

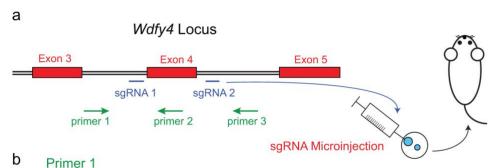
Supporting Information for WDFY4 deficiency in NOD mice ameliorates autoimmune diabetes and insulitis

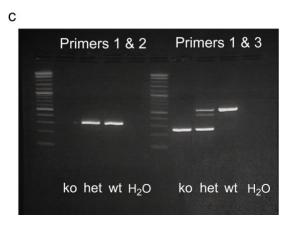
Stephen T. Ferris^{1,2*}, Tiantian Liu¹, Jing Chen¹, Ray A. Ohara¹, Feiya Ou¹, Renee Wu¹, Sunkyung Kim¹, Theresa L. Murphy¹, and Kenneth M. Murphy^{1*}

¹Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA;

² Current address: Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis MO, 63104, USA

*Lead Contact to whom correspondence should be addressed.


Phone: 314-263-2004, email: kmurphy@wustl.edu


Phone: 314-977-8788, email: stephen.ferris@health.slu.edu

This PDF file includes:

Figures S1 to S2

Supplementary Figure 1

Primer 2

Fig. S1. Generation of NOD. Wdfy4-/- mice.

- (a) Targeting design using CRISPR Cas9 to delete Wdfy4 exon 4.
- (b) Sequence showing sgRNAs, screening primers, and exons and introns for Wdfy4 targeting design.
- (c) Gel of genotyping for NOD. Wdfy4^{-/-}, NOD. Wdfy4^{+/-}, NOD. Wdfy4^{+/-} mice

Supplementary Figure 2

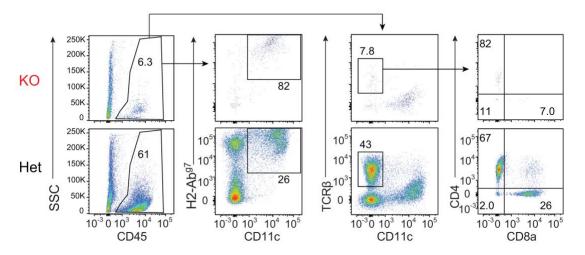


Fig. S2. Gating strategy for dispersed islets.

Representative flow plots from 12 week NOD. *Wdfy4*^{-/-} (KO, top) and female NOD. *Wdfy4*^{+/-} (Het, bottom).