being gpm and 0.5 (50%) of being msm. We also added the68

prevalence term to the calculation of the likelihood.69

For the combined analyses using data from subtypes B, C and CRF 02 AG the following applies:70

• Model 1: We assigned each sequence to its respective risk-group in the phylogenetic tree a71

value of 1.0 (100% in the respective self-reported risk group);72

• Model 2: We removed all gpm sequences from the phylogenetic tree;73

• Model 3: We assumed some uncertainty in the self-reported gpm by assigning to every gpm74

sequence a value of 0.5 (50%) of being gpm and 0.5 (50%) of being msm;75
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• Model 4: We assigned each sequence to its respective risk-group in the phylogenetic tree a76

value of 1.0 (100% in the respective self-reported risk group) and added the prevalence term77

to the calculation of the likelihood. This plot is only shown in the main text only;78

• Model 5: We removed all gpm sequences from the phylogenetic tree and added the prevalence79

term to the calculation of the likelihood;80

• Model 6: We assumed some uncertainty in the self-reported gpm by assigning to every gpm81

sequence a value of 0.5 (50%) of being gpm and 0.5 (50%) of being msm and added the82

prevalence term to the calculation of the likelihood.83

Subtype C: Model 284

For subtype C model 2 we noticed that the MCMC runs for three parameters representing the linear85

function for msm did not converge to the same posterior distribution. This could be attributable86

to non-identifiability of these parameters. For MCMC posterior probability plots, see analyses/87

results/plots/mcmc_runs within the GitHub repository for the Senegal analyses. https://github.88

com/thednainus/senegalHIVmodel.89

To better understand if this was a potential non-identifiability problem, we solved PAF and effec-90

tive number of infections using both results from the MCMC posterior distributions. Results were91

very similar as observed at results/plots/plots_withMaleX/subtypeC_model2 in the GitHub92

repository https://github.com/thednainus/senegalHIVmodel.93

Effective Number of Infections94

4



Figure S1: Effective number of infections for subtype CRF 02 AG. Plots showing the pro-
portion of the effective number of infections for gpf, gpm and msm. MAP = maximum a posteriori.
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Figure S2: Effective number of infections for subtype C. Plots showing the proportion of the
effective number of infections for gpf, gpm and msm. MAP = maximum a posteriori.
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Figure S3: Effective number of infections for combined analyses. Plots showing the propor-
tion of the effective number of infections for gpf, gpm and msm. MAP = maximum a posteriori.
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Figure S4: Effective number of infections for combined analyses. Plots showing the propor-
tion of the effective number of infections for gpf, gpm and msm. MAP = maximum a posteriori.
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Population attributable fraction95

Figure S5: Population attributable fraction for subtype CRF 02 AG. Plots showing the
population attributable fraction for gpf, gpm and msm. Point estimates and error bars in the last
plot represents 1-year PAF estimated for MSM in Mukandavire et al. (2018). MAP = maximum a
posteriori.
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Figure S6: Population attributable fraction for subtype C. Plots showing the population
attributable fraction for gpf, gpm and msm. Point estimates and error bars in the last plot represents
1-year PAF estimated for MSM in Mukandavire et al. (2018). MAP = maximum a posteriori.
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Figure S7: Population attributable fraction for the combined analyses. Plots showing the
population attributable fraction for gpf, gpm and msm. Point estimates and error bars in the last
plot represents 1-year PAF estimated for MSM in Mukandavire et al. (2018). MAP = maximum a
posteriori.
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Figure S8: Population attributable fraction for the combined analyses. Plots showing the
population attributable fraction for gpf, gpm and msm. Point estimates and error bars in the last
plot represents 1-year PAF estimated for MSM in Mukandavire et al. (2018). MAP = maximum a
posteriori.
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