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I. DMI and determination of orientation of D 
The Dzyaloshinskii-Moriya interaction is subject to certain symmetry constraints based on its 
antisymmetric nature. Moriya has quantified these constraints in 5 simple rules, of which we will 
only apply three1. The rules are summarized briefly, assuming sublattices joined by the line AB 
that is bisected by C: 

a. When a center of inversion is located at C, 𝐃 ൌ 0. 
b. When a mirror plane perpendicular to AB passes through C, 𝐃 ⊥ 𝐴𝐵. 
c. When a twofold rotation axis perpendicular to AB passes through C, 𝐃 ⊥

𝑡𝑤𝑜𝑓𝑜𝑙𝑑 𝑎𝑥𝑖𝑠. 
 Cu-EA crystallizes in the Pbca space group2,3 with a face-centered orthorhombic 
structure, where the Cu atoms are located at the inversion centers. From the symmetries of the 
crystal structure, it is evident that there are no mirror planes or twofold rotations, but these are 
replaced with glide planes and screw axes. The same symmetry constraints imposed by Moriya 
still hold, since the added translation does not change the direction of D. Only two symmetry 

elements are relevant here, the glide plane and screw axis which are oriented at 
ଵ

ସ
 the height of 

the unit cell along the c-axis and bisect the distance between the sublattices. Additionally, there 
are no inversion centers located between the two sublattices, so the DMI is allowed to exist. If it 
does exist, it must be ⊥ to the b-axis due to the screw axis, and ⊥ to the c-axis due to the glide 
plane4,5. Therefore, the only choice for the orientation of D is along the a-axis.   
 
II. Spin configuration of Cu-EA under an applied field 
Previously, magnetic susceptibility studies on Cu-EA have shown weak uniaxial anisotropy 
along a preferred in-plane direction, the a-axis. For the rest of the supplementary material, we 
will use (x, y, z) instead of (a, b, c), in order to be consistent with the main text. At zero applied 
field, the magnetization of each sublattice lies along the x axis (easy axis), and the DMI has no 
effect on the magnetization orientation since it is parallel to each magnetization (𝐃 ൈ𝐦ෝ𝐀 ൌ 0).  

As the strength of the magnetic field along the x axis is increased below a certain value, the 
spin configuration remains unchanged. However, once the field strength reaches a certain value 
𝐻௦ ~ 30𝑚𝑇 the spin flop transition will occur, and the magnetization of each sublattice will 

reorient along the y axis in a first order transition. At this point, the covert spin canting from the 
DMI becomes overt and the antisymmetric exchange becomes relevant. Here, the symmetry is 
broken under 𝐶ଶ௫. As the magnetic field strength is further increased, the sublattice 
magnetizations begin to tilt toward the x direction with angle 𝜑 until they become fully aligned 
with the a-axis at |𝐇𝐞𝐱𝐭| ൌ 2𝐻ா. 

When the magnetic field is applied along the y axis, no spin flop transition occurs. Instead, 
there is a canting of the magnetization towards the y axis with angle 𝜑 which occurs 
simultaneously with a tilting of one sublattice toward z and one toward –z. Here, the symmetry is 
preserved under 𝐶ଶ௬ (rotation is performed about the applied field, which is in the y-direction). 

At |𝐇𝐞𝐱𝐭| ൌ 2𝐻ா the sublattice magnetizations are nearly aligned with the applied field except 
for some small tilting in the z-direction. As the field strength is increased, the magnetic moment 
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can be further increased even past the expected saturation field. These processes are described in 
Figure S3. 
 
 
III. Analytical LLG model with the DMI 
In order to derive the analytic model for the LLG equations in the main text, the assumption that 
the magnetization of each sublattice can be treated in the macrospin approximation is made. The 
free energy per magnetic moment, then, is written as: 

𝐹 ൌ  
𝐹
𝑚

ൌ  െ𝜇𝐇𝐞𝐱𝐭 ∙ ሺ𝐦ෝ𝐀   𝐦ෝ𝐁ሻ  𝜇𝐻ா  ሺ𝐦ෝ𝐀 ∙ 𝐦ෝ𝐁ሻ െ   𝜇𝐃 ∙ ሺ𝐦ෝ𝐀 ൈ𝐦ෝ𝐁ሻ

 𝜇𝑀௦/2ሺሺ𝐦ෝ𝐀 ∙ �̂�ሻଶ  ሺ𝐦ෝ𝐁 ∙ �̂�ሻଶሻ െ 𝜇𝐾/2ሺሺ𝐦ෝ𝐀 ∙ 𝐚ොሻଶ  ሺ𝐦ෝ𝐁 ∙ 𝐚ොሻଶሻ 
 where 𝐇𝐞𝐱𝐭 is the external applied field, 𝐦ෝ𝐀 and 𝐦ෝ𝐁 are magnetization of each sublattice, 
𝐻ா is the exchange field, D is the DMI vector, and 𝑀௦ and 𝐾 are parameters relating to the easy-
plane and uniaxial anisotropy, respectively. Due to the fitting of the LLG models, as well as 
previously reported values6 𝜇𝑀௦ ൌ 215𝑚𝑇 and 𝜇𝐾 ൌ 7𝑚𝑇. Since we are interested in the 
physics at and above the crossing point (~100mT) we ignore the uniaxial anisotropy in our 
analytical equations. Moreover, the easy plane anisotropy is much stronger than the weak 
uniaxial anisotropy so that Cu-EA is treated as an easy-plane antiferromagnet.  
 To obtain equation 1 of the main text, the LLG equations are derived7 by: 

𝑑𝐦ෝ𝐀,𝐁

𝑑𝑡
ൌ  െ𝛾ሺ𝐦ෝ𝐀,𝐁 ൈ

𝑑𝐹
𝑑𝐦ෝ𝐀,𝐁

ሻ 

 
III.1. Analytical LLG model for the DMI- induced anticrossing gap 
 Here we assert that the DMI has an effect on the equilibrium sublattice magnetization 
direction, which acts similarly to an oblique magnetic field to tilt the sublattice magnetizations 
OOP. However, we show that it also can hybridize the optical and acoustic magnons due to its 
time-varying effect which is present even if the equilibrium magnetization orientation is 
symmetric. We will refer to these effects as the “passive” and “active” DMI, respectively.  In 
order to analyze and separate the contributions from the active and passive DMI, we will solve 
the coupled LLG equations under two criteria; 1) the equilibrium magnetic moments are 
symmetric under twofold rotation and lie IP, but the DMI is present in the coupled LLG 
equations (active), and 2) the DMI-induced spin canting tilts the equilibrium magnetizations 
OOP but this is the only source of magnon-magnon coupling (passive). In these models, we will 
always set 𝐇𝐞𝐱𝐭 ∥ 𝐱ො and change the direction of D between the x and y directions. Because the 
anisotropies along the xy plane are relatively small and are only relevant at low field ranges (<25 
mT), we will ignore their effects for now in order to study the physics near the crossing point 
(~85 mT). At zero field, the equilibrium spins will align along the y axis and tilt toward the 
applied field direction with angle 𝜑 as the field strength is increased, as illustrated in Figure S4. 
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 First, we will study the case in which 𝐇𝐞𝐱𝐭 ∥  𝐃 ∥ 𝐱ො. Assuming harmonic time dependence 

𝐦ෝ𝐀,𝐁 ൌ  𝐦ෝ𝐀,𝐁
𝐞𝐪   𝛅𝐦𝐀,𝐁exp ሺ𝑖𝜔𝑡ሻ substituted into equation 1 of the main text and keeping linear 

order terms only, we obtain: 
 

𝑖𝜔𝛅𝐦𝐀 ൌ  𝜇𝛾𝐦ෝ𝐀
𝐞𝐪  ൈ ቀ𝐻𝛅𝐦𝐀   𝐻ா𝛅𝐦𝐁   𝑀௦ሺ𝛅𝐦𝐀 ∙ 𝐳ොሻ𝐳ො െ  𝐷௫ሺ𝐱ො  ൈ  𝛅𝐦𝐁ሻቁ 

𝑖𝜔𝛅𝐦𝐁 ൌ  𝜇𝛾𝐦ෝ𝐁
𝐞𝐪  ൈ ቀ𝐻𝛅𝐦𝐁   𝐻ா𝛅𝐦𝐀   𝑀௦ሺ𝛅𝐦𝐁 ∙ 𝐳ොሻ𝐳ො   𝐷௫ሺ𝐱ො  ൈ  𝛅𝐦𝐀ሻቁ 

 

where 𝐻𝐦ෝ𝐀
𝐞𝐪 ൌ 𝐇𝐞𝐱𝐭 െ 𝐻ா𝐦ෝ𝐁

𝐞𝐪 െ  𝐷௫൫𝐱ො  ൈ  𝐦ෝ𝐁
𝐞𝐪൯ is defined. We will assume equilibrium 

magnetic configurations such that 𝐶ଶ௫𝐦ෝ𝐁
𝐞𝐪 ൌ  𝐦ෝ𝐀

𝐞𝐪 which preserve rotation symmetry since the 

canting angle is assumed small because 𝐷௫ ≪ 𝐻ா. To obtain an equation for 𝛅𝐦ା we will act on 
the second equation with 𝐶ଶ௫ and add it to the first, and for 𝛅𝐦ି we will subtract them. Note 
that 𝐶ଶ௫𝐷௫ሺ𝐱ො  ൈ 𝛅𝐦𝐀ሻ ൌ  𝐷௫ሺ𝐱ො  ൈ 𝐶ଶ௫𝛅𝐦𝐀ሻ. We arrive at the following 
 

𝑖𝜔𝛅𝐦േ ൌ 𝜇𝛾𝐦ෝ𝐀
𝐞𝐪 ൈ ሺ𝐻ா𝛅𝐦േ േ 𝐻ா𝐶ଶ௫𝛅𝐦േ 𝑀௦ሺ𝛅𝐦േ ∙ 𝐳ොሻ𝐳ොሻ  ∓  𝜇𝛾𝐷௫൫𝐦ෝ𝐀

𝐞𝐪 ∙ 𝐱ො൯𝐶ଶ௫𝛅𝐦∓  

േ 𝜇𝛾𝐷௫𝐱ොሺ𝐦ෝ𝐀
𝐞𝐪 ∙ 𝐶ଶ௫𝛅𝐦∓ሻ  

 
 Here it becomes obvious that these equations are not easily decoupled due to the 𝐷௫ term. 

Writing them in matrix form with the basis 𝛅𝐦േ ൌ 𝛿𝑚ఝേ 𝛗ෝ  𝛿𝑚ఏേ 𝛉 we obtain off diagonal 

matrix elements as shown below: 
 

𝑖𝜔
𝛅𝐦ା
𝛅𝐦ି

 ൌ   𝜇𝛾 ቂ
𝐴 𝐶
െ𝐶 𝐵

ቃ
𝛅𝐦ା
𝛅𝐦ି

 

 
The elements of that matrix are as follows: 
 

𝐴 ൌ  
0 െ𝑀௦

2𝐻ா cosଶ 𝜑 0
൨ 

 

𝐵 ൌ  
0 െ2𝐻ா െ𝑀௦

2𝐻ா sinଶ 𝜑 0
൨ 

 

𝐶 ൌ 𝐷௫ 
cos𝜑 sin 2𝜑 െ sin𝜑 cos 2𝜑 0

0 sin𝜑൨ 

 
where C is the off-diagonal element. Therefore, the problem is reduced to a simple eigenvalue 

equation where the eigenvalues 𝜔 can be determined by subtracting 𝑖𝜔1ସ from 𝜇𝛾 ቂ
𝐴 𝐶
െ𝐶 𝐵

ቃ 

and setting the determinant equal to zero. By taking the relationship between the external applied 

field and 𝐻ா as sin𝜑 ൌ |𝐇𝐞𝐱𝐭|

ଶுಶ
 we precisely reproduce the experimental results. 
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 Above, we have completed the analytic LLG model for 𝐃 ∥ 𝐇𝐞𝐱𝐭, 𝐱ො and now we are ready 
to consider 𝐃 ∥  𝐲ො,𝐇𝐞𝐱𝐭 ∥  𝐱ො. We will follow the same methodology as above, but now we note 
that 𝐶ଶ௫𝐷௬ሺ𝐲ො ൈ 𝛅𝐦𝐀ሻ ൌ  െ𝐷௬ሺ𝐲ො ൈ 𝐶ଶ௫𝛅𝐦𝐀ሻ allows us to diagonalize the matrix equation and 

separate the equations for 𝛅𝐦ା and 𝛅𝐦ି so no magnon-magnon coupling is predicted. We 
include the matrix elements for 𝐃 ∥ 𝐲ො for completeness: 
 

𝐴 ൌ  ቈ
D୷ሺcos𝜑 cos 2𝜑  sin𝜑 sin 2𝜑ሻ െ𝑀௦

2𝐻ா cosଶ 𝜑 𝐷௬ cos𝜑
 

 

𝐵 ൌ  ቈ
െD୷ሺcos𝜑 cos 2𝜑  sin𝜑 sin 2𝜑ሻ െ2𝐻ா െ𝑀௦

2𝐻ா sinଶ 𝜑 െ𝐷௬ cos𝜑
 

 

𝐶 ൌ  ቂ0 0
0 0

ቃ 

 
So, the matrix elements are zero on the off-diagonals, again predicting no magnon-magnon 
coupling, but are nonzero on the diagonals. Finally, to quantify the contribution of 𝐷௫ for 
different orientations of the applied field, we plot the eigenvalues to replicate the experimental 
data. By setting 𝜇𝐻ா ൌ  75𝑚𝑇, 𝜇𝑀௦ ൌ  215𝑚𝑇,  𝛾 ൌ 28 𝐺𝐻𝑧/𝑇 and 𝜇𝐷௫ ൌ 11𝑚𝑇 we can 
accurately reproduce the experimental data as shown in Figure S5. 

Based on the literature, the DMI strength in Cu-EA has previously been determined to be 
~11.9 mT8, which is a very good fit to our experimental results. The calculated coupling strength 
𝑔/2𝜋 resulting from a DMI strength of 11 mT is ~0.194 GHz, which is close to the experimental 
value of 0.24 GHz, indicating that level repulsion is present even if the equilibrium 
magnetizations are symmetric, but is due to this much more subtle interaction with the DMI 
which only manifests in terms of the relative oscillations between the two. When 𝐃 ൌ 0 𝑜𝑟 ∥  𝐲ො, 
there is no anticrossing gap indicating a degenerate crossing, but when the DMI is parallel to the 
applied field, the crossing degeneracy is forbidden, as we have expected. Therefore, we have 
theoretically determined the coupling strength, and shown that it is dependent on the angle 
between the applied field and the DMI vector ሺ𝐇𝐞𝐱𝐭 ∙ 𝐃ሻ.  
 
III.2. Analytical LLG model for the passive DMI  
 Above we have shown that the observed anticrossing gap is well explained by only 
considering the active contribution of DMI, as opposed to interpreting the DMI as a method to 
tilt the spins OOP and then using the theory for oblique magnetic fields. Here, we calculate the 
DMI-induced crossing by only considering a symmetry broken equilibrium magnetic 
configuration and ignoring the time-dependent contributions in the LLG equations and show that 
the crossing gap is reduced. The resulting matrix equation for sublattice magnetizations tilted 
OOP by an angle 𝛽 has already been determined, we simply apply the result9.  
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 For these calculations, we will use the same DMI strength as the previous section, as well 
as the tilting angle 𝛽 consistent with previous studies. At zero field, the sublattice magnetizations 
are aligned along the x-axis, only at sufficiently large field does the first order spin flop 
transition occur to orient them along the y-axis. After this transition, the weak ferromagnetism 

manifests and the canting angle with respect to the xy plane is sin𝛽 ൌ ೣ
ெೞ

cos𝜑 where 𝛽 ~ 4°. So 

we can calculate explicitly the anticrossing gap, shown in Figure S7. The strength of the 
magnon-magnon coupling by only considering the presence of the DMI to tilt the spins OOP is 
~0.052 GHz, which is much smaller than the measured value. Clearly, then, we have shown that 
while the DMI does cant the spins OOP and that this OOP tilting can induce the hybridization, 
we must not neglect the effects of the DMI as it relates to the elliptical oscillations of the 
magnetization. These oscillations represent a time-dependent magnetic interaction that amplifies 
the effects of magnon-magnon coupling. This opens the door to begin to search for new 
magnonic systems with equilibrium magnetizations that are symmetric under twofold rotation 
symmetry but are still hybridized.  

Because 𝛽 is relatively small, we have shown that the active contribution of the DMI 
dominates the magnon-magnon coupling phenomenon, instead of the passive contribution. Our 
fitting results using this model provide excellent results compared to previous measurements on 
the strength of the DMI in this material. 

 
III.3. Analytical LLG model for the gap at 𝐻 ൌ 2𝐻ா 
 Here, we present the matrix elements with 𝐷௫ in the rotated frame as described in section 

III.2. The rotated frame is tilted OOP by an angle 𝛽 to produce new unit vectors, 𝑥′ , 𝑦′ , and 𝑧′  

where 
𝑥′

𝑦′

𝑧′
ൌ  

cos ሺ𝛽ሻ 0 sin ሺ𝛽ሻ
0 1 0

െsin ሺ𝛽ሻ 0 cos ሺ𝛽ሻ
  
𝑥ො
𝑦ො
�̂�

. The matrix elements in the equation: 

𝑖𝜔
𝜹𝒎ା
𝜹𝒎ି

 ൌ   𝜇𝛾 ቂ
𝐴 𝐶
𝐷 𝐵

ቃ
𝜹𝒎ା
𝜹𝒎ି

 

Become: 

𝐴 ൌ  
0 െ𝑀௦ cosଶ 𝛽

2𝐻ா cosଶ 𝜑 𝑀௦ sinଶ 𝛽 cosଶ 𝜑  𝐷௫ sin𝛽 sin 2𝜑 0
൨ 

 

𝐵 ൌ  
0 െ2𝐻ா െ𝑀௦ cosଶ 𝛽

2𝐻ா sinଶ 𝜑 𝑀௦ sinଶ 𝛽 cosଶ 𝜑  𝐷௫ sin𝛽 sin 2𝜑 0
൨ 

 

𝐶 ൌ  
െ𝑀௦ cos𝛽 sin𝛽 cos𝜑  𝐷௫ cos𝛽 ሺcos𝜑 sin 2𝜑 െ sin𝜑 cos 2𝜑ሻ 0

0 𝑀௦ cos𝛽 sin𝛽 cos𝜑  𝐷௫ cos𝛽 sin𝜑൨ 

𝐷 ൌ  
െ𝑀௦ cos𝛽 sin𝛽 cos𝜑 െ 𝐷௫ cos𝛽 ሺcos𝜑 sin 2𝜑 െ sin𝜑 cos 2𝜑ሻ 0

0 𝑀௦ cos𝛽 sin𝛽 cos𝜑 െ 𝐷௫ cos𝛽 sin𝜑൨ 
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 The key feature here is the frequency of the bare optical mode (𝜹𝒎ା) at 𝐻 ൌ 2𝐻ா. This 

frequency is found by subtracting ቂ𝑖𝜔 0
0 𝑖𝜔

ቃ and calculating the determinant. When 𝜑 ൌ 90°, the 

sublattices are exactly aligned and the frequency is identically zero. However, in the rotated 

frame, 𝐃 ൌ 𝐷௫𝐱ො =𝐷௫ሺcos𝛽 𝐱ᇱ െ sin𝛽  𝐳ᇱ ሻ. The nonzero component of the DMI vector along 𝐳′ , 
which is orthogonal to the net magnetization direction, causes residual spin canting at 𝐻 ൌ 2𝐻ா 
and results in a nonzero frequency of the optical mode. At 𝛽 ൌ 90°, however, the optical mode 
returns to a zero frequency goldstone mode, as its frequency is proportional to cos𝛽. 
 
 
IV. Possible additional sources for the observed anticrossing gap 
 In addition to the DMI, the magnetic anisotropy landscape along the IP direction may 
also give additional contributions to the observed magnon-magnon coupling, which we have 
assumed are small when the field is applied along a principal axis of the material. This 
anisotropy has been previously shown to enable magnon-magnon coupling by breaking the axial 
symmetry between the spin up and spin down modes of a compensated ferrimagnet. Likewise, 
the anisotropy may also break the twofold rotation symmetry about the applied field and enable 
magnon-magnon coupling between the optical and acoustic modes of an easy plane 
antiferromagnet. The anisotropy energy is a minimum along the x-axis, the easy axis, and 
continuously increases as it approaches the y-axis (second easy axis). Therefore, the anisotropy 
is symmetric under C2 if the magnetic field is applied along either axis shown in Figures S8a or 
S8c. However, if the magnetic field is applied along an intermediate direction to one of these 
axes, the twofold rotation symmetry is broken. This will lead to a spin structure that is canted 
preferentially toward the easy axis and will induce magnon-magnon coupling. 
 
 
V. Observation of magnon dark modes 
 The optical mode in the transverse pumping configuration, as well as the optic mode 
above |𝐇𝐞𝐱𝐭| ൌ 2𝐻ா in any configuration is considered a dark mode, meaning that it cannot be 
accessed by the spatially uniform microwave field which is applied during our measurement. 
These selection rules have long since been known and are consistent if one considers the parallel 
alignment of the sublattices at high field. However, we will show here that the existence of the 
antisymmetric DMI term will convert the driving microwave field into an effective microwave 
field which can be used to excite these dark modes.  
 In Figure S13a, the illustration of the magnon ‘dark’ and ‘bright’ modes correspond to 
the optical and acoustic modes under parallel alignment of the sublattices. The DMI Hamiltonian 
Hெூ = െ 𝐃 ⋅ ሺ𝐦ෝ𝐀 ൈ𝐦ෝ𝐁ሻ can be rewritten as Hெூ  =  𝐦ෝ𝐀 ∙ ሺ𝐷௫ ሺ 𝐱ො ൈ  𝐦ෝ𝐁ሻሻ 𝐦ෝ𝐁 ∙
ሺെ𝐷௫ ሺ 𝐱ො ൈ  𝐦ෝ𝐀ሻሻ which exposes the effective fields that each sublattice experiences due to the 
deflection of the conjugate sublattice. In Figure S13b, an OOP rf microwave field generates a 
torque on both sublattices along the same direction, denoted as 𝛕𝐩 for ‘primary’. Through these 
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effective fields in the Hamiltonian, the resulting motion of the sublattices results in a secondary 
torque which can access the dark mode, denoted as 𝛕𝐃𝐌𝐈. Therefore, the spatial non-uniformity is 
realized in these applied torques. Additionally, these effective fields change sign at the same 
frequency as the driving microwave field, and are even under twofold rotation (𝐶ଶ௫). Therefore, 
our interpretation of these fields in terms of an effective microwave field that can access the 
optic mode is validated. 
 
 
VI. Numeric simulation 

All features in FMR spectra are in good agreement with the simulation of the precession 
amplitude, as shown in Figure S14. The simulation was run with MATLAB and numerically 
calculates the time evolution of the magnetization of the two sublattices according to LLG 
equation (Eq. S1), and then the precession amplitude is obtained by fast Fourier transformation. 
The parameters in the LLG equation are 𝜇𝑀௦ ൌ 155 𝑚𝑇 is the easy-plane anisotropy, Bex = 7.5 
mT is the exchange between the two sublattices, 𝜇𝐷௫ ൌ 11𝑚𝑇 is the DM vector, 𝜇𝐾௫ ൌ
7 𝑚𝑇 𝑥ො is the uniaxial anisotropy, and 𝛕 is the RF field to excite the magnetization dynamics. A 
Gilbert damping term is also included with alpha=0.01 for the simulation. 
 
 
 
Equation S1. 
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Figure S1.  
UV-VIS absorption spectrum of Cu-EA. 
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Figure S2.  
Powder X-ray diffraction (XRD) data of Cu-EA. The simulated data is based on the reported 
single crystal data10. 
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Figure S3.  
Spin structure of Cu-EA under different applied fields demonstrating the spin canting which 
generates a weak ferromagnetic moment along the z-axis in (c).  
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Figure S4. 
In-plane alignment of the sublattices by angle 𝜑 with the application of the external magnetic 
field, 𝐇𝐞𝐱𝐭 to tune the frequencies of the optical and acoustic modes. 
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Figure S5.  
Calculated solutions for the antiferromagnetic resonance of Cu-EA at different D values, 
ignoring the in-plane magnetic anisotropies and the spin canting contribution.  
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Figure S6.  
Magnon mode hybridization due to spin canting only. 
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Figure S7. 
Interplay of the magnetic anisotropy and symmetry breaking, with symmetric configurations in a 
and c and symmetry broken configurations in b. 
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Figure S8.  
a, Schematic illustration of so-called ‘dark’ and ‘bright’ modes in the quasi-ferromagnetic phase 
of the layered antiferromagnet when the sublattices are aligned parallel at |𝐇𝐞𝐱𝐭|  2𝐻ா. b, 
illustration of the torque from the effective microwave field, hrf which is a product of the motion 
of the sublattices. 
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Figure S9. 
Numeric LLG simulation showing anticrossing gap and high field optic mode. This simulation 
was performed with the magnetic field applied at a 45 degree angle to the a-axis to support the 
data in Figure 3 of the main text. 
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Figure S10.  
Temperature dependence of the magnetic resonance, showing a reduction in the optical mode 
frequency as the temperature approaches 2.5 K, consistent with previously reported results11. All 
measurements are performed in the geometry described in Figure 3 of the main text. 
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