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Supplementary Information 

Pervasive Downward Bias in Estimates of Liability-Scale Heritability in 
Genome-Wide Association Study Meta-Analysis: A Simple Solution 

 

S1. Properties of the Standard GWAS Model 

The standard additive GWAS model estimates the marginal effect size, b, from the linear regression 

phenotype y on genetic variant x, can be written as: 

y = bx + e   . 

The sampling variance 𝜎
ଶ (i.e. the squared standard error, SE) of the b estimate is given as: 

𝜎
ଶ ൌ ሺ𝑆𝐸ሻଶ ൌ  

𝜎ଶ

𝜎௫ଶ𝑛
ൌ  
𝜎௬ଶ െ 𝜎௫ଶሺ𝑏ଶሻ

𝜎௫ଶ𝑛
   , 

where 𝜎ଶ is the residual variance of y, n is the sample size, 𝜎௬ଶ is the variance of y, and 𝜎௫ଶ is the variance 

of the variant. Without loss of generality, we assume that y and x have each been standardized to mean 0, 

and standard deviation 1, such that 𝜎
ଶ reduces to: 

𝜎
ଶ ൌ ሺ𝑆𝐸ሻଶ ൌ  

𝜎ଶ

𝑛
ൌ  

1 െ 𝑏ଶ

𝑛
   . 

Because GWAS effect sizes for complex traits are extremely small, 1 െ 𝑏ଶ ൎ 1 such that: 

𝜎
ଶ ൌ ሺ𝑆𝐸ሻଶ ൎ

1
𝑛

   , 

𝑍 ൌ
𝑏
𝑆𝐸

ൌ
𝑏
1
√𝑛

ൌ 𝑏√𝑛   , 

𝑍ଶ ൌ 𝜒ଶ ൌ 𝑛𝑏ଶ   . 

 

S2. Estimating Heritability and Genetic Covariance from GWAS Summary Statistics 

We can model K phenotypes and M SNPs measured in N individuals according to the equation: 

𝑦, ൌ 𝑥,𝛽,  𝜖, 

where  𝑦𝑖,𝑘is the score for person i on the standardized phenotype k, 𝑥𝑖,𝑗is the standardized genotype for 

person i on SNP j, 𝛽𝑗,𝑘 is the true standardized effect size for SNP j on phenotype k, and 𝜖𝑖,𝑘 is the 

residual for person i on phenotype k. This model can be written in matrix form as: 

𝑌 ൌ 𝛸𝛣  𝐸 
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where Y is an N× K matrix of standardized scores for person i on phenotype k, X is an N×M matrix of 

standardized genotypes for person i on SNP j, B is an M×K matrix of true standardized genotype effect 

sizes for SNP j on phenotype k, and E is an N×K matrix of residuals for person i on phenotype k. 

Assuming independence of genotypes 𝑥𝑖,𝑗 from one another, but incorporating each genotype’s 

average linkage disequilibrium with the others for model estimation, LD Score regression1–3 (LDSC) is 

used to model βj,k as phenotype-specific random effects, varying over SNPs, with 𝔼ሾBሿ ൌ 0 and 𝑐𝑜𝑣ሾBሿ ൌ
ଵ

ெ
𝑆.  The diagonal elements of S contain the SNP-based heritability (ℎௌே

ଶ ሻ, and the off-diagonal elements 

of S contain the genetic covariances (𝜎) between phenotypes, i.e. the genetic correlations between 

phenotypes scaled relative to the SNP heritabilities of the respective phenotypes. The elements of S are 

estimated from GWAS summary statistics by regressing the product of Z statistics for the linear 

regression of phenotypes 1 and 2 on SNP j on the LD score of SNP j and solving for 𝜎 as follows: 

𝔼ൣ𝑍ଵ𝑍ଶ൧ ൌ ඥ𝑁ଵ𝑁ଶ
𝜎
𝑀
ℓሺ𝑗ሻ 

𝜌𝑁௦
ඥ𝑁ଵ𝑁ଶ

 𝑎   , 

where N1 and N2 are the sample sizes for phenotypes 1 and phenotypes 2, M is the number of SNPs, ℓ(j) is 

the LD score of SNP j (that is, the sum of squared correlations between SNP j and all other SNPs in the 

reference panel), Ns is the number of individuals included in both GWAS samples, ρ is the phenotypic 

correlation within the overlapping samples, and a is a term representing unmeasured sources of confounding 

such as shared population stratification across GWASs. When the Z statistics for the same phenotype are 

double entered into the left-hand side of the above equation, such that 𝔼ൣ𝑍ଵ𝑍൧ becomes 𝔼ൣ𝑍
ଶ൧ ൌ 𝔼ൣ𝜒

ଶ൧, 

the equation reduces to the univariate LDSC model, and 𝜎 becomes an estimate of ℎௌே
ଶ , as follows 

𝔼ൣ𝑍
ଶ൧ ൌ 𝔼ൣ𝜒

ଶ൧ ൌ 𝑁
ℎௌே
ଶ

𝑀
ℓሺ𝑗ሻ  𝑎  1   . 

Without loss of generality, we focus here on the univariate LDSC model.  

The ℎௌே
ଶ  estimate in LDSC is determined from the LDSC Slope via the coefficient 𝑁

ೄಿು
మ

ெ
. Noting 

that 
ೄಿು
మ

ெ
 is the average variance explained per SNP, it follows that: 

𝐿𝐷𝑆𝐶 𝑆𝑙𝑜𝑝𝑒 ൌ 𝑁 𝑣𝑎𝑟൫𝛽,൯ ൌ 𝑁𝛽ఫ,
ଶതതതതത 

Noting further that LD Slope relates the LD score to the squared Z statistic, 𝔼ൣ𝑍
ଶ൧, we can see that the 

foundation of this association is the simple relation between Z and the standardized linear regression 

coefficient, derived earlier as: 

𝑍ଶ ൌ 𝑛𝑏ଶ   . 

For GWAS of binary traits, the heritability estimate from the standard LDSC equation produces an 

estimate of “observed scale” SNP-based heritability that depends on the sample prevalence, which for 
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ascertained samples, will not correspond to the population prevalence and may vary considerably across 

studies. This observed scale SNP-based heritability can be transformed into a more interpretable liability-

scale SNP-based heritability estimate; i.e. the heritability of the continuous underlying liability toward the 

binary outcome that does not depend on sample prevalence. Liability-scale heritability ሺℎ
ଶሻ can be 

computed from observed scale heritability ሺℎଶሻ as:4–6 

ℎ
ଶ ൌ ℎଶ

𝑃ଶሺ1 െ 𝑃ሻଶ

𝜙ଶ𝑣ሺ1 െ 𝑣ሻ
   , 

or more directly computed in the reduced form LDSC equation for binary traits as follows: 

𝔼ൣ𝜒
ଶ൧ ൌ

𝜙ଶ

𝑃ଶሺ1 െ 𝑃ሻଶ
𝑣ሺ1 െ 𝑣ሻ𝑁  

ℎ
ଶ

𝑀
ℓሺ𝑗ሻ  𝑎  1   , 

where 𝑣 is the sample prevalence, P is the population prevalence, and 𝜙 is the height of the standard normal 

density of at the threshold corresponding to P. We compare the LDSC slope to the 𝜒ଶ statistic for the 

transformed regression coefficient appropriate for binary traits in section S4. 

 

S3. GWAS Meta-Analysis of Quantitative Traits 

An inverse variance weighted meta-analysis can be used to combine effect size estimates, 𝑏, across k 

independent sets of GWAS summary statistics using weights 𝑤 ൌ
ଵ

ఙ್ೖ
మ . (de la Fuente et al.7 formally 

demonstrate the equivalence of inverse-variance weighted meta-analysis of effect sizes and sample-size 

weighted meta-analysis of Z statistics.) For continuously distributed phenotypes (quantitative traits), 

effect sizes from linear regression are appropriate to combine directly. In this circumstance, 
ଵ

ఙ್ೖ
మ ൎ 𝑛  such 

that: 

𝑏௩ ௩ ൌ
∑𝑤𝑏
∑𝑤

ൌ   

∑ 1
𝜎ೖ
ଶ 𝑏

∑ 1
𝜎ೖ
ଶ

ൌ
∑𝑛𝑏
∑𝑛

   , 

𝑆𝐸ೡ ೡೌೝ
ൌ

1

ඥ∑𝑤
ൌ  

1

ඨ∑
1
𝜎ೖ
ଶ

ൌ
1

ඥ∑𝑛
   , 

𝑍௩ ௩ ൌ  
𝑏௩ ௩

𝑆𝐸ೡ ೡೌೝ

ൌ
𝑏௩ ௩

1
ඥ∑𝑛

ൌ  𝑏௩ ௩ට𝑛    , 

where 𝑏௩ ௩ is the fixed effects meta-analytic estimate of b. It follows that: 

𝜒௩ ௩
ଶ ൌ 𝑍௩ ௩

ଶ ൌ  𝑏௩ ௩
ଶ 𝑛    , 
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which can be compared to the form of the LDSC slope for continuous traits: 

𝐿𝐷𝑆𝐶 𝑆𝑙𝑜𝑝𝑒 ൌ 𝛽ఫ,
ଶതതതതത 𝑁  , 

thus indicating that when using meta-analytic summary statistics for traits analyzed via linear GWAS, 

∑𝑛 (i.e., the total sample size) is appropriate to enter for N in LDSC, as is standard practice.  

 

S4. GWAS Meta-Analysis of Binary Traits 

When the GWAS phenotype is a binary trait, the effect sizes, 𝑏, from linear regression must be 

transformed such that they are comparable metrics across GWAS before they can be combined via meta-

analysis. This is of particular relevance for ascertained samples (where cases are typically oversampled) 

in which the degree of ascertainment varies across contributing GWAS. This is because, under a standard 

polygenic model of disease liability, the linear slope relating the allele count to the binary phenotype (the 

slope of the so-called linear probability function) depends on the sample prevalence. In contrast, because 

odds ratios are not dependent on sample prevalence, the logistic regression coefficient is an appropriate 

effect for placing GWAS on the same metric. In the context of GWAS of complex traits where individual 

SNP effects are extremely small, the regression coefficient for the logistic regression of the binary 

phenotype on the standardized variant (𝑏௧ ௌ்) can be closely approximated from the coefficient from 

the linear regression of the standardized binary phenotype on the standardized variant X (𝑏 ௌ்) as8,9 

𝑏௧ ௌ் ൎ
𝑏 ௌ்

ඥ𝑣ሺ1 െ 𝑣ሻ
   , 

𝜎 ೄವ
ଶ ൌ ሺ𝑆𝐸 ೄವ

ሻଶ ൎ
𝜎ೌೝ ೄವ
ଶ

𝑣ሺ1 െ 𝑣ሻ
ൌ  

1
𝑣ሺ1 െ 𝑣ሻ𝑛

   , 

𝑍 ൌ
𝑏௧ ௌ்

𝑆𝐸 ೄವ

ൌ
𝑏௧ ௌ்

1
ඥ𝑣ሺ1 െ 𝑣ሻ𝑛

ൌ 𝑏௧ ௌ்ඥ𝑣ሺ1 െ 𝑣ሻ𝑛  , 

where v is the proportion of cases, such that v(1-v) is the observed variance of the binary phenotype.  

We use this relation to derive a corrected linear effect size, 𝑏∗, that would have been obtained had the 

case-control GWAS been on a balanced sample (i.e. 50% cases, 50% controls). We compute 𝑏∗ by 

substituting .5 for v into the equation approximating logistic regression from linear regression: 

𝑏௧ ௌ் ൎ
𝑏 ௌ்

ඥ𝑣ሺ1 െ 𝑣ሻ
 ൌ

𝑏∗

ඥ. 5ሺ1 െ .5ሻ
   , 

ඥ. 5ሺ1 െ .5ሻ
𝑏 ௌ்

ඥ𝑣ሺ1 െ 𝑣ሻ
 ൌ 𝑏∗   , 

𝑏∗ ൌ .5
𝑏 ௌ்

ඥ𝑣ሺ1 െ 𝑣ሻ
   ,  
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𝑍 ൌ 𝑏௧ ௌ்ඥ𝑣ሺ1 െ 𝑣ሻ𝑛 ൌ
𝑏∗

ඥ. 5ሺ1 െ .5ሻ
ඥ𝑣ሺ1 െ 𝑣ሻ𝑛  ൌ  2𝑏∗ඥ𝑣ሺ1 െ 𝑣ሻ𝑛  , 

therefore, 

𝑍ଶ ൌ  ሺ𝑏∗ሻଶ𝑣ሺ1 െ 𝑣ሻ4𝑛   . 

The SE of 𝑏∗ is derived as: 

𝑍 ൌ 2𝑏∗ඥ𝑣ሺ1 െ 𝑣ሻ𝑛 ൌ
∗

ௌா್∗
, 

       𝑆𝐸∗ ൌ
ଵ

ଶඥ௩ሺଵି௩ሻ
 ,   

    𝜎∗
ଶ ൌ ሺ𝑆𝐸∗ሻଶ ൌ

ଵ

ସ௩ሺଵି௩ሻ
 . 

Noting that the standard term for SE in OLS is 
ଵ


, it is sensible to refer to 4𝑣ሺ1 െ 𝑣ሻ𝑛 as the effective 

sample size (EffN) for a balanced design. 

Because  𝑏∗ represents the effect size that would have been obtained had all studies had balanced 

ascertainment, they are on the same scale as one another and can be meta-analyzed. We can specify the 

inverse weighted meta-analysis of 𝑏∗, its SE, and its Z and 𝜒ଶ statics as: 

𝑏௩ ௩
∗ ൌ

∑𝑤𝑏
∗

∑𝑤
ൌ
∑ 4𝑣ሺ1 െ 𝑣ሻ𝑛𝑏

∗

∑ 4𝑣ሺ1 െ 𝑣ሻ𝑛
  ൌ

∑ 4𝑣ሺ1 െ 𝑣ሻ𝑛 . 5
𝑏 ௌ்

ඥ𝑣ሺ1 െ 𝑣ሻ
∑ 4𝑣ሺ1 െ 𝑣ሻ𝑛

ൌ   
∑ඥ𝑣ሺ1 െ 𝑣ሻ𝑛𝑏 ௌ் 

2∑𝑣ሺ1 െ 𝑣ሻ𝑛
, 

𝑆𝐸ೡ ೡೌೝ
∗ ൌ

1

ඥ∑𝑤
ൌ   

1

ඥ∑ 4𝑣ሺ1 െ 𝑣ሻ𝑛
   , 

𝑍௩ ௩
∗ ൌ  

𝑏௩ ௩
∗

𝑆𝐸ೡ ೡೌೝ
∗

ൌ
𝑏௩ ௩
∗

1
ඥ∑ 4𝑣ሺ1 െ 𝑣ሻ𝑛

ൌ  𝑏௩ ௩
∗ ට 4𝑣ሺ1 െ 𝑣ሻ𝑛   , 

where 𝑏௩ ௩
∗  is the fixed effects meta-analytic estimate of 𝑏∗. Note that, apart from a difference in 

scaling constants, this is equivalent to an inverse-variance weighted meta-analysis of the logistic 

regression coefficients themselves. 

We can see that the relation between squared Z statistics and the squared meta-analytic effect size 

is governed by: 

𝜒∗௩ ௩
ଶ ൌ 𝑍∗௩ ௩

ଶ ൌ  𝑏∗௩ ௩
ଶ  4𝑣ሺ1 െ 𝑣ሻ𝑛   

ൌ 𝑏∗௩ ௩
ଶ 𝐸𝑓𝑓𝑁 , 

which can be compared to the form of the LDSC slope 

𝐿𝐷𝑆𝐶 𝑆𝑙𝑜𝑝𝑒 ൌ 𝛽ఫ,
ଶതതതതത 𝑁  , 



6 

thus indicating that ∑𝐸𝑓𝑓𝑁 is appropriate to use for LDSC of binary traits to produce an unbiased 

estimate of observed scale heritability for a balanced design, ℎ∗
ଶ .liability-scale heritability can then be 

obtained from the following, which now only includes terms that are constant across samples: 

ℎ
ଶ ൌ ℎ∗

ଶ 𝑃ଶሺ1 െ 𝑃ሻଶ

𝜙ଶ. 5ሺ1 െ .5ሻ
    

Liability scale heritability can similarly be derived for the reduced form equation by substituting 

∑𝐸𝑓𝑓𝑁 for N and setting 𝑣 to .5 to reflect the fact that EffN corresponds to a balanced design, yielding 

the following for the LDSC slope: 

𝐿𝐷𝑆𝐶 𝑆𝑙𝑜𝑝𝑒 ൌ
𝜙ଶ

𝑃ଶሺ1 െ 𝑃ሻଶ
𝑣ሺ1 െ 𝑣ሻ ቀ𝐸𝑓𝑓𝑁ቁ

ℎ
ଶ

𝑀
 ൌ  

𝜙ଶ

𝑃ଶሺ1 െ 𝑃ሻଶ
. 5ሺ1 െ .5ሻ

ℎ
ଶ

𝑀
4𝑣ሺ1 െ 𝑣ሻ𝑛

ൌ
𝜙ଶ

𝑃ଶሺ1 െ 𝑃ሻଶ
ℎ
ଶ

𝑀
ቀ𝑣ሺ1 െ 𝑣ሻ𝑛ቁ   . 

Of particular relevance here is that the term in the LDSC equation that involves the product of sample 

size, case proportions, and control proportions must be derived via an n-weighted summation of 

individual case proportions for each set of summary statistics in the meta-analysis, not as the product of 

total sample size and the proportion of total cases and controls in the full, meta-analytic sample. In other 

words: 

𝑣ሺ1 െ 𝑣ሻ𝑛 ്
ሺ∑𝑣 𝑛 ሻ
∑𝑛

ሺ∑ሺ1 െ 𝑣ሻ 𝑛ሻ
∑𝑛

ቀ𝑛ቁ ൌ ൬
𝑁௦௦ ்௧

𝑁்௧
൰ ൬
𝑁௧௦ ்௧

𝑁்௧
൰𝑁்௧ , 

or similarly put: 

𝐸𝑓𝑓𝑁 ൌ4𝑣ሺ1 െ 𝑣ሻ𝑛 ് 4
ሺ∑ 𝑣 𝑛  ሻ
∑𝑛

ሺ∑ሺ1 െ 𝑣ሻ 𝑛ሻ
∑𝑛

ቀ𝑛ቁ

ൌ 4 ൬
𝑁௦௦ ்௧

𝑁்௧
൰ ൬
𝑁௧௦ ்௧

𝑁்௧
൰𝑁்௧ . 

The equations on the left of the inequalities represent the correct terms, whereas the equations on right of 

the inequalities represent how the sample size and proportion of cases in meta-analysis are conventionally 

entered into LDSC when calculating ℎ
ଶ from GWAS meta-analysis of binary phenotypes. In other words, 

the inequality indicates that the conventional approaches are incorrect.  

 

S5. Combined GWAS Meta-Analysis of Continuous and Binary Traits 

Theoretical Justification  

Researchers may seek to meta-analyze summary statistics from a GWAS (or GWAS meta-analysis) of a 

binary variable with summary statistics from a GWAS (or GWAS meta-analysis) of a continuous 

variable, under the assumption that the binary and continuous variables represent different approaches to 

measuring the same trait. For example, a researcher may be interested in meta-analyzing case-control 
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GWAS of major depressive disorder with a continuous measure of depression symptomology assuming 

that the diagnosis of major depressive disorder represents individuals who exceed a diagnostic threshold 

along the depression symptomology distribution. Here we formally describe a principled method for 

obtaining unbiased SNP-based heritability estimates.  

To integrate continuous and binary GWAS at the level of the heritability model, we rely on the 

assumption that the binary and continuous variables represent different approaches to measuring the same 

trait, such that liability-scale heritability of the binary variable is on a comparable scale to the heritability 

of the continuous variable. For the binary summary statistics, the liability-scale heritability relates to the 

LDSC slope as: 

 𝐿𝐷𝑆𝐶 𝑆𝑙𝑜𝑝𝑒 ൌ
ೌ್
మ

ெ

థమ

మሺଵିሻమ
ሺ∑ 𝑣ሺ1 െ 𝑣ሻ𝑛ሻ ൌ

ೌ್
మ

ெ

థమ

ସమሺଵିሻమ
ሺ∑𝐸𝑓𝑓𝑁ሻ. 

and for the continuous summary statistics, the heritability relates to the LDSC slope as: 

𝐿𝐷𝑆𝐶 𝑆𝑙𝑜𝑝𝑒௧ ൌ

మ

ெ
ሺ∑𝑛௧ሻ   , 

where the subscript bin refers to the terms corresponding to the binary variables for which a liability 

threshold model is used, and the subscript cont refers to the continuous variable. 

When the summary data have been appropriately meta-analyzed across (non-overlapping) binary 

and continuous GWAS at the SNP level, the quantities by which the respective 
మ

ெ
  terms are multiplied in 

the LDSC Slope for continuous and binary variables can be summed, as in S4, such that a single 

interpretable heritability estimate, ℎௗ
ଶ  (corresponding to both the continuous and liability-scales, 

which are expected to be equivalent), can be obtained from the meta-analytic summary statics, i.e.: 

𝐿𝐷𝑆𝐶 𝑆𝑙𝑜𝑝𝑒ା௧ ൌ
್
మ

ெ
ቆሺ∑𝑛௧ሻ 

థమ

ସమሺଵିሻమ
ሺ∑𝐸𝑓𝑓𝑁ሻቇ   . 

The 𝜙ଶ term can be computed directly, by first calculating the threshold, t, corresponding to P (e.g. using 

the qnorm function in R) and then by calculating the density of the cumulative normal distribution 

corresponding to t (e.g. using the dnorm function in R). Thus, in practice, the entire quantity by which  
మ

ெ
 

is multiplied can be computed and input as the N directly in LDSC, treating the summary statistics as 

having been derived from a continuous trait. This will produce a meta-analytic estimate of the heritability 

that is on the continuous scale and need not be further transformed. 

Simulations of GWAS Meta-Analysis of Continuous and Binary Traits 

 In a separate set of simulations, we examined the proposed approach described directly above for 

estimating SNP-based heritability for meta-analyses of binary and continuous measures of the same trait. 

All simulation conditions began by simulating GWAS summary statistics for one binary trait and one 

continuous trait following the general formula outlined in Eqs. 8 and 9 of the main text. These binary and 
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continuous outcomes were set to have a genetic correlation of 1, and the liability-scale heritability for the 

binary trait set to be equal to the continuous scale heritability at 15% (i.e., meta-analyzed heritability = 

15%). In addition, there was no sample overlap across the cohorts (i.e., bivariate LDSC intercept = 0), and 

the LDSC univariate intercept was set to 1.04. These two GWAS summary statistics were subsequently 

meta-analyzed using a sample size weighted approach wherein the binary trat was weighted by the 

liability-scale corrected sample size 
థమ

ସమሺଵିሻమ
ሺ∑𝐸𝑓𝑓𝑁ሻ and the continuous trait weighted by the 

continuous cohort sample size. Note that when sample size weighted meta-analysis was conducted using 

observed or effective sample sizes for the binary trait, the resulting Z statistics were extremely similar, as 

were the results of analyses pertaining to heritability bias. In other words, in these simulations, the choice 

of what form of N was used to compute the meta-analytic summary statistics had little bearing on the bias 

associated with using different forms of N in the LDSC equation for estimating heritability. 

 The combined sample size used as input for LDSC was calculated as: ሺ∑ 𝑛௧ሻ 

థమ

ସమሺଵିሻమ
ሺ∑𝐸𝑓𝑓𝑁ሻ, and the meta-analyzed trait was treated as continuous for SNP-based heritability 

estimation. We examined 24 population generating conditions that specified different combinations of 

sample prevalence (0.1, 0.3, or 0.5), population prevalence (.01, .05, .15), and relative contributions of 

case/control and continuous participants (50,000 case/control and 50,000 continuous or 150,000 

case/control and 50,000 continuous). For each of the 24 conditions, we simulated 100 sets of GWAS 

summary statistics (i.e., 100 binary and 100 continuous summary statistics per condition, for a total of 

4,800 simulated summary statistics).  

We compared the SNP-based heritability results produced using our proposed approach for 

obtaining the meta-analytic sample size to the SNP-based heritability that would be obtained by inputting 

the same meta-analyzed summary statistics but providing the sample size as either: (i) the sum of total 

sample sizes or (ii) the sum of the continuous sample size and the effective sample size for the binary 

trait. Note that the latter approach is distinguishable from our proposed approach in that it does not apply 

the 
థమ

ସమሺଵିሻమ
 component of the liability threshold model. Simulation results show that for a range of 

population generating conditions that our proposed approach produces an unbiased estimate of SNP-based 

heritability for the meta-analytic summary statistics Supplementary Table 3). Inputting the total sample 

size produced average biases in estimates ranging from 60.81% to -56.44% depending on the condition. 

Observable trends for using total sample size included bias shifting upward for higher sample prevalences 

and greater downward bias as population prevalence increased. Inputting the sum of the effective sample 

size and the continuous sample size produced average biases in estimates ranging from 60.81% to -

23.62%. Observable trends in this case again included greater downward bias as population prevalence 
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increased, whereas the trends for sample prevalence were contingent on population prevalence. More 

specifically, there was greater upward bias at increasing sample prevalence when population prevalence 

as 1% or 5%, and greater downward bias at increasing sample prevalence for population prevalences of 

15% or 30%. In both cases, there was greater overall bias when the case/control cohort was larger than the 

continuous cohort.  

Extended Data Simulations.  

 The distinction between the different approaches we examined for estimating SNP-based 

heritability for meta-analysis of continuous and binary traits is how the sample size is calculated. The 

expectation for the degree of bias in SNP-based heritability estimates relative to our proposed approach 

can be quantified using the ratio of our proposed approach for calculating sample size over the two 

alternatives we examine for calculating sample size. More specifically, the degree of bias when using the 

total sample size for the binary and continuous traits can be expressed as:  

∑ೖ ା ∑ೖౘ

ቆሺ∑ೖሻା
ഝమ

రುమሺభషುሻమ
ሺ∑ாேೖ್ሻቇ

 െ 1 , 

and the bias when calculating sample size as the sum of the continuous and effective sample size 

expressed as : 

∑𝑛௧    ∑𝐸𝑓𝑓𝑁

ቆሺ∑𝑛௧ሻ 
𝜙ଶ

4𝑃ଶሺ1 െ 𝑃ሻଶ
ሺ∑𝐸𝑓𝑓𝑁ሻቇ

 െ 1 

 

With this in mind, we performed an additional series of simulations that did not simulate GWAS 

summary statistics, but rather directly simulated a range of sample and population prevalences and 

examined the corresponding degree of bias with respect to the different approaches for calculating sample 

size. This involved running 10,000 simulations that specified a sample size of 50,000 for the continuous 

trait and randomly generated a proportion of cases for the binary trait between 5% and 50%, a total 

sample size for the binary trait between 50,000 and 200,000, and a population prevalence between 1% 

and 30%,  

 The % bias ranged from -68.9% to 62.6% when using the sum of the binary and continuous 

sample sizes and from -25.1% to 64.4% when using the sum of effective sample size and continuous 

sample size. The trends mirrored what was observed for the simulations that generated GWAS summary 

statistics. More specifically, both approaches showed downward shifts in bias at increasing population 

prevalence (Supplementary Figure 2), increasing overall levels of bias as the ratio of binary to continuous 

sample size increased (Supplementary Figure 3), increasing bias at greater sample prevalence for sample 

size calculated as the sum of binary and continuous, and bias trends with respect to sample prevalence 
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sand sample size calculated as the sum of effective sample size and continuous sample size that were 

contingent on additional population generating parameters.   

 

S6. Approximating ∑𝑵 and ∑𝑬𝒇𝒇𝑵𝒌  

Researchers may encounter instances in which the summary data have been appropriately meta-analyzed 

at the SNP level, but the needed information to compute the appropriate entry of N is unavailable (e.g. 

cohort level 𝐸𝑓𝑓𝑁 isn’t available for the binary data, or the data were meta-analyzed using a 

multivariate method such as Genomic SEM that corrects for sample overlap but precludes summing 

sample sizes). In these cases, the sample size can be estimated from the data using the meta-analytic 

betas, the SEs, and SNP MAFs, so long as the scale of the betas is known. 

As described by Privé et al.10 (also see Mallard et al.11), when the effects of individual variants are 

very small and coefficients are on a continuous scale (i.e. for GWAS meta-analysis of continuous traits or 

combined GWAS meta-analysis of continuous and binary traits using the approach described in S5.), ∑𝑁 

can be estimated from the data as: 

∑𝑁 ൎ
ఙమ

ఙೣ
మ ఙ್

మ , 

where 𝜎௬ଶ is the variance of the continuous outcome (typically 1.0), 𝜎௫ଶ is the variance of the genotype 

(estimated as 2pq, assuming Hardy-Weinberg equilibrium, where p = minor allele frequency and q = 1-p), 

𝑏௧ is the continuous scale GWAS coefficient, and 𝜎
ଶ  is the sampling variance (i.e. the squared 

standard error) of the continuous scale GWAS coefficient.  

When the effects of individual variants are very small, and the scale of the betas is on the 

unstandardized logistic scale, ∑𝐸𝑓𝑓𝑁 can be estimated from the data as: 

∑𝐸𝑓𝑓𝑁 ൎ
ସ

ఙೣ
మ ఙ್

మ   

where 𝜎
ଶ  is the sampling variance (squared standard error) of the untransformed logistic regression 

coefficient. Following the recommendation from Privé et al.10, these estimates can be capped at the lower 

end of 0.5*EffN and 1.1*EffN, where EffN denotes the total effective sample size calculated using the 

total number of cases and controls. Note that in practice, the SNP variance ሺ𝜎௫ଶሻ is computed using minor 

allele frequencies, which may not be present in the summary statistics file. In this instance, minor allele 

frequency from a reference panel can be used, though mismatch between the reference panel and 

participant sample will introduce error, and this mismatch is likely to be largest for lower frequency 

variants. We therefore recommend directly computing ∑𝑁 and ∑𝐸𝑓𝑓𝑁 when possible, particularly 

when in-sample MAF is unavailable. In our analysis of real GWAS summary data for 12 major 

psychiatric and neurological traits (Supplementary Table 2), we find that estimated ∑𝐸𝑓𝑓𝑁 was 
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generally very similar to observed ∑𝐸𝑓𝑓𝑁 , with the exception of CUD and PTSD, for which estimated 

and observed values for ∑𝐸𝑓𝑓𝑁 were highly discrepant. A variety of factors may contribute to such 

discrepancies, including but not limited to: (1) the noted minor allele frequency mismatch, (2) cohorts 

with high levels of uncontrolled for population stratification wherein a corresponding correction is 

applied to standard errors (e.g., multiplying standard errors by the univariate LDSC intercept) such that 

∑𝐸𝑓𝑓𝑁  decreases relative to observed ∑𝐸𝑓𝑓𝑁 (3) inaccurate reporting of sample size from the original 

meta-analysis, (4) incorrect reporting of the effect size metric contained in the summary datafile, (5) 

sample overlap across cohorts contributing to the meta-analysis, (6) unreported pooled analysis of 

multiple raw data cohorts at the GWAS stage, and (7) if the GWAS is a stage 2 meta-analysis of prior 

stage 1 meta-analyses such that SNP-specific, sum of effective sample sizes calculated by meta-analytic 

software may not capture ascertainment variability in the cohorts comprising the stage 1 meta-analysis 

(i.e., if the total number of cases and controls across cohorts comprising the stage 1 meta-analysis are 

used for stage 2 meta-analysis). Such factors are important to attend to during quality control of the 

summary statistics and analytic pipeline.  
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Supplementary Figure S1. Ascertainment Variability Simulations. Both panels depict the % bias of the field standard approach on the y-axis, 

as a function of ascertainment variability across contributing cohorts on the x axis. Bias represents 

మ ா௦௧௧  ௩ೌ


మ  ௦௧௧  ∑ாேೖ 

 െ 1 , which is 

calculated as 
∑௩ೖሺଵି௩ೖሻೖ

൫∑ೡೖ ೖ ൯
∑ೖ

൫∑ሺభషೡೖሻ ೖ൯
∑ೖ

ሺ∑ೖሻ
 െ 1 .    Ascertainment variability is calculated as the variance in sample prevalence across the 10 cohorts that 

contributed to each simulation datapoint. Panel A depicts simulation results when using the same generating conditions as were used for the direct 

simulations of GWAS summary statistics (Table 1). The overall levels of bias can be seen to mirror the bias observed for liability-scale heritability 

from the GWAS summary statistics simulations (Table 1). Panel B depicts simulation results for a broader range of simulating conditions, where 

1,000 simulations were conducted that randomly varied the proportion of cases within each contributing cohort from 5% to 95%.  
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Supplementary Figure S2. Binary and Continuous Trait Extended Data Simulations: Sample and Population Prevalence. Panels depict the 

% bias for using different forms of calculating sample size for meta-analysis of binary and continuous traits. Panels A and B depicts simulation 

results as a function of population prevalence when calculating sample size as the sum of the binary and continuous sample size or the sum of the 

continuous and effective sample size, respectively. Panels C and D depicts simulation results as a function of sample prevalence when calculating 

sample size as the sum of the binary and continuous sample size or the sum of the continuous and effective sample size, respectively. 10,000 

simulations were conducted that randomly varied the sample prevalence, population prevalence, and ratio of case/control to continuous sample 

sizes. The red horizontal line depicted at the y-axis of 0 corresponds to the results of our proposed solution, denoting no bias.  
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Supplementary Figure S3. Binary and Continuous Trait Extended Data Simulations: Binary / Continuous Sample Size. Panels depict the % 

bias for using different forms of calculating sample size for meta-analysis of binary and continuous traits as a function of the ratio of binary trait to 

continuous trait sample sizes. Panels A and B depicts simulation results as a function of the ratio of binary to continuous sample size when 

calculating sample size as the sum of the binary and continuous sample size or the sum of the continuous and effective sample size, respectively. 

Panels C and D depict the same results with the exception that the y-axis depicts the absolute value of the % bias. 10,000 simulations were 

conducted that randomly varied the sample prevalence, population prevalence, and ratio of case/control to continuous sample sizes. The red 

horizontal line is depicted at the y-axis of 0 corresponds to the results of our proposed solution, denoting no bias.
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