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Data Availability 

We have generated a new genome portal, available at 

research.nhgri.nih.gov/HydraAEP/, that allows users to interact with and download the data 

generated in this study. A BLAST server is available to search for genes of interest in the H. 

oligactis and strain AEP H. vulgaris gene models. The portal includes an interactive genome 

browser for visualizing gene models, repetitive regions, ATAC-seq and CUT&Tag peaks, ATAC-

seq and CUT&Tag read density, and sequence conservation across the AEP assembly. The 

website also features an interactive ShinyCell portal (Ouyang et al. 2021) for viewing the AEP-

aligned Hydra single-cell atlas. 
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 Step-by-step descriptions of all computational analyses conducted as part of this study, 

including all relevant code, formatted both as markdown and HTML documents are available in 

Supplemental Code S1 and at github.com/cejuliano/brown_hydra_genomes. 

The raw sequencing data and assembled genomic sequences data generated in this study have 

been submitted to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under 

accession number PRJNA816482. Note that the chromosome numbering for the version of the 

strain AEP H. vulgaris assembly available via GenBank (Accession JALDPZ000000000) was 

changed to be consistent with the numbering used for the strain 105 H. vulgaris assembly 

(Accession JAGKSS000000000) (Simakov et al. 2022). We have also made all raw sequencing 

reads, scripts, and processed data files associated with this study available for download through 

the genome portal at research.nhgri.nih.gov/HydraAEP/download/index.cgi?dl=fa.  

Due to data loss, we no longer have access to the basecall quality scores for the PacBio 

sequencing data. Because SRA requires that all submitted sequencing data include quality 

scores, we were unable to upload the PacBio data to NCBI. However, the PacBio data is 

available at research.nhgri.nih.gov/HydraAEP/download/index.cgi?dl=fa, and the basecall quality 

scores are not necessary for fully reproducing the results presented in this study. 

 

Hydra strains and animal care 

All Hydra strains were cultured using standard methods (Lenhoff and Brown 1970). The 

AEP strain of H. vulgaris was generated from a cross between the PA1 strain isolated by Dr. 

Carolyn Teragawa from a pond on the Haverford College campus near Philadelphia, 

Pennsylvania and the CA7 strain isolated by Drs. Lynne Littlefield and Carolyn Teragawa at 

Boulder Creek, near Susanville, California (Martin et al. 1997). The DNA used for generating the 

strain AEP H. vulgaris assembly was isolated from a clonally propagated line (the “Kiel” AEP line; 

courtesy of Thomas Bosch) that was generated from a self-cross of the original AEP line. The 

DNA used for generating the H. oligactis assembly was isolated from the Innsbruck female12 

strain, a clonally propagated line originating from a single polyp collected from Lake Piburger See 

in Tyrol, Austria.  
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In addition to the Kiel AEP strain, the following lines were used for generating RNA-seq 

libraries: a transgenic line with an actin∷EGFP transgene integrated into the ectodermal lineage 

and an actin∷DsRed2 transgene integrated into the endodermal lineage (“watermelon” line) 

(Glauber et al. 2015), a transgenic line with an actin∷DsRed2 transgene integrated into the 

ectodermal lineage and an actin∷EGFP transgene integrated into the endodermal lineage 

(“inverse watermelon” line) (Glauber et al. 2015), a transgenic line with an EF1α∷EGFP 

transgene integrated into the endodermal lineage (“enGreen1” line; courtesy of Rob Steele and 

Catherine Dana), and a transgenic line with a transgene containing EGFP and DsRed2 in an 

operon configuration with expression driven by the actin promoter integrated into the ectodermal 

lineage (“operon” line) (Dana et al. 2012). 

 

Hydra vulgaris strain AEP genome sequencing 

 To generate high molecular weight (HMW) genomic DNA (gDNA) libraries for sequencing 

and assembling the strain AEP H. vulgaris genome, we used thirty whole adult polyps from a 

clonally propagated population belonging to the Kiel AEP line as input. The tissue was flash 

frozen in liquid nitrogen and HMW gDNA was purified using a Qiagen Gentra Puregene kit 

following standard manufactures instructions for mouse tail tissue (Qiagen Cat # 158445; Hilden, 

Germany). We then performed a Phenol/Chloroform purification using 5PRIME Phase Lock Gels 

(Quantabio Cat # 2302830; Beverly, Massachusetts) and precipitated the DNA by adding 0.4X 

5M ammonium acetate and 3X ice cold ethanol. The DNA pellet was washed twice with 70% 

ethanol and resuspended in elution buffer (10mM Tris, pH 8.0). We used a Pippin Pulse gel 

electrophoresis system (Sage Sciences, Beverly, MA) to verify the DNA integrity and a NanoDrop 

spectrophotometer (ThermoFisher Scientific, Waltham, Massachusetts) to verity the DNA purity.  

 To generate the Oxford Nanopore library, HMW gDNA was gently sheared to 70kb-100kb 

using a Megaruptor 2 (Diagenode Cat # B06010002; Denville, New Jersey) and the library was 

prepared using the Oxford Nanopore Ligation Sequencing Kit (Oxford Nanopore Technologies 

Cat # LSK-109; Oxford, United Kingdom) following standard manufacturer’s instructions except 

for extended incubation times for DNA damage repair, end repair, ligation, and bead elution. 
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850ng of the final library was loaded on PromethION R9.4.1 flow cells and the data were 

collected for sixty-four hours. Basecalling was performed live during the run with guppy v1.8.1. 

 A HMW gDNA PacBio library was generated using a SMRTbell Express Template Prep 

Kit 2.0 (PacBio Cat # 100-938-900; Menlo Park, California) following standard manufacturer’s 

instructions. The library was then sequenced on a PacBio Sequel II sequencer using a 1M v3 

SMRT Cell (PacBio Cat # 101-531-000). 

 To generate the 10X chromium library, HMW gDNA was loaded onto a Chromium 

Genome Chip (10X Genomics Cat # 120257; Pleasanton, California) and the library was 

prepared using Chromium Genome Library & Gel Bead Kit v.2 (10X Genomics Cat # 120258) and 

Chromium Controller (10X Genomics Cat # 120270) according to manufacturer’s instructions with 

one modification. Briefly, gDNA was combined with Master Mix, Genome Gel Beads, and 

partitioning oil to create Gel Bead-in-Emulsions (GEMs) on a Chromium Genome Chip. The 

GEMs were isothermally amplified and barcoded DNA fragments were recovered for Illumina 

library construction. The post-GEM DNA was quantified using a Bioanalyzer 2100 with an Agilent 

High sensitivity DNA kit (Agilent Cat # 5067-4626; Santa Clara, California). Prior to Illumina library 

construction, the GEM amplification product was sheared on an E220 Focused-Ultrasonicator 

(Covaris Cat # 500239; Woburn, MA) to approximately 375 bp (50 seconds at peak power = 175, 

duty factor = 10, and cycle/burst = 200). Then, the sheared GEMs were converted to a 

sequencing library following the 10X standard operating procedure. The library was quantified by 

qPCR with a Kapa Library Quant kit (Roche Cat # 07960140001; Basel, Switzerland) and 

sequenced on a HiSeqX10 (Illumina, San Diego, CA) using 2 x 150 bp reads. 

 For generating the Hi-C library, we used 10 whole flash frozen adult polyps as input. The 

library was generated using the Arima Hi-C Kit (Arima Genomics Cat # A510008; San Diego, 

California) following the standard manufacturer's protocol for small animal tissue with the 

following modification: the frozen tissue was ground using a mortar and pestle for 1 minute in 

fixation buffer and was subsequently left for 19 minutes at room temperature. The proximally-

ligated DNA was fragmented using Covaris E220 (Covaris Cat # 500239) and the biotinylated 

fragments were enriched. NGS library was prepared using KAPA Hyper prep kit (Roche Cat # 
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07962363001) and the library was sequenced on an Illumina NovaSeq 6000 using 2 x 150 bp 

reads. 

 

Whole-animal RNA-seq 

 To aid in annotating and benchmarking our AEP genome assembly, we generated and 

sequenced several whole-animal RNA-seq libraries using multiple strain AEP-derived lines. In 

total, there were 13 libraries: one from the watermelon line, one from the inverse watermelon line, 

one from the enGreen1 line, one from the operon line, three from male Kiel AEP polyps, three 

from female Kiel AEP polyps, and three from Kiel AEP polyps that were not producing gametes.  

 For the watermelon, inverse watermelon, enGreen1, and operon RNA-seq libraries, total 

RNA was purified using a standard Trizol extraction protocol. RNA-seq libraries were then 

prepared using a TruSeq stranded mRNA kit (Illumina Cat # RS-122-2201) according to the 

manufacturer’s recommended protocol with the following modifications: the RNA was sheared for 

only 1.5 minutes and the resulting fragments were size selected using a LabChip XT DNA 750 

(PerkinElmer Cat # 760541; Waltham, Massachusetts) to be ~500 bp prior to the final PCR 

enrichment step. The libraries were then sequenced on an Illumina HiSeq2000 using 2 x 100 bp 

reads. 

 For the Kiel AEP libraries, total RNA was purified using a standard Trizol extraction 

protocol. Contaminating DNA was then removed by performing a DNAse digest using the 

QIAGEN DNAse set (QIAGEN Cat # 79254). A final purification was then performed using the 

Zymogen RNA Clean and Concentrator Kit (Zymo Research Cat # R1017; Irvine, California) 

according to the standard manufacturer’s protocol. RNA-seq libraries were then generated using 

the Kapa mRNA-seq Hyper kit (Kapa Biosystems Cat # KK8581; Kapa Biosystems, Cape Town, 

South Africa). The libraries were then sequenced on a HiSeq4000 using 1 x 50 bp reads. We also 

performed additional sequencing for one biological replicate from both the male and female Kiel 

AEP libraries, which were sequenced on an Illumina HiSeq4000 using 2 x 150 bp reads. 

 To perform the alignment benchmarking analysis presented in Fig S5, the single end Kiel 

AEP RNA-seq reads were first processed with Trimmomatic (Bolger et al. 2014) to remove 
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stretches of low-quality base-calls and contaminating adapter sequence. The data was then 

aligned to both the strain AEP and strain 105 H. vulgaris genome assemblies using the RSEM (Li 

and Dewey 2011) implementation of STAR (Dobin et al. 2013). The code for this alignment 

benchmarking analysis is included in the supplemental file 03_aepGenomeAnnotation.md.  

 

Hydra vulgaris strain AEP genome assembly 

 A step-by-step description of the strain AEP H. vulgaris genome assembly methodology, 

including all relevant code, is provided in the markdown document 01_aepGenomeAssembly 

available at github.com/cejuliano/brown_hydra_genomes. This document is also provided in 

Supplemental Code S1. 

The initial draft assembly was generated from the Oxford Nanopore data using Canu 

(Koren et al. 2017). We then mapped the 10X linked-read data to the draft genome and polished 

the assembly using Pilon (Walker et al. 2014). For this and all subsequent steps involving the 10X 

data, we used the 10X Long Ranger pipeline for genome alignment. Following the polishing step, 

we cut contigs in predicted mis-assembled regions with Tigmint (Jackman et al. 2018) using the 

10X data. We then used the 10X data to identify and collapse duplicated contigs in the assembly 

using Purge Haplotigs (Roach et al. 2018). Deduplicated contigs were scaffolded with ARCS (Yeo 

et al. 2018) using the 10X data, and gaps introduced by the scaffolding were filled with PBJelly 

(English et al. 2012) using the Oxford Nanopore and PacBio data. To generate pseudo-

chromosome scaffolds, we aligned the Hi-C data using Juicer (Durand et al. 2016) and scaffolded 

the assembly using the 3d-dna pipeline (Dudchenko et al. 2017). We subsequently discarded any 

sequence fragments that were not incorporated into the pseudochromosome scaffolds, as they 

made up a negligible fraction of the total assembly size (~2.3% of the total assembly sequence) 

However, these unincorporated fragments are available via the Genbank entry for the AEP 

genome assembly (accession JALDPZ000000000) for researchers interested in these more 

difficult to assemble regions. This was followed by an additional gap-filling step with PBJelly using 

the Oxford Nanopore and PacBio data. To finalize the assembly sequence, we performed another 
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round of Pilon error correction using the 10X, PacBio, and Oxford Nanopore data. Minimap2 (Li 

2018) was used for aligning the long-read data to the genome for the Pilon correction. 

The resulting assembly is 901 Mb in length and contains 15 pseudo-chromosome 

scaffolds, consistent with the haploid chromosome number in Hydra (Rahat et al. 1985; Zacharias 

et al. 2004). Like the strain 105 H. vulgaris genome assembly, the AEP assembly is roughly 20-

25% smaller than empirical genome size estimates (~1.06-1.22 Gb for the AEP strain) (Chapman 

et al. 2010; Zacharias et al. 2004), which is likely due to intrinsic difficulties in resolving long and 

repetitive stretches of heterochromatin. Nonetheless, the contiguity and completeness of the AEP 

assembly is comparable to the best currently available hydrozoan genomes (Fig. 1B and Table 

S1). Compared to the recently updated chromosome-level assembly of the strain 105 H. vulgaris 

genome (Simakov et al. 2022), the AEP assembly contains ~10% more sequence (900.9 Mb, 

compared to 819.4 Mb in the 105 v3 assembly) and a similar number of intact single-copy 

orthologs predicted from genomic sequence using BUSCO (866, compared to 862 in the 105 v3 

assembly; Table S1). 

 

Genome repeat annotation 

A step-by-step description of the repeat annotation methodology used for the H. oligactis 

and H. vulgaris genomes, including all relevant code, is provided in the markdown document  

02_repeatMasking available at github.com/cejuliano/brown_hydra_genomes. This document is 

also provided in Supplemental Code S1. 

To compensate for the lack of well-annotated repeat families available for Hydra, we 

used RepeatModeler2 (Flynn et al. 2020) to predict repeat families ab initio for the H. oligactis 

and strain AEP H. vulgaris genome assemblies. We used RepeatMasker (repeatmasker.org) to 

identify repetitive regions in the strain AEP and strain 105 H. vulgaris genome assemblies as well 

as the H. oligactis assembly. For masking repeats in the strain AEP and strain 105 H. vulgaris 

genome assemblies, we used both the strain AEP H. vulgaris RepeatModeler2 repeats as well as 

the Dfam eumetazoan repeat database as repeat libraries when running RepeatMasker. For 

masking repeats in the H. oligactis genome assembly, we used both the H. oligactis 
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RepeatModeler2 repeats as well as the Dfam eumetazoan repeat database as repeat libraries 

when running RepeatMasker. We then used utility scripts included with RepeatMasker to 

calculate sequence divergence for predicted repeat instances and to generate the repeat 

landscape plots presented in Fig S2. 

Consistent with previous characterizations of brown Hydra genomes, we find that the 

AEP genome is highly A/T rich (~72%) and repetitive (Wong et al. 2019; Chapman et al. 2010). 

We estimate that ~71% of the AEP genome is repetitive, with ~6% being simple/low-complexity 

repeats and ~65% originating from transposable elements (TEs) (Fig. 2A-C). These estimates are 

slightly higher than the strain 105 genome (~57% TEs and Fig. S2D-F) (Chapman et al. 2010). As 

with the 105 strain, class II TEs—particularly the hAT, CMC, and Mariner families—make up most 

TE sequences in the AEP genome, although a sizable minority are derived from L2 and CR1 

LINE retrotransposons (Fig. S2A).  

 

Hydra vulgaris strain AEP genome gene annotation 

 A step-by-step description of the strain AEP H. vulgaris genome gene annotation 

methodology, including all relevant code, is provided in the markdown document 

03_aepGenomeAnnotation available at github.com/cejuliano/brown_hydra_genomes. This 

document is also provided in Supplemental Code S1. 

 We generated an initial set of gene models for the strain AEP H. vulgaris genome using 

the BRAKER2 gene prediction pipeline (Brůna et al. 2021). As input into the pipeline, we included 

the AEP genome sequence with all repetitive regions soft-masked, a custom database of 

metazoan proteomes, and a whole-animal RNA-seq dataset (described in the “Whole-animal 

RNA-seq” section above) that was aligned to the soft-masked genome using STAR (Dobin et al. 

2013). To supplement the BRAKER2 predictions, we designed a custom annotation pipeline that 

used exonerate (Slater and Birney 2005) to generate gene models using transcript sequences 

from a previously published transcriptome (Siebert et al. 2019) and a manually curated database 

of Hydra transcript sequences from GenBank. We collapsed duplicated/overlapping gene models 

in the combined BRAKER2 and exonerate gene predictions by selecting the gene model that had 
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the highest alignment score following a BLAST search against the same custom protein database 

that was used to generate the BRAKER2 predictions. We then filtered out all gene models that 

had interrupted reading frames, were shorter than 50 amino acids, or were predicted by 

InterProScan (Blum et al. 2021; Jones et al. 2014) to contain one or more transposase domains. 

To improve UTR and splice isoform annotations in our gene predictions, we used the Trinity 

genome-guided assembly pipeline (Grabherr et al. 2011) to generate a transcriptome from the 

genome-aligned whole-animal RNA-seq data that was originally used as input for the BRAKER2 

pipeline. We aligned this transcriptome to the AEP assembly and used this alignment to update 

the merged exonerate and BRAKER2 gene models with PASA (Haas et al. 2003), resulting in the 

final set of gene predictions presented in this study.  

 Our AEP annotation pipeline identified 28,917 protein coding genes that encode 37,784 

predicted transcripts. Although the total gene number is ~14% lower than that observed in the 

105 assembly annotations, the AEP annotation contains ~12% more complete single-copy 

orthologs as predicted using BUSCO (Fig. 1B and Table S1), demonstrating an improvement in 

both accuracy and sensitivity. Furthermore, the AEP assembly gene predictions are the first H. 

vulgaris gene models to include UTRs, with ~48% (13,901) of gene models containing 5’ UTRs 

and ~46% (13,183) containing 3’ UTRs. Overall, the AEP gene predictions are comparable to our 

previously published AEP transcriptome in both the number of predicted transcripts and the 

number of complete single-copy orthologs (Table S1) (Siebert et al. 2019), suggesting that our 

gene annotations have largely captured the transcriptomic repertoire of H. vulgaris. 

To generate functional annotations for the AEP gene models, we performed a BLAST 

search against the UniProt protein database (Bateman et al. 2021), predicted protein domains 

using InterProScan, and identified orthologs in 43 other metazoans using OrthoFinder (Emms 

and Kelly 2019). The combined results from these annotation analyses are included in 

Supplemental Data S1. All phylogenies presented in this study were generated as part of the 

Orthofinder analysis. In the case of the species phylogeny presented in Fig. S16, the branch 

lengths are derived from the Orthofinder analysis, but the tree’s topology was rearranged to be 

consistent with accepted phylogenies. To identify putative TFs in the AEP gene models, we 
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filtered the InterProScan predictions using a custom set of keywords and GO terms related to 

transcriptional regulation and DNA-binding activity (see 03_aepGenomeAnnotation.md for details; 

gene IDs of putative TFs listed in Supplemental Data S1). 

 

Hydra oligactis genome sequencing 

 For generating a draft genome for H. oligactis, we prepared two HMW gDNA libraries 

using the Innsbruck female12 strain of H. oligactis. For the first library, HMW gDNA was extracted 

from 10 whole adult polyps using the Circulomics NanoBind BigTissue kit (Circulomics Cat # NB-

900-701-01; Baltimore, Maryland) according to the manufacturer's “Dounce” protocol (Circulomics 

document # EXT-DHH-001) with the following modifications: we used intact animals instead of 

finely minced tissue, we homogenized the tissue in 500 µl Buffer CT instead of 750 µl, animals 

were homogenized using a pestle in a 1.5 ml microcentrifuge tube for 2 minutes instead of using 

a dounce homogenizer, and the homogenate was pelleted at 1500 G instead of 3000 G. We 

removed short DNA using the Short Read Eliminator (Circulomics Cat # SS-100-101-01) and 

Short Read Eliminator XS (Circulomics Cat # SS-100-121-01) kits according to the 

manufacturer’s standard protocol and eluted the samples overnight. We prepared the sequencing 

library using the Oxford Nanopore Ligation Sequencing Kit (Oxford Nanopore Technologies Cat # 

LSK-109) according to the standard manufacturer’s protocol with the modification that the first two 

5-minute incubations were extended to be 30 minutes each. The final library was eluted in 26 µl 

elution buffer and the library was loaded twice onto an Oxford Nanopore MinION sequencer, with 

DNAse from the Flow Cell Wash Kit (Oxford Nanopore Technologies Cat # EXP-WSH003) being 

used to remove gDNA carryover between runs.  

 The second HMW gDNA library was generated as described above with a few 

modifications. First, 100 instead of 10 whole animals were used as input. We also made 

additional modifications to the NanoBind protocol. We prolonged the proteinase K digestion from 

30 minutes to 150 minutes, adding another 10 µl proteinase K and another 75 µl Buffer CLE3 90 

minutes into the digestion. We also used 30 µl of RNAse A instead of 20 µl. Instead of using a 

Nanobind disk for DNA extraction as described in the standard protocol, we used the following 
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approach: the lysate was centrifuged at 10,000 G for 5 minutes at room temperature, the resulting 

pellet was washed with 400 µl Buffer CW1 and centrifuged at 10,000 G for 5 minutes, the pellet 

was then washed with 500 µl Buffer CW2 and centrifuged at 10,000 G for 5 minutes, the 

supernatant was removed and the pellet air-dried for 1 minute, and DNA was eluted in 70 µl 

Elution Buffer. Short gDNA fragment elimination and library preparation was performed as 

described for the first library. The library was eluted in 60 µl and was loaded onto the MinION 

sequencer a total of five times. The total coverage of all sequencing libraries was ~17X (2.4 

million reads with an N50 of 22.7 kb). 

 

Hydra oligactis assembly and annotation 

A step-by-step description of the H. oligactis genome assembly and gene annotation 

methodology, including all relevant code, is provided in the markdown document 

04_oligactisDraftGenome available at github.com/cejuliano/brown_hydra_genomes. This 

document is also provided in Supplemental Code S1. 

We generated an initial draft assembly for H. oligactis with Flye (Kolmogorov et al. 2019) 

using reads from the two combined Oxford Nanopore libraries described above. The errors in the 

assembly were then polished with Medaka (github.com/nanoporetech/medaka) using the 

Nanopore data. To generate a preliminary set of gene models for the draft assembly, we first 

used previously published whole-animal RNA-seq data from H. oligactis (Sun et al. 2020; Rathje 

et al. 2020) to generate a de novo transcriptome using Trinity (Grabherr et al. 2011). We then 

aligned this transcriptome to a repeat-masked version of the H. oligactis draft genome using 

minimap2 (Li 2018). Finally, we ran the BRAKER2 gene prediction pipeline (Brůna et al. 2021), 

providing as input the repeat-masked H. oligactis genome sequence and the genome-mapped 

Trinity transcriptome. 

The oligactis assembly is 1274 Mb in length, or ~88% of the empirically estimated 

genome size (Zacharias et al. 2004). The assembly is ~51-fold more contiguous than the 

previously available draft genome for H. oligactis (N50 of 274.9 kb, compared to previous N50 of 

5.4 kb) and has ~27-fold fewer total contigs (16,314 contigs, compared to 447,335 contigs in the 
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previous assembly; Fig 1B) (Vogg et al. 2019). The new H. oligactis draft genome is also more 

complete, with nearly double the number of intact single-copy orthologs (841, compared to 444 in 

the previous assembly) (Table S1). The A/T and repeat composition (~72% and ~74% 

respectively) were similar to H. vulgaris, although the H. oligactis assembly had a slightly higher 

abundance of repetitive elements (Fig. 1A and Fig. S2G-I). We identified 60,590 genes, which is 

likely an over-estimation of the genome’s genic content given that hydrozoan genomes typically 

contain between 20,000 and 30,000 genes (Leclère et al. 2019; Hamada et al. 2020; Chapman et 

al. 2010). Nonetheless, the high BUSCO completeness of these gene models (86.2%) suggests 

that they accurately capture most of the genic content of the H. oligactis genome. Thus, we 

present the first annotated draft genome of H. oligactis that is of comparable quality to other 

published hydrozoan genomes and suitable for systematic comparative analyses. 

 

ATAC-seq 

 Whole animal ATAC-seq was performed in triplicate on adult bud-free strain AEP H. 

vulgaris polyps using a previously described protocol (Corces et al. 2017; Siebert et al. 2019). All 

steps of the ATAC-seq protocol were performed using chilled solutions on ice unless otherwise 

indicated. For each replicate, 5 whole bud-free adult polyps that had been starved for two days 

were transferred to a sterile 1.5 ml microcentrifuge tube and briefly washed with 1 ml of Hydra 

dissociation medium (DM) (3.6 mM KCl, 6 mM CaCl2, 1.2 mM MgSO4, 6 mM sodium citrate, 6 

mM sodium pyruvate, 6 mM glucose, 12.5 mM TES buffer, adjusted to pH 6.9) (Gierer et al. 

1972). The polyps were then homogenized in 1 ml DM using ~50 strokes of a tight-fitting glass 

dounce. The homogenate was transferred into a sterile 1.5 ml microcentrifuge and spun down at 

500 G for 5 minutes in a centrifuge chilled to 4˚C. The cell pellet was resuspended in 50µl 

resuspension buffer (RSB) (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, pH 7.4) containing 0.1% 

Tween-20, 0.1% NP-40, and 0.01% digitonin. Lysis proceeded for 3 minutes and was 

subsequently halted by adding 1 ml RSB containing 0.1% Tween-20. Nuclear density in the lysate 

was quantified by loading 19 µl of the resuspension and 1 ul of 20mM Hoechst 33342 

(ThermoFisher Scientific Cat # 62249; Waltham, Massachusetts) onto a Fuchs-Rosenthal 
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hemocytometer. An aliquot of the resuspended lysate containing ~50,000 nuclei was then 

transferred to a fresh 1.5 ml microcentrifuge tube and was subsequently spun down for 10 

minutes at 500 G in a centrifuge chilled to 4˚C. The crude nuclear pellet was then resuspended in 

50 ul tagmentation buffer (1X TD buffer [Illumina Cat # 20034197], 33% phosphate-buffered 

saline, 0.01% digitonin, 0.1% Tween-20, 5 ml TDE1 [Illumina Cat # 20034197]) and shaken at 

1000 rpm for 30 min at 37˚C. Tagmentation was halted by adding 250 µl of PB buffer from a 

QIAGEN MinElute PCR Purification Kit (QIAGEN Cat # 28004; Hilden, Germany). 

 Tagmented DNA was purified using a QIAGEN MinElute PCR Purification Kit using the 

standard manufacturer’s instructions. The libraries were eluted in 21 µl water and amplified for an 

initial five PCR cycles using 2X NEBNext master mix (NEB Cat # M0541S; Ipswitch, MA) 

following the cycling parameters specified in the original ATAC-seq protocol (Buenrostro et al. 

2013, 2015). The number of additional PCR cycles following this initial amplification was then 

determined by performing qPCR on an aliquot of the pre-amplified libraries as described in the 

original ATAC-seq protocol. Biological replicate 1 received 1 additional cycle of PCR (for a total of 

6), replicate 2 received 3 additional cycles (for a total of 8), and replicate 3 received 4 additional 

cycles (for a total of 9). Two rounds of post-PCR clean-up were performed using Agencourt 

AMPure XP beads (Beckman Coulter Cat # A63881; Pasadena, California) following the standard 

manufacturer’s protocol. During this step we selected for DNA fragments between 100 and 700 

bp in size. Library concentration was quantified using the Qubit dsDNA HS Assay Kit 

(ThermoFisher Scientific Cat # Q32851) and fragment size distributions were determined using 

the Bioanalyzer High-Sensitivity DNA kit (Agilent Cat # 5067-4626). The libraries were then 

pooled at roughly equimolar proportions and sequenced on an Illumina NextSeq 500 using 2 x 75 

bp reads. 

 

CUT&Tag 

CUT&Tag targeting H3K4me1, H3K4me3, and H3K27me3 were each performed in 

triplicate using a modified version of the originally published CUT&Tag protocol (Kaya-Okur et al. 

2019) that was adapted for use in Hydra. Each CUT&Tag replicate consisted of 40 whole, bud-
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free strain AEP H. vulgaris polyps that had been fed once weekly and then starved for two days 

prior to the experiment. Unless otherwise specified, all steps were performed at room 

temperature without agitation. The polyps were collected in a 1.5 ml microcentrifuge tube, 

washed once with 1 ml DM, and then homogenized in 1 ml DM using 40 strokes of a tight-fitting 

glass dounce. The homogenate was passed through a 70 µm filter and centrifuged for 5 minutes 

at 1000 G. The resulting pellet was resuspended in 1 ml of lysis buffer (20mM HEPES, pH 7.5, 

150 mM NaCl, 0.5 mM spermidine, 1X cOmplete protease inhibitor [Roche Cat # 11836153001], 

2 mM EDTA, 0.1% tween-20, 0.1% NP-40, and 0.01% digoxygenin) and incubated for 5 minutes. 

The lysate was centrifuged for 5 minutes at 1300 G to produce a crude nuclear pellet, which was 

then resuspended in 1 ml of wash buffer (20mM HEPES, pH 7.5, 150 mM NaCl, 0.5 mM 

spermidine, 1X cOmplete protease inhibitor) and divided evenly into 4 1.5 ml microcentrifuge 

tubes. The volume of each tube was then brought to 1 ml using wash buffer. 10 µl of 5mg/ml 

Concanavalin A coated magnetic beads (Bangs Laboratories Cat # BP531; Fishers, Indiana) that 

had first been washed twice in bead activation buffer (20 mM HEPES, pH 7.5, 10 mM KCl, 1 mM 

CaCl2, and 1 mM MnCl2) was added to each tube. The bead-nuclei suspensions were then 

incubated for 10 minutes on a rotator and the supernatant was subsequently removed using a 

magnet stand. Bead-bound nuclei were resuspended in 50 µl solutions of either 1:1000 negative 

control rabbit IgG (EpiCypher Cat # 13-0042; Durham, North Carolina), 1:100 rabbit α-H3K4me1 

(Abcam Cat # ab8895; Cambridge, United Kingdom), 1:100 rabbit α-H3K4me3 (Active Motif Cat # 

39060; Carlsbad, California), or 1:50 rabbit α-H3K27me3 (Cell Signaling Technology Cat # 

9733T; Danvers, Massachusetts) diluted in antibody buffer (1% bovine serum albumin and 2 mM 

EDTA in wash buffer). The nuclei were incubated in the primary antibody solutions for 2 hours. 

This was followed by a 1-hour incubation in 50 µl of anti-rabbit secondary antibodies (EpiCypher 

Cat # 13-0047) diluted 1:100 in antibody buffer. The nuclei were then quickly washed three times 

in 1ml wash buffer, resuspended in 50 µl of 1x pAG-Tn5 (EpiCypher Cat # 15-1017) diluted in 

high-salt buffer (20mM HEPES, pH 7.5, 300 mM NaCl, 0.5 mM spermidine, 1X cOmplete 

protease inhibitor), and incubated for 1 hour. Next, excess pAG-Tn5 was removed using three 

quick 1 ml washes with high-salt buffer and the nuclei were resuspended in 150 µl of 
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tagmentation buffer (high-salt buffer with 10 mM MgCl2 added). Tagmentation was then allowed 

to proceed for 1 hour at 37˚C. Tagmentation was stopped by adding 5 µl 0.5 mM EDTA, 1.5 µl 

10% SDS, and 2.5 µl proteinase K (ThermoFisher Scientific Cat # EO0492) to each sample and 

incubating at 55˚C for 1 hour. 

Tagmented DNA was purified using a Zymogen Oligo Clean & Concentrator Kit (Zymo 

Research Cat # D4060; Irvine, California) following the standard manufacturer’s protocol. The 

libraries were eluted in 21 µl water and amplified using 2X NEBNext master mix following the 

cycling parameters described in the original CUT&Tag protocol (Kaya-Okur et al. 2019) for a total 

of 13 cycles. We then used Agencourt AMPure XP beads to perform two rounds of post-PCR 

clean-up and to select for DNA fragment sizes between 100 and 700 base pairs. We quantified 

the concentration of our libraries using the Qubit dsDNA HS Assay Kit and we determined their 

fragment size distributions using the Bioanalyzer High-Sensitivity DNA kit. When measuring the 

concentrations of our purified libraries, we found that our negative control samples were too dilute 

to effectively validate their size and concentration for pooling. We therefore performed another 

five rounds of PCR amplification on the three negative control libraries followed by two additional 

rounds of AMPure bead cleanup. Finally, libraries were pooled at roughly equimolar 

concentrations and sequenced on an Illumina NextSeq 500 using 2 x 75 bp reads. 

 

Cis-regulatory element annotation 

A step-by-step description of the Hydra cis-regulatory element annotation methodology, 

including all relevant code, is provided in the markdown document 08_creIdentification available 

at github.com/cejuliano/brown_hydra_genomes. This document is also provided in Supplemental 

Code S1. 

To analyze the ATAC-seq data collected from whole strain AEP H. vulgaris polyps, we 

first filtered the raw reads using Trimmomatic (Bolger et al. 2014) to remove stretches of low-

quality base-calls and contaminating adapter sequence. The filtered reads were then aligned to 

the AEP assembly using Bowtie2 (Langmead and Salzberg 2012). To remove mitochondrial 

reads, we also aligned the ATAC-seq data to the Hydra mitochondrial genome (Voigt et al. 2008) 
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and subsequently discarded any reads that aligned to the mitochondrial and nuclear genome 

references using Picard Tools (broadinstitute.github.io/picard/). We next identified and removed 

PCR duplicates from the aligned data using Samtools (Li et al. 2009) and Picard Tools. We then 

called peaks for each ATAC-seq biological replicate using MACS2 (Zhang et al. 2008). To 

generate a consensus peakset of biologically reproducible ATAC-seq peaks, we first calculated 

irreproducible discovery rate (IDR) (Li et al. 2011) peak scores for each pairwise combination of 

biological replicates (three in total). We defined a reproducible peak as one that received an IDR 

score ≤ 0.1 for at least two pairwise comparisons between biological replicates. Transcription 

factor binding footprints were predicted using TOBIAS (Bentsen et al. 2020). 

We identified 50,151 ATAC-seq peaks, 12,807 H3K4me1 peaks, 1,969 H3K4me3 peaks, 

and 3,744 H3K27me3 peaks (Supplemental Data S3). The number of ATAC-seq peaks we 

identified in the AEP assembly is similar to previously published Hydra ATAC-seq datasets 

generated using strain 105 animals (Siebert et al. 2019; Cazet et al. 2021). However, the number 

of peaks from our CUT&Tag libraries likely underrepresent the true number of genomic regions 

enriched for each respective histone modification. Thus, although we have demonstrated for the 

first time that CUT&Tag can successfully be applied to a cnidarian model, the protocol will require 

further optimization to improve sensitivity in the future. The establishment of CUT&Tag in Hydra 

offers substantial benefits over alternative chromatin mapping techniques, namely ChIP-seq, as 

CUT&Tag requires approximately two orders of magnitude fewer animals as input compared to 

equivalent Hydra ChIP-seq experiments (Reddy et al. 2020). 

To analyze the CUT&Tag data collected from whole strain AEP H. vulgaris polyps, we 

first used Trimmomatic to remove stretches of low-quality base-calls and contaminating adapter 

sequence. We then aligned the data to the AEP assembly using Bowtie2. PCR duplicates were 

then identified and removed using Samtools. We then called peaks for the H3K4me1 H3K4me3 

and H3K27me3 data with SEACR (Meers et al. 2019) using the IgG data as the background 

signal. To identify biologically reproducible peaks, we again performed IDR and selected peaks 

with an IDR score ≤ 0.1 for at least two of the three pairwise comparisons between biological 

replicates.  
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We used UROPA (Kondili et al. 2017) to annotate all ATAC-seq and CUT&Tag peaks 

based on the nearest TSS. We used deepTools (Ramírez et al. 2016) to generate the correlation 

heatmap globally comparing the aligned CUT&Tag and ATAC-seq data, to generate the data 

tracks used to depict read density along the AEP assembly, and to characterize the distribution of 

ATAC-seq and CUT&Tag data in and around genes. Individual plots visualizing the CUT&Tag, 

ATAC-seq, and sequence conservation data were generated using Gviz (Fig. 1B; Hahne and 

Ivanek 2016) and pyGenomeTracks (Fig. S4 & S7; Lopez-Delisle et al. 2021).  

 

Systematically characterizing cnidarian 3D chromatin organization 

A step-by-step description of the single-cell RNA-seq atlas mapping and annotation 

methodology, including all relevant code, is provided in the markdown document 09_3dChromatin 

available at github.com/cejuliano/brown_hydra_genomes. This document is also provided in 

Supplemental Code S1. 

To characterize chromatin organization in the strain AEP H. vulgaris genome, the raw Hi-

C reads were re-mapped to the finalized assembly using the Juicer pipeline (Durand et al. 2016). 

Subsequently, contact matrices were normalized and domain boundaries predicted with the 

HiCExplorer pipeline (Ramírez et al. 2018) using a bin size of 16 kb. To characterize gene 

expression patterns around predicted contact domain boundaries, we first identified sets of three 

genes that spanned predicted contact domain boundaries using bedtools. We then used R to 

calculate the Pearson correlation score for both gene pairs that either abutted domain boundaries 

(intra-domain pairs) or spanned domain boundaries (inter-domain pairs) using the NMF gene 

score values calculated from the Hydra single cell atlas (described below in “Hydra single-cell 

atlas mapping and annotation”). A student’s T-test, as implemented in R, was used to test for a 

significant difference in correlation values between inter- and intra-domain gene pairs. Hi-C 

contacts and domain boundaries were visualized using Juicebox (Robinson et al. 2018). 

To systematically characterize the 3D organization of cnidarian genomes, raw Hi-C reads 

were downloaded from NCBI for the following species: Nematostella vectensis (Zimmermann et 

al. 2020; PRJNA667495), Acropora millepora (Hoencamp et al. 2021; PRJNA512907), 
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Rhopilema esculentum (Nong et al. 2020; PRJNA505074), Haliclystus octoradiatus 

(PRJEB45135), and Diadumene lineata (PRJEB46842). The raw reads were then mapped using 

the Juicer pipeline. Knight and Ruiz normalized read count matrices for all possible scaffold-to-

scaffold pairs were then exported with a bin size of 100 kb using Juicer Tools (Knight and Ruiz 

2013). We then quantified inter-centromeric interactions by quantifying the average total number 

of inter-chromosomal contacts at every position along every pseudo-chromosome scaffold in 

each assembly. These contact values were then converted to a z-score and the highest z-score 

found along each scaffold was selected as the ‘inter-centromeric contact score’. We then used 

Tukey’s Honest Significant Difference method as implemented in R to perform a post-hoc 

significance test on an ANOVA calculated on all inter-centromeric contact scores for all species 

considered in the analysis. We used a significance cutoff of p ≤ 0.05. To quantify inter-telomeric 

interactions, we performed an aggregate chromosome analysis (ACA; Hoencamp et al. 2021) 

using a bin size of 500 kb. Typically, this analysis requires centromere coordinates, but because 

we only used ACA for quantifying telomere interactions—a calculation that does not depend on 

accurate centromere coordinates—we simply set these coordinates to be approximately at the 

midpoint of each pseudo-chromosome scaffold. 

 

Hydra single-cell atlas mapping and annotation 

A step-by-step description of the single-cell RNA-seq atlas mapping and annotation 

methodology, including all relevant code, is provided in the markdown document 

05_hydraAtlasReMap available at github.com/cejuliano/brown_hydra_genomes. This document is 

also provided in Supplemental Code S1. 

We aligned the raw Hydra single-cell atlas sequencing data (previously deposited under 

BioProject PRJNA497966) to the AEP genome transcript models using the Drop-seq Tools 

alignment pipeline (github.com/broadinstitute/Drop-seq). Following mapping, we next determined 

which cell barcodes to include in downstream analyses. Because most beads in a Drop-seq 

experiment are not exposed to a lysed cell, only a small minority of sequenced cell barcodes are 

associated with a genuine single-cell transcriptome. Instead, most barcodes have low read 



 
 

19 
 

counts attributable to contamination from ambient RNA. To differentiate between cell barcodes 

containing true single-cell transcriptomes and barcodes containing only transcriptomic noise, we 

generated plots that depicted the cumulative read fraction of cell barcodes ordered by read depth 

from highest to lowest. The curves generated by these plots have an elbow—an inflection point 

where the cumulative read fraction rapidly plateaus. This inflection point demarcates the transition 

from true biological signal to noise. For our downstream analyses, we used only read count data 

from the cell barcodes that preceded the elbow in the cumulative read plot.  

 Subsequent clustering and visualizations of the scRNA-seq data were done using Seurat 

(Hao et al. 2021). Prior to clustering, we performed additional filtering to remove cell barcodes 

with fewer than 300 or greater than 7,500 unique molecular identifiers (UMIs) as well as barcodes 

with fewer than 500 or greater than 75,000 total reads. We also removed any genes that were 

found in fewer than 3 cells. After filtering, we normalized the data using sctransform (Hafemeister 

and Satija 2019) and corrected for batch effects using reciprocal PCR as implemented in Seurat. 

We then clustered the single-cell transcriptomes using the Louvain algorithm (Waltman and Van 

Eck 2013) and visualized the results using a UMAP dimensional reduction (McInnes et al. 2018). 

We annotated the clustered dataset using a panel of previously validated marker genes (Figs. 

S12 and S13A) (Siebert et al. 2019). 

As with prior analyses of the Hydra scRNA-seq atlas (Siebert et al. 2019), we found that 

many individual cell transcriptomes simultaneously contained multiple transcripts known to have 

mutually exclusive expression patterns. These chimeric transcriptomes are referred to as 

“doublets” and can result from either technical or biological causes (Siebert et al. 2019; Macosko 

et al. 2015). For example, battery cells, a prominent source of doublets in Hydra scRNA-seq data, 

are tentacle ectodermal cells in which both neurons and nematocytes are stably embedded (Bode 

and Flick 1976; Yu et al. 1985; Hufnagel et al. 1985). Because these three cell types are tightly 

physically associated in battery cell complexes, they are resistant to dissociation and are 

frequently sequenced as a single cell (Siebert et al. 2019).  

To systematically identify likely doublets, we identified markers associated with 

ectodermal, endodermal, neuronal, nematocyte, gland, and germ cells using a Wilcoxon Rank 
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Sum test as implemented in Seurat. We then calculated a holistic score representing how highly 

each cell in the atlas expressed each set of cell type markers using the Seurat AddModuleScore 

function (Fig. S13B). Because most doublets in Hydra include at least one epithelial cell (Siebert 

et al. 2019), we defined a doublet as a cell with a score greater than 0.2 for both an epithelial 

module and any other cell type module (Fig. S13C). For the sake of clarity and simplicity, we 

chose to exclude all doublet transcriptomes from the finalized version of the AEP genome-

mapped atlas; however, we provide an alternative version of the atlas with doublets included 

(available at research.nhgri.nih.gov/HydraAEP/download/index.cgi?dl=fa), as certain cell types 

(e.g., battery cells) may require the inclusion of doublets to be properly represented. We repeated 

the batch correction, clustering, and UMAP dimensional reduction after removing all predicted 

doublets and found two remaining clusters, one that contained endodermal/interstitial doublets 

and another that appeared to contain cells expressing stress markers, that we removed prior to 

finalizing the set of cells included in the doublet-free version of the atlas. We again repeated the 

clustering and UMAP dimensional reduction steps to generate the final atlas presented in the 

main text, which we annotated using the same panel of previously validated marker genes 

described above. 

To identify groups of co-expressed genes in the single-cell atlas, we performed non-

negative matrix factorization (NMF) as implemented in the cNMF python package (Kotliar et al. 

2019) on the full (doublets included) single-cell expression matrix. NMF is a dimensional 

reduction technique that, when applied to gene expression data, groups co-expressed genes into 

modules referred to as metagenes. The number of metagenes identified by NMF, a value referred 

to as k, needs to be specified prior to performing the factorization. The optimal value for k cannot 

be determined objectively and instead needs to be estimated empirically by evaluating a range of 

k values. Therefore, we performed an initial parameter sweep using k values ranging from 15 to 

90 by steps of 5. The results from NMF depend on how the analysis is initialized, so we 

performed 200 independent runs for each k value that could then be combined to generate a 

consensus factorization result. We then selected a k value that maximized reproducibility across 

independent runs while simultaneously minimizing the differences between the factorized data 
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and the original expression data. Based on these criteria, we selected a k value of 55. Our initial 

sweep of k values used steps of 5, so to more precisely identify the optimal k value we performed 

another parameter sweep for k values ranging from 50 to 60 by steps of 1. After evaluating the 

reproducibility and fidelity of the results from the fine resolution sweep, we selected a final k value 

of 56. We then generated the final consensus factorization results after first discarding individual 

runs that contained irreproducible results (see 05_hydraAtlasReMap.md for details).  

 

In situ hybridization 

 To generate labeled RNA probes for performing in situ hybridization, we cloned and 

sequenced PCR products for the Hydra genes G017021 (parascleraxis) and G008733 that had 

been amplified from oligo-dT-primed cDNA generated from whole adult male and female H. 

vulgaris polyps (Kiel AEP line). Amplicons were generated using the following PCR primers: 

G017021-forward: AGTTTAAAATGCTCCAATCTATAAGG; G017021-reverse: TAATACGACTCA 

CATAGGGTGATCTTAAAAATGTAACGCAAAATG; G008733-forward: GCTTTAGGCGGCTCAA 

CAAA; G008733-reverse: ATTTAGGTGACACTATAGAACCTTTGTTTACGCCAGCA. The 

reverse primer sequences for G017021 and G008733 included T7 and SP6 promoter sequences 

respectively, allowing us to use purified PCR products as templates for in vitro transcription 

reactions using the Roche DIG RNA Labeling Kit (Roche Cat # 11175025910). The resulting DIG-

labeled RNA products were then purified using the Zymogen RNA Clean & Concentrator-25 kit 

(Zymo Research Cat # R1017) and stored at -80˚C until use. 

 To perform in situ hybridization on whole Hydra polyps, we used a slightly modified 

version of a previously published protocol (Bode et al. 2009). For each in situ, 15 whole adult 

strain AEP H. vulgaris polyps that had been starved for two days were transferred to a 1.5 ml 

microcentrifuge tube, relaxed at room temperature (RT) for 1 minute in 1 ml Hydra medium (HM) 

containing 2% urethane, and then fixed in 1 ml HM containing 4% paraformaldehyde (PFA) at 4˚C 

overnight. All subsequent steps were performed at RT in 1 ml of solution with gentle rocking 

agitation unless otherwise indicated. Following overnight fixation, the fixative was removed with 

three quick washes in PBT (0.1% tween-20 in phosphate buffered saline, pH 7.4). The tissue was 



 
 

22 
 

then bleached by transferring the samples gradually to 100% MeOH using 5-minute washes first 

in 33% MeOH in PBT then in 66% MeOH. The samples were then incubated in 100% MeOH for 1 

hour. To maximize bleaching, the samples were incubated overnight in fresh 100% MeOH at -

20˚C. The tissue was rehydrated using 1 wash with 66% MeOH, 1 wash with 33% MeOH in PBT, 

and three washes in PBT for 5 minutes each. The tissue was then permeabilized in 10 µg/ml 

proteinase K in PBT for 5 minutes. Proteinase activity was halted with a quick wash in 4 mg/ml 

glycine in PBT followed by a 10-minute wash in fresh glycine solution. The glycine solution and 

any residual proteinase K was then removed with three 5-minute washes in PBT. The samples 

were then washed twice in 0.1 M triethanolamine in PBT, once in 0.1 M triethanolamine in PBT 

containing 3 µl/ml acetic anhydride, once in 0.1 M triethanolamine in PBT containing 6 µl/ml 

acetic anhydride, then three times in PBT, all for 5 minutes each. Next, the tissue was refixed for 

1 hour using 4% PFA in PBT. The fixative was removed with three 5-minute PBT washes 

followed by two 5-minute washes in 2X SSC (300 mM NaCl and 30 mM sodium citrate). In 

preparation for probe hybridization, the samples were incubated in 50% 2X SSC/50% 

hybridization solution (HS; 50% formamide, 5x SSC [750 mM NaCl and 75 mM sodium citrate], 1x 

Denhardt’s solution, 100 μg/mL heparin, 0.1% Tween-20, and 0.1% Chaps) for 10 minutes, 

starting first at RT then gradually transitioning to hybridization temperature (56˚C). All subsequent 

pre-hybridization and hybridization steps were carried out at 56˚C. The tissue was incubated in 

HS for 10 minutes and then in HS containing 200 µg/ml yeast RNA for 2 hours. To prepare the 

DIG-labeled probes for hybridization, we added ~750 ng of probe to modified HS (50% 

formamide and 5x SSC) and denatured secondary RNA structures by incubating the solution at 

85˚C for 5 minutes. The probe solution was then added to the sample tubes after first being 

diluted in fresh HS containing 200 µg/ml yeast RNA to a final probe concentration of ~3 ng/ul. The 

samples were then left to hybridize for ~60 hours with no agitation. 

 Excess probe was removed using a sequence of single, 5-minute washes in HS, 75% 

HS/25% 2X SSC, 50% HS/50% 2X SSC, and then 25% HS/75% 2X SSC at 56˚C. The samples 

were then washed twice with 2X SSC containing 0.1% CHAPS for 30 minutes each, with the first 

wash occurring at 56˚ C and the second at 37˚ C. Unbound probe was digested by treating the 
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tissue with 20 µg/ml RNase A in 2X SSC containing 0.1% CHAPS for 30 minutes at 37˚C without 

agitation. RNase A was then removed using two 10-minute washes at 37˚C and two 30-minutes 

washes at 55˚C in 2X SSC containing 0.1% CHAPS. The samples were then transitioned back to 

RT and washed three times with MABT (100 mM maleic acid, 150 mM NaCl, 0.1% Tween 20, pH 

7.5) for five minutes each. Non-specific protein interactions in the tissue were then blocked with a 

two-hour incubation in blocking solution (MABT containing 1% BSA and 20% sheep serum) at 

4˚C. The samples were then resuspended in a 1:2000 dilution of Anti-Digoxigenin-AP (Roche Cat 

# 11093274910) in blocking solution and incubated overnight at 4˚C without agitation.  

 Following antibody binding, the samples were transitioned back to RT and excess 

antibodies were removed with eight 20-minute washes in MABT. The tissue was then washed 

once in NTMT (100 mM NaCl, 100 mM Tris-HCl, 50 mM MgCl2, 0.1% Tween-20, pH 9.5) for 5 

minutes. During this NTMT wash, the samples were transitioned to six-well plates. The NTMT 

was then replaced with 20 µl/ml NBT/BCIP solution (Roche Cat # 11681451001) in NTMT. The 

staining reaction proceeded for an empirically determined time (~1-2 hours) and was 

subsequently stopped using three quick PBT washes. To reduce non-specific signal in the tissue, 

the tissue was transitioned into 100% EtOH using 5-minute washes first in 33% EtOH in PBT then 

in 66% EtOH. The tissue was then incubated in 100% EtOH until the staining in the tissue turned 

from purple to blue (~30 minutes). The tissue was then rehydrated using single 5-minute washes 

in 66% EtOH then 33% EtOH in PBT. Finally, residual EtOH was removed using three quick PBT 

washes. The in situs were documented using a Leica DM5000B microscope (camera Leica 

DFC310FX), a Leica M165C digital stereo microscope (camera MC170HD), or a Zeiss Axiophot 

microscope (camera Leica DFC 550). 

 

Characterization of gene age in the Hydra single-cell atlas 

A step-by-step description for our methodology for characterizing the cell-type-specific 

transcriptional patterns associated with gene age, including all relevant code, is provided in the 

markdown document 06_geneAge available at github.com/cejuliano/brown_hydra_genomes. This 

document is also provided in Supplemental Code S1. 
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 To estimate the age for each Hydra gene model, we adopted a phylostratigraphic 

approach (Domazet-Lošo et al. 2007). We used the orthology predictions generated from our 

OrthoFinder analysis (see “AEP genome gene annotation”) to identify the most recent clade that 

contained all orthologs of each Hydra gene (i.e. the “clade of origin”). We defined gene age to be 

the age of each gene’s clade of origin. For example, if a gene in Hydra had orthologs throughout 

Cnidaria, but lacked any orthologs outside of Cnidaria, then Cnidaria would be considered that 

gene’s clade of origin. Therefore, the gene likely first emerged after the split of Bilateria and 

Cnidaria but before the split of Anthozoa and Medusozoa. 

 We next used these gene age predictions to characterize the relationship between gene 

age and cell-type specific transcription in our Hydra single-cell atlas. To do this, we first 

generated lists of genes that were present in the transcriptomes of each cell type in our atlas by 

identifying all genes with an average expression level above 0.05 normalized counts per cell for 

each cell type. Then, to exclude ubiquitously expressed genes that do not vary across different 

cell types, we used the Seurat FindVariableFeatures function to identify 7,500 genes with high or 

intermediate levels of variability across the Hydra atlas and excluded genes from our cell type 

transcriptomic profiles if they were not found in this variable gene list. To calculate the relative 

enrichment of each age across Hydra cell types, we calculated the odds that a gene expressed in 

a certain cell type will be of a certain age. We found that the transcriptomes of all cell types were 

heavily skewed towards ancient genes that predate Metazoa, likely reflecting the essential and 

deeply conserved functions of ancient genes. However, cell-type-specific enrichment patterns did 

emerge when we normalized the enrichment profiles across cell types by scaling the values in 

each column to have a maximum value of 1 and a minimum value of 0. We calculated single-cell 

transcriptomic age index values by applying a previously described formula (Domazet-Lošo and 

Tautz 2010) to the normalized Hydra atlas single-cell gene expression matrix. 

 

Whole-genome alignment and phylogenetic footprinting 

A step-by-step description of the single-cell RNA-seq atlas mapping and annotation 

methodology, including all relevant code, is provided in the markdown document 
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07_genomeConservation available at github.com/cejuliano/brown_hydra_genomes. This 

document is also provided in Supplemental Code S1. 

 We generated a cross-species whole-genome alignment of the C. hemisphaerica, H. 

viridissima, H. oligactis, strain 105 H. vulgaris, and strain AEP H. vulgaris genome assemblies 

using Progressive Cactus (Armstrong et al. 2020). To facilitate the alignment, we ensured that 

repetitive regions in each genome were soft-masked. In the case of the Clytia and H. viridissima 

genomes, we made use of publicly available repeat-masked data. Repeats in H. oligactis, strain 

AEP H. vulgaris, and strain 105 H. vulgaris were masked with RepeatMasker  using repeat 

families identified by the RepeatModeler2 pipeline (Flynn et al. 2020).  

To quantify sequence conservation rates in across the AEP assembly using the resulting 

alignment, we used a custom Python script to count the number of non-AEP genomes with the 

same nucleotide for every position of the AEP assembly that was included in the whole-genome 

alignment. For visualizing the sequence conservation results (as in Fig 2B), we smoothed the per-

base conservation results using a 100 bp moving window. We used deepTools (Ramírez et al. 

2016) to characterize the distribution of conservation rates around the AEP assembly gene 

models. 

 To identify putative conserved transcription factor binding sites (TFBS) in the AEP 

assembly, we first used FIMO (Grant et al. 2011) to identify putative binding sites in all four Hydra 

genomes in our alignment using a custom database of non-redundant vertebrate, insect, and 

nematode binding motif sequences from the JASPAR database (Fornes et al. 2020). To generate 

a control dataset, we also performed TFBS prediction using a version of our custom motif 

sequence database where the nucleotide order of each motif had been shuffled. We then used 

the Hierarchical Alignment API (Hickey et al. 2013) in conjunction with our cross-species genome 

alignment to convert the coordinates of all non-AEP TFBS coordinates to their equivalent 

coordinates in the AEP assembly. This allowed us to determine if a given TFBS in the AEP 

assembly was also present in other Hydra genomes. We considered a TFBS in the AEP 

assembly to be conserved if it was present in the strain 105 H. vulgaris assembly and at least one 

other Hydra genome. To further filter our conserved TFBS list to sites that were most likely to be 
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functionally relevant, we eliminated any predicted binding sites that did not fall within an ATAC-

seq peak or that overlapped protein coding sequence. To identify motif sequences from our 

custom database that showed evidence of conservation in Hydra, we used a chi-square test, as 

implemented in R, to identify motifs with significantly (FDR ≤ 0.01) higher conservation rates than 

shuffled controls. 

 To identify putatively conserved CREs, we used deepTools (Ramírez et al. 2016) to 

calculate the average level of sequence conservation for each ATAC-seq and CUT&Tag peak in 

the AEP assembly. We calculated these sequence conservation rates using pairwise 

comparisons between the AEP assembly and each non-AEP assembly in our whole-genome 

alignment, such that each peak received four separate conservation scores (e.g., one score for 

the AEP-105 alignment, one score for the AEP-oligactis alignment, etc.). We then used k-means 

clustering, as implemented in R, to partition peaks into two populations—a high-scoring 

population and a low-scoring population—for each pairwise species comparison. We defined a 

peak as conserved if it was classified as high scoring in at least two pairwise comparisons. To 

characterize the distribution of conserved enhancer-like CREs around genes in the AEP-

assembly (presented in Fig 2 C,D), we used UROPA (Kondili et al. 2017) to calculate the distance 

from each H3K4me1 and ATAC-seq peak to the nearest TSS. To remove possible core promoter 

peaks from this analysis, we disregarded all H3K4me1 and ATAC-seq peaks that overlapped a 

H3K4me3 peak prior to visualizing the TSS distance distribution. 

 To perform syntenic analyses, we used D-GENIES to generate whole-genome 

alignments and corresponding dotplots using the strain AEP H. vulgaris genome as a target 

sequence and the strain 105 H. vulgaris, H. viridissima, and H. oligactis genomes as queries 

(Cabanettes and Klopp 2018). Within the D-GENIES application, minimap2 (v. 2.24) was used for 

generating the alignment using the “Many Repeats” repeatedness configuration of D-GENIES. 

Spurious alignments were removed from the resulting dotplots using the “Hide Noise” function. 

 

Prediction of transcriptional regulators in Hydra 
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A step-by-step description of the Hydra transcriptional regulator analysis, including all 

relevant code, is provided in the markdown document 10_hydraRegulators available at 

github.com/cejuliano/brown_hydra_genomes. This document is also provided in Supplemental 

Code S1. 

To identify motifs enriched in the putative regulatory regions of genes belonging to cell-

type-specific gene co-expression programs in the Hydra single-cell atlas, we used gene set 

enrichment analysis (GSEA) as implemented in the fgsea R package (Korotkevich et al. 2021; 

Subramanian et al. 2005). GSEA requires two inputs: 1) a set binary of classifications that groups 

together genes associated with a feature or process of interest (i.e., a gene set), and 2) a set of 

continuous scores that can be used to rank genes. To test for enrichment, GSEA evaluates if the 

members of a given gene set show a non-random distribution in their score rankings (i.e., if the 

gene set is biased towards having higher or lower scores). If a gene set has a non-random 

distribution, it indicates that the feature or process that was used to group those genes (e.g., the 

presence of a specific motif in nearby regulatory regions) is associated with the metric used to 

generate the gene rankings (e.g., a gene co-expression score for a specific cell type). The 

strength of this association is quantified using a metric called the normalized enrichment score, 

with higher scores indicating a stronger bias for the gene set to be associated with high gene 

ranks. 

To perform a motif enrichment analysis using GSEA, we used our conserved TFBS 

predictions (described above in “Whole-genome alignment and phylogenetic footprinting”) to 

generate gene sets that grouped genes according to to the conserved binding motifs that were 

present in their putative regulatory regions, such that each motif was assigned a list of genes that 

were predicted to be regulated by the motif’s cognate TF. For the continuous scores used to 

order genes in the GSEA, we used the Hydra atlas NMF gene scores (NMF described in “Single-

cell atlas mapping and annotation”), which reflect how strongly the expression pattern of a gene 

matched the expression pattern associated with a given metagene. After performing GSEA for 

each metagene in the Hydra atlas, we discarded any enrichment scores that were not significant 

(adjusted P-value > 0.01) to reduce noise in the enrichment results. We then mapped these 
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enrichment scores onto the Hydra atlas by generating single-cell enrichment scores for each 

motif. To do this, we used NMF cell scores, which reflect how well each metagene reflected a 

cell’s overall transcriptomic profile, to calculate a weighted average enrichment score for each 

cell, with enrichment scores from highly scoring metagenes contributing more strongly than lowly 

scoring metagenes.  

To identify the candidate transcription factors that could plausibly bind the motifs 

associated with each metagene, we first used metadata available through the JASPAR and 

UniProt databases to identify the Pfam DNA-binding domains present in each motif’s cognate TF. 

We then generated a list of candidate regulators for each motif by identifying the AEP gene 

models that possessed the appropriate DNA-binding motifs. To determine the most likely 

candidate regulators for each motif, we used the single-cell atlas to identify TFs whose 

expression was correlated with the enrichment pattern of their cognate motif.  

A common problem that arises when performing correlation analyses using single cell 

RNA-seq data is the high frequency of ‘dropouts’, instances where low and moderately expressed 

genes are completely missed in a random subset of cell transcriptomes due to low sequencing 

depth. To mitigate this source of noise, and thus facilitate the comparison of motif enrichment and 

TF expression patterns, we used the Hydra atlas NMF results to generate an imputed version of 

the single-cell expression data. The results of a single-cell RNA-seq NMF analysis are two 

matrices, a gene score matrix and a cell score matrix, that approximate the original expression 

matrix when multiplied together. This NMF-derived approximation eliminates the cell-to-cell 

heterogeneity caused by dropouts, thus facilitating single-cell expression correlation analyses. 

Using the imputed read count matrix, we performed a correlation analysis to identify 

motifs whose enrichment pattern was correlated with the expression pattern of a TF that 

possessed the appropriate DNA-binding domain. TFs with a motif enrichment correlation score ≥ 

0.5 were deemed candidate regulators. We also reviewed possible regulator/motif pairs manually, 

allowing us to catch marginal cases where TFs were expressed in only a subset of cells where 

the target motif was enriched, causing them to fall slightly below our correlation score threshold 

(e.g., zic1 and zic4). The final selection of the motif/TF pairs we presented in the figures of this 
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study were selected manually from the list of candidates generated by the systematic analysis 

described above. 

 To control for the possible contribution of sequence bias to our enrichment results, we 

repeated our GSEA and TF expression correlation analysis using shuffled versions of each motif 

(see 10_hydraRegulators.md for details). We found that while some shuffled motifs were 

significantly enriched in the Hydra atlas, the enrichment patterns of the shuffled motifs were 

overwhelmingly different from the enrichment patterns of their unshuffled counterparts. 

Specifically, the enrichment patterns of over 90% (832/907) of shuffled motifs had a correlation 

score ≤ 0 when compared to the enrichment patterns of the unshuffled motifs. This demonstrates 

that the enrichment patterns we observed using the unshuffled motifs were not driven primarily by 

sequence composition biases. We also found that the correlation scores between motifs and their 

candidate regulators were significantly higher when using unshuffled motifs when compared to 

shuffled motifs (student’s t-test P-value ≤ 2.2e-16), suggesting the enrichment patterns for the 

unshuffled motifs better reflected the regulatory activity of Hydra TFs. 

 

Re-aligning the Clytia single-cell atlas 

A step-by-step description of the approach for generating new Clytia gene models and 

the subsequent re-alignment and clustering of the Clytia single-cell atlas, including all relevant 

code, is provided in the markdown document 11_clytiaAtlasReMap available at 

github.com/cejuliano/brown_hydra_genomes. This document is also provided in Supplemental 

Code S1. 

The initial published version of the Clytia single cell RNA-seq atlas used a newly 

generated set of gene models for the original version of the Clytia genome as a reference for read 

mapping (Leclère et al. 2019; Chari et al. 2021). However, we used an updated version of the 

Clytia genome (available at metazoa.ensembl.org/Clytia_hemisphaerica_gca902728285) for our 

cross-species whole genome alignment. To maintain a consistent genome reference across 

analyses, and to maximize the completeness of the gene models used for mapping the single cell 

data, we generated a custom set of gene predictions for the updated version of the Clytia 
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genome. To do this, we first generated a preliminary set of gene predictions by aligning both the 

new transcriptome generated in the Clytia single-cell atlas publication and the transcript models 

from the original Clytia genome publication to the updated Clytia genome using PASA. We then 

combined the PASA gene models with the gene models for the updated genome assembly using 

AGAT (github.com/NBISweden/AGAT). The resulting gene models were more complete than the 

pre-existing gene models for the updated genome assembly, as indicated by the increased 

number of complete single copy orthologs identified using BUSCO (Table S1). We then aligned 

the raw Clytia single-cell data to the newly generated transcript models using the 10X Cell 

Ranger pipeline. Following mapping, we selected the cell barcodes used for downstream analysis 

by retaining only those cells that were present in the original published version of the Clytia atlas. 

We then clustered the re-mapped data using the Louvain algorithm as implemented in Seurat and 

found that our analysis recapitulated the cell type clustering results from the original publication 

(see 11_clytiaAtlasReMap.md for details), validating our mapping and clustering approach. 

 To characterize the cell-type-specificity of Clytia genes that were lost in the Hydra 

lineage, we first used the results from our OrthoFinder analysis (described above in “AEP 

genome gene annotation”) to identify Clytia genes with orthologs in Hydractinia echinata (the 

other non-Hydra hydrozoan in our analysis) but with no orthologs in any of the Hydra proteomes 

in our analysis. We then generated a holistic score representing how strongly each cell in the 

Clytia atlas expressed these lost genes using the Seurat AddModuleScore function. 

 

Aligning the Clytia and Hydra single-cell atlases 

A step-by-step description of the Clytia and Hydra single-cell RNA-seq atlas alignment, 

including all relevant code, is provided in the markdown document 

12_crossSpeciesAtlasAlignment available at github.com/cejuliano/brown_hydra_genomes. This 

document is also provided in Supplemental Code S1. 

 To align the Clytia and Hydra single cell atlases, we first identified all Hydra genes with 

unambiguous one-to-one orthologs in Clytia using the results from our OrthoFinder analysis 

(described above in “AEP genome gene annotation”). We then subset the Clytia and Hydra 
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single-cell read count matrices to only include these one-to-one orthologs and converted all Clytia 

gene names to their Hydra equivalent. After the data was reformatted, we used reciprocal 

principal component analysis as implemented in Seurat to combine and align the Hydra and 

Clytia single-cell RNA-seq data. We then performed Louvain clustering on the aligned data and 

visualized the results using a UMAP dimensional reduction. We annotated the resulting clusters 

by propagating the cell type annotations associated with each cell barcode from the uncombined 

versions of the Clytia and Hydra atlases.  

 To quantify the transcriptional similarities between Clytia and Hydra cell types, we made 

use of a previously described alignment metric (Tarashansky et al. 2021). To calculate this 

alignment score, we performed a mutual nearest neighbor analysis (MNN) as implemented in the 

BiocNeighbors R package. This analysis identified all cross-species cell pairs where each 

member of the pair was among the other’s 30 nearest cross-species neighbors in principal 

component space. We calculated the alignment score by determining the portion of total MNNs 

for a cell type of interest that belonged to each cell type in the other species. We retained all 

cross-species cell type pairs with an alignment score ≥ 0.05. We also calculated a single-cell 

divergence score, which measures the average distance between a cell and it’s thirty nearest 

cross-species neighbors in principal component space. A smaller divergence score thus indicates 

that the transcriptomic profile of a given cell is more like the transcriptomic profiles of cells from 

the other species than cells with higher divergence scores. 

 To identify genes with conserved expression patterns in Clytia and Hydra, we first 

performed a high-resolution Louvain clustering analysis to generate ‘pseudo-cells’ that grouped 

together small sets of Clytia and Hydra cells with similar gene expression profiles. We then 

calculated average gene expression values for each species in each pseudo-cell. We designated 

a gene as having a conserved expression pattern if the pseudo-cell expression values in the two 

species had a correlation score > 0.65. 

 

Predicting conserved transcriptional regulators in Clytia and Hydra 



 
 

32 
 

A step-by-step description of the Clytia transcriptional regulator analysis and the 

comparison of candidate regulator predictions in Hydra and Clytia, including all relevant code, is 

provided in the markdown document 13_conservedRegulators available at 

github.com/cejuliano/brown_hydra_genomes. This document is also provided in Supplemental 

Code S1. 

 To identify cell-type-specific gene co-expression modules in Clytia, we performed NMF 

on the raw Clytia atlas single-cell expression matrix, following the same steps as described above 

for the Hydra single-cell atlas (see “Single-cell atlas mapping and annotation”). To identify the 

optimal number of metagenes, we first performed a broad sweep of k values from 15 to 90 by 

steps of 5. We observed a local maximum in the stability of the NMF results for k=40, prompting 

us to perform a second sweep of k values from 35 to 45 by steps of 1. Based on this fine 

resolution sweep, we chose a k value of 37. We then generated the final consensus factorization 

results after first discarding individual runs that contained irreproducible results. 

Because cis-regulatory element annotations were not available for Clytia, we were unable 

to use the same motif enrichment approach as for our analysis in Hydra. Instead, to isolate 

presumptive promoter sequences we extracted all sequences that fell within 1 kb upstream of a 

TSS. Then, for each Clytia metagene, we generated a ranked list of these putative promoters with 

sequences that were near genes strongly associated with the metagene placed at the top of the 

list and sequences near genes that were weakly associated placed at the bottom of the list. We 

then used these ranked promoters as input for an Analysis of Motif Enrichment (AME) (McLeay 

and Bailey 2010). To map the AME results onto the Clytia single-cell atlas, we calculated single-

cell weighted averages of the significant (E-value < 10) fold-enrichment results for each 

metagene using the NMF metagene cell scores. 

 To identify conserved regulators in Hydra and Clytia, we manually reviewed the 

expression patterns and associated motif enrichment patterns for all TFs that both had a 

conserved expression pattern in Clytia (see Aligning the Clytia and Hydra single-cell atlases”) and 

were designated as candidate regulators in Hydra (see “Prediction of transcriptional regulators in 

Hydra”). We considered a TF to be a conserved regulator when both the expression of the TF 
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and the enrichment of its cognate motif were localized to the same cell populations in Clytia and 

Hydra in the cross-species single-cell atlas.  

 To determine if the degree of overlap in motif enrichment patterns for the Hydra and 

Clytia atlases was greater than would be expected by chance, we repeated our analysis using 

shuffled versions of each motif. We then quantified the degree of overlap in motif enrichment 

patterns using the same pseudo-cell correlation approach described above (see “Aligning the 

Clytia and Hydra single-cell atlases”). We observed no highly correlated (r ≥ 0.5) enrichment 

patterns when using shuffled motifs, whereas we found 13 highly correlated enrichment patterns 

when using unshuffled motifs (Supplemental Data S16). This suggests that the enrichment 

overlap we observed using unshuffled motifs are likely indicative of conserved TF function and 

are not driven purely by chance.  



 
 

34 
 

 

Fig. S1. Phylogeny of hydrozoan research organisms highlighting currently available genomic 

and transcriptomic resources, divergence time estimates, and evolutionary gains and losses. * 

indicates divergence time estimates taken from Wong et al. (Wong et al. 2019). ‡ indicates 

divergence time estimate taken from Dohrmann and Worheide (Dohrmann and Wörheide 2017). 
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Fig. S2. Repeat composition of Hydra genomes. Summary plots of repeat composition in the (A-

C) strain AEP H. vulgaris, (D-F) strain 105 H. vulgaris, and (G-I) H. oligactis genomes. Repeat 

landscapes are presented at the level of repeat subfamilies (A, D, and G) and broader repeat 

classes (B, E, and H). (C, F, and I) Total proportions for repetitive and non-repetitive elements 

across each genome. 
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Fig. S3. Comparative analysis of Hydra genome sequences. (A) Dotplot reveals highly conserved 

synteny from the strain 105 H. vulgaris genome assembly to the strain AEP assembly. (B) There 

has been a ~5 Mb inversion on chr-8 since the split of strain 105 and strain AEP of H. vulgaris. 

(C) Alignment of the centromeric repeats from the strain AEP and strain 105 H. vulgaris genomes 

(Melters et al. 2013). (D,E) Preliminary chromosome assignments for the (D) H. oligactis and (E) 

H. viridissima genome assemblies based on synteny dotplots. 
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Fig. S4. Representative plot of all CUT&Tag and ATAC-seq biological replicates centered on the 

hybra1 gene. 
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Fig. S5. Correlation analysis of genomic read distribution for Hydra ATAC-seq and CUT&Tag 

libraries shows reproducibility among biological replicates. Additionally, samples targeting active 

CREs (H3K4me1, H3K4me3, and ATAC-seq) were positively correlated with each other and 

showed no correlation to the repressive mark H3K27me3 or IgG controls. 
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Fig. S6. Predicted transcription factor binding sites are enriched in regions with activating, but not 

repressive, histone marks. (A-C) ATAC-seq transcription factor binding footprints are enriched 

within (A) H3K4me1 and (B) H3K4me3 peaks, but not in (C) H3K27me3 peaks. .
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Fig. S7. Cross-species whole-genome alignments reveal conserved non-coding sequences in the 

strain AEP H. vulgaris genome. (A and B) 100 Bp moving window sequence conservation in 

sequence upstream of (A) wnt3 and (B) sp5 recapitulates previous results that used manual 

alignments (Vogg et al. 2019). 
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Fig. S8. The Hydra genome has significantly elevated rates of inter-centromeric, but not inter-

telomeric interactions relative to other cnidarian genomes. (A) Visual summary of the approach 

used for unbiased quantification of inter-centromeric contacts. A z-score was calculated along the 

length of each chromosome based on the total number of inter-chromosomal contacts at each 

position. The inter-centromere interaction score was defined as the maximum z-score for each 

chromosome. Chromosomes with a strong inter-centromeric interaction signal will have high 

scores whereas chromosomes that lack such a signal with have low scores that do not rise far 

above the noise floor. (B) Distribution of inter-centromere interaction scores calculated for 

cnidarian genomes with available Hi-C data. Statistically distinct groups (Tukey’s post-hoc test, p 

≤ 0.05) are labeled using letters above each species (i.e., species assigned the same letter are 

not statistically different, whereas species with different letters are). (C) Inter-telomeric interaction 

scores for cnidarians genomes with available Hi-C data calculated using a previously published 

methodology (Hoencamp et al. 2021). 
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Fig. S9. Condensin II subunits are absent in hydrozoans. (A-C) Phylogenies constructed by 

Orthofinder identify orthologs of the condensin II subunits (A) CAP-H2, (B) CAP-G2, and (C) 

CAP-D3 in anthozoans and non-hydrozoan medusozoans (Acraspeda), but not in hydrozoans. 

The sequences used to construct these trees are provided in Supplemental Data S6. 
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Fig. S10. Loop-like chromatin structures occur infrequently in the Hydra genome. Chromatin 

contact frequency maps for (A) Chr-5 and (B) Chr-15 include multiple off-diagonal dot-like 

interaction patterns, labeled with black arrows, that are distinctive of chromatin loops formed 

through the stable interaction of two distal loci. 
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Fig. S11. Mapping efficiency of strain AEP H. vulgaris ATAC-seq and RNA-seq data are reduced 

when aligned to the strain 105 H. vulgaris genome reference. 
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Fig. S12. Cluster annotation for the version of the strain AEP H. vulgaris single cell atlas that 

includes doublets using marker gene expression. All markers presented were validated in the 

initial atlas publication (Siebert et al. 2019). 
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Fig. S13. Identification of doublets in the Hydra single-cell RNA-seq atlas. (A) Uniform Manifold 

Approximation and Projection (UMAP) dimensional reduction of the Hydra single-cell RNA-seq 

atlas mapped to the AEP reference genome prior to doublet removal. NCs, nematocytes; NBs, 

nematoblasts; SCs, stem cells; Ecto, ectodermal epithelial cells; Endo, endodermal epithelial 

cells; GCs, gland cells; Ec, neuron subtypes found in the ectoderm; En, neuron subtypes found in 

the endoderm. (B) Module scores for cell-type-specific gene expression programs as calculated 

by the Seurat AddModuleScore function. Cell-type-specific genes were identified using a 

Wilcoxon Rank Sum test as implemented in Seurat. (C) UMAP plot highlighting all cells identified 

as doublets. Doublets were defined as having a module score greater than 0.2 for both an 

epithelial module and any other cell type module. 
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Fig. S14. Cluster annotation for the strain AEP H. vulgaris single cell atlas using marker gene 

expression. All markers presented were validated in the initial atlas publication (Siebert et al. 

2019). The UMAP with labeled clusters is shown in Figure 4A. 
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Fig. S15. Non-negative matrix factorization (NMF) identifies cell-type-specific co-expressed gene 

modules in the strain AEP H. vulgaris atlas. UMAP plots colored to highlight the cells expressing 

the 56 modules of co-expressed genes (i.e., metagenes) identified using NMF. More intense 

purple coloration indicates higher overall expression of a given metagene. 
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Fig. S16. Phylogeny of proteomes used in Orthofinder analysis. Proteome sources are provided 

in Table S5. Based on the tree branch lengths, the protein sequence divergence between Hydra 

and Clytia is roughly equivalent to that of humans and lampreys (Petromyzon marinus). 
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Fig. S17. Characterizing the relationship between gene age and cell-type-specific expression. (A) 

Heatmap depicting the relative enrichment of gene families by evolutionary age in the 

transcriptomes of different cell types suggest distinct evolutionary timelines. (B-C) Holistic 

quantification of single-cell transcriptome ages. The transcriptomic age index (TAI) is a weighted 

average that combines transcript abundance with gene age. High values of the resulting metric 

indicate a transcriptome is made up of relatively more recent genes and low values indicate a 

transcriptome is made up of relatively more ancient genes. (B) UMAP plot depicting TAI values 

for all single-cell transcriptomes in the Hydra cell atlas. (C) Boxplot of TAI values averaged by cell 

type.  
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Fig. S18. Full motif enrichment results for the Hydra cell atlas. Enrichment scores that were not 

significant (adjusted P-value > 0.01) were set to zero. Heatmap values are normalized by row (i.e. 

by motif). Motifs are referred to using both their unique JASPAR ID (formatted as MA####.#) and 

the abbreviated name of their corresponding TF. 
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Fig. S19. Additional candidate regulators of gene co-expression in Hydra. Motif enrichment and 

gene expression correlation suggest that (A) fos-like is a regulator in ectodermal head and body 

column cells; (B) rfx4-like is a regulator in mucous gland cells; (C) the homeobox TFs nk-2 and 

prdl-b are regulators in endodermal foot cells and nematoblasts respectively; (D) myc family 

transcription factors (TFs) are regulators in interstitial stem cells and progenitors; (E) atoh8 is a 

regulator in mature and differentiating neurons; (F) e2f family TFs are regulators in interstitial 

stem cells, progenitors, and germ cells; (G) foxn1/4 is a regulator in late nematoblasts; (H) ets 

family TFs are regulators in epithelial cells at the extremities (i.e., tentacle and foot tissue); (I) 
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cnotx is a regulator in ectodermal cells in the body column, head, and tentacles; and (J) zic family 

TFs are regulators in  ectodermal tentacle cells, Ec4 neurons, and desmoneme nematoblasts. 

Note that for some gene expression plots (tfdb, e2f7-8, and erg) two plots with different color 

scales are presented to highlight cells with high expression levels. Color scales for motif plots 

refer to enrichment scores and normalized read counts in the gene expression plots. 
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Fig. S20. Stem cells and early progenitors are generally associated with smaller inter-species 

alignment distances. Quantification of alignment distance in the cross-species Hydra and Clytia 

single-cell atlas. (A and B) UMAP plots depicting the average distance between (A) Hydra and (B) 

Clytia cells and their 30 nearest cross-species nearest neighbors in aligned principal component 

space. Cells with lower distance values had transcriptional profiles that were more like cells from 

the other species. These values were calculated based only on one-to-one orthologs, and thus 
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did not consider transcriptional differences based on genes unique to one of the species. (C and 

D) Box plots showing the distribution of distance scores for (C) Hydra and (D) Clytia grouped by 

cell type. 
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Fig. S21. Transcripts expressed in Clytia gland and tentacle GFP cells are enriched for genes 

lost in Hydra. (A) Original annotated UMAP from the initial Clytia atlas publication (Chari et al. 

2021). Parenthetical numbers under neuron cluster names refer to neuron subtypes contained 

within each broad neuron type. Neuron subtype names are based on a neural sub-clustering 

analysis from the initial atlas publication. Subtypes were assigned to the neuronal cluster that 

contained the largest portion of cells from a given subtype. (B-C) Module scores in the Clytia 

single-cell RNA-seq atlas were calculated based on a weighted average of the expression of all 

genes lost in Hydra. (B) UMAP plot depicting module scores for all single-cell transcriptomes in 

the Clytia atlas. (C) Module scores pooled by cell type.   
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Fig. S22. Motif enrichment analysis in the Clytia single-cell medusa atlas. (A) UMAP plots from 

the original Clytia atlas publication (Chari et al. 2021) colored by non-negative matrix factorization 

(NMF) metagene expression. NMF identified 37 sets of co-expressed genes in the Clytia atlas, 

most of which could be readily assigned to previously annotated cell types. (B) Heatmap showing 

enrichment results for promoter proximal (≤ 1 kb from nearest TSS) sequences associated with 

the 37 metagenes identified by NMF. Sequences were assigned to metagenes based on gene 

weights generated as part of the standard NMF output. Values are presented only for enrichment 

results with an E-value < 10 (approximate adjusted p-value of 0.01). Motifs are referred to using 

both their unique JASPAR ID (formatted as MA####.#) and the abbreviated name of their 

corresponding TF.  
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MA1568.1 TCF21(var.2)
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MA0798.2 RFX3
MA0704.1 Lhx4
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MA0799.1 RFX4
MA0183.1 HHEX
MA0683.1 POU4F2
MA0254.1 vvl
MA0791.1 POU4F3
MA0790.1 POU4F1
MA1619.1 Ptf1a(var.2)
MA0253.1 vnd
MA0876.1 BSX
MA1524.1 MSGN1
MA0070.1 PBX1
MA0827.1 OLIG3
MA0607.1 Bhlha15
MA0678.1 OLIG2
MA0669.1 NEUROG2
MA0817.1 BHLHE23
MA0461.2 Atoh1
MA1468.1 ATOH7
MA1114.1 PBX3
MA0227.1 hth
MA0252.1 vis
MA0207.1 achi
MA1535.1 NR2C1
MA0643.1 Esrrg
MA1111.1 NR2F2
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MA0526.3 USF2
MA0093.3 USF1
MA1449.1 hlh−30
MA0692.1 TFEB
MA0831.2 TFE3
MA0620.3 MITF
MA0498.2 MEIS1
MA1119.1 SIX2
MA0847.2 FOXD2
MA1642.1 NEUROG2(var.2)
MA0204.1 Six4
MA0504.1 NR2C2
MA0517.1 STAT1::STAT2
MA0851.1 Foxj3
MA0018.4 CREB1
MA0246.1 so
MA1487.1 FOXE1
MA0845.1 FOXB1
MA0032.2 FOXC1
MA0071.1 RORA
MA1139.1 FOSL2::JUNB(var.2)
MA1131.1 FOSL2::JUN(var.2)
MA1133.1 JUN::JUNB(var.2)
MA1438.1 atf−7
MA1143.1 FOSL1::JUND(var.2)
MA1704.1 zip−8
MA0604.1 Atf1
MA0862.1 GMEB2
MA1129.1 FOSL1::JUN(var.2)
MA1136.1 FOSB::JUNB(var.2)
MA0488.1 JUN
MA0492.1 JUND(var.2)
MA0639.1 DBP
MA0924.1 pal−1
MA0659.2 MAFG
MA0495.3 MAFF
MA0107.1 RELA
MA1624.1 Stat5a
MA0843.1 TEF
MA0447.1 gt
MA1126.1 FOS::JUN(var.2)
MA0778.1 NFKB2
MA0833.2 ATF4
MA0834.1 ATF7
MA0518.1 Stat4
MA0605.2 ATF3
MA1636.1 CEBPG(var.2)
MA1145.1 FOSL2::JUND(var.2)
MA0656.1 JDP2(var.2)
MA0840.1 Creb5
MA0532.1 Stat92E
MA1127.1 FOSB::JUN
MA1140.2 JUNB(var.2)
MA1625.1 Stat5b
MA0519.1 Stat5a::Stat5b
MA1632.1 ATF2
MA0691.1 TFAP4
MA1439.1 elt−6
MA0713.1 PHOX2A
MA0715.1 PROP1
MA0215.1 btn
MA0228.1 ind
MA0189.1 E5
MA0221.1 eve
MA0446.1 fkh
MA0157.2 FOXO3
MA0233.1 mirr
MA1441.1 lim−7
MA0481.3 FOXP1
MA0218.1 ct
MA0613.1 FOXG1
MA1489.1 FOXN3
MA0181.1 Vsx1
MA0849.1 FOXO6
MA0710.1 NOTO
MA0077.1 SOX9
MA0703.2 LMX1B
MA0033.2 FOXL1
MA0619.1 LIN54
MA0919.1 dsc−1
MA0040.1 Foxq1
MA0202.1 Rx
MA0012.1 br(var.3)
MA1152.1 SOX15
MA0868.2 SOX8
MA0194.1 Lim1
MA0084.1 SRY
MA1461.1 sv
MA0781.1 PAX9
MA0779.1 PAX1
MA0069.1 PAX6
MA0180.1 Vsx2
MA0230.1 lab
MA0236.1 otp
MA0206.1 abd−A
MA0921.1 ceh−48
MA0892.1 GSX1
MA0210.1 ara
MA0078.1 Sox17
MA0182.1 CG4328−RA
MA0448.1 H2.0
MA0174.1 Dbx
MA0109.1 HLTF
MA0820.1 FIGLA
MA0785.1 POU2F1
MA1558.1 SNAI1
MA1559.1 SNAI3
MA0745.2 SNAI2
MA0630.1 SHOX
MA1504.1 HOXC4
MA0675.1 NKX6−2
MA0214.1 bsh
MA0170.1 C15
MA0245.1 slou
MA0175.1 lms
MA0903.1 HOXB3
MA0196.1 NK7.1
MA1500.1 HOXB6
MA0187.1 Dll
MA1518.1 LHX1
MA0880.1 Dlx3
MA1495.1 HOXA1
MA0132.2 PDX1
MA0723.1 VAX2
MA0257.1 zen2
MA0721.1 UNCX
MA0662.1 MIXL1
MA1499.1 HOXB4
MA0220.1 en
MA0169.1 B−H2
MA0248.1 tup
MA0910.2 HOXD8
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MA1505.1 HOXC8
MA1507.1 HOXD4
MA1502.1 HOXB8
MA0674.1 NKX6−1
MA0251.1 unpg
MA0720.1 Shox2
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MA0147.3 MYC
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Fig. S23. Heatmap of orthologous gene pairs with similar cell-type-specific expression in Hydra 

and Clytia single-cell atlases. Gene pairs were classified as having similar expression patterns 

based on correlated expression (correlation score > 0.65) in the aligned cross-species principal 

component space. The clusters referred to in the heatmap column names refer to a fine-

resolution cross-species Louvain clustering analysis presented in Fig. S24. 
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Fig. S24. Cross-species aligned Clytia and Hydra UMAP colored by the Louvain clusters used for 

the expression correlation heatmaps in Fig. S23 and S25.  
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Fig. S25. Heatmap of predicted transcription factors (TFs) with similar cell-type-specificity in 

Hydra and Clytia. TFs were predicted based on the presence of a predicted DNA-binding domain. 

Orthologous gene pairs were classified as having similar expression patterns based on correlated 

expression (correlation score > 0.65) in the aligned cross-species principal component space. 

The heatmap column names refer to a fine-resolution cross-species Louvain clustering analysis 

presented in Supplemental Fig. S24. Heatmap values are normalized by row. 

  

in
te
rs
tit
ia
lS

te
m
C
el
ls
1

in
te
rs
tit
ia
lS

te
m
C
el
ls
2

ea
rl
y
ge
rm

ce
lls

fe
m
al
e
ge
rm

ce
lls

m
al
e
ge
rm

ce
lls

ea
rl
y
N
em

at
ob
la
st
s

de
sm

o−
lik
e
ne
m
at
ob
la
st
s

st
en
o−
lik
e
ne
m
at
ob
la
st
s

la
te
ne
m
at
ob
la
st
s

ea
rl
y
ne
m
at
oc
yt
es

de
sm

o−
lik
e
ne
m
at
oc
yt
es

is
o/
st
en
o−
lik
e
ne
m
at
oc
yt
es

ea
rl
y
ne
ur
og
en
es
is
/g
la
nd

m
id
−l
at
e
ne
ur
og

en
es
is

ec
1/
5
ne
ur
on

s
ec
2/
3/
4
ne
ur
on

s
en
1
ne
ur
on

s
en
2/
3
ne
ur
on

s
gr
an

m
uc

gl
an
d
ce
lls

sp
um

m
uc

gl
an
d
ce
lls

zy
m
og

en
gl
an
d
ce
lls

ec
to

St
em

C
el
ls

ec
to

or
al
−l
ik
e

ec
to

ba
sa
ld
is
k

ec
to

te
nt
ac
le

en
do

St
em

C
el
ls
1

en
do

St
em

C
el
ls
2

en
do

Fo
ot
/T
en
ta
cl
e
ba
se

en
do

he
ad

in
te
rs
tit
ia
lS

te
m
C
el
ls
1

in
te
rs
tit
ia
lS

te
m
C
el
ls
2

ea
rl
y
ge
rm

ce
lls

fe
m
al
e
ge
rm

ce
lls

m
al
e
ge
rm

ce
lls

ea
rl
y
N
em

at
ob
la
st
s

de
sm

o−
lik
e
ne
m
at
ob
la
st
s

st
en
o−
lik
e
ne
m
at
ob
la
st
s

la
te
ne
m
at
ob
la
st
s

ea
rl
y
ne
m
at
oc
yt
es

de
sm

o−
lik
e
ne
m
at
oc
yt
es

is
o/
st
en
o−
lik
e
ne
m
at
oc
yt
es

ea
rl
y
ne
ur
og
en
es
is
/g
la
nd

m
id
−l
at
e
ne
ur
og

en
es
is

ec
1/
5
ne
ur
on

s
ec
2/
3/
4
ne
ur
on

s
en
1
ne
ur
on

s
en
2/
3
ne
ur
on

s
gr
an

m
uc

gl
an
d
ce
lls

sp
um

m
uc

gl
an
d
ce
lls

zy
m
og

en
gl
an
d
ce
lls

ec
to

St
em

C
el
ls

ec
to

or
al
−l
ik
e

ec
to

ba
sa
ld
is
k

ec
to

te
nt
ac
le

en
do

St
em

C
el
ls
1

en
do

St
em

C
el
ls
2

en
do

Fo
ot
/T
en
ta
cl
e
ba
se

en
do

he
ad

In
te
rs
tit
ia
lS

C
s/

Pr
og

en
ito
rs

Fe
m
al
e
G
er
m

C
el
ls

N
em

at
oc
yt
es

N
eu
ro
ns

G
la
nd

C
el
ls

Clytia relative
expression

Hydra relative
expression

Low

Low

Hydra Clytia

neurod1/2/4/6 (G008398/asmbl_41995)

rfx6 (G010017/asmbl_72518)

ascl3-5 (G021815/asmbl_30989)

ndf-like (G011383/asmbl_89231)

atoh8 (G021588/asmbl_67181)

G014065/asmbl_22904

pou4 (G023106/CLYHEMG010127)

cebpa-like (G017289/asmbl_31461)

creb-like (G022693/asmbl_73626)

sox21-like (G009882/asmbl_58322)

foxn1/4 (G005557/asmbl_10259)

G001881/asmbl_53523

G004983/asmbl_61917
G013757/asmbl_88527

G004123/asmbl_28841
fos-like (G020920/asmbl_66100)

znf845 (G006103/asmbl_4245)

paxa (G008423/asmbl_164)
creb3l (G022455/asmbl_49137)

depdc (G013463/asmbl_79524)

G016386/asmbl_52258
ebf (G005780/asmbl_85734)

max-like (G028535/asmbl_48429)

myc2 (G023705/asmbl_23965)

nkx1 (G018201/asmbl_66028)

nhr-236 (G010527/asmbl_33855)

mage-like (G002339/asmbl_54151)

dek (G022797/asmbl_4072)

hmgb (G023650/asmbl_37647)

High

High



 
 

64 
 

 

 

 

Fig. S26. Motif enrichment and gene expression patterns in the Hydra and Clytia cell atlases 

suggest atoh8 is a conserved regulator of hydrozoan neurogenesis. 
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Table S1. Summary statistics for exon size, intron size, gene size, and intergenic distance across 

different metazoan genomes. 

 

Table S2. Benchmarking Universal Single Copy Orthologs (BUSCOs) statistics for hydrozoan 

reference sequences. 

 

Table S3. Equivalent chromosome number and Genbank accession numbers for the strain AEP 

and the strain 105 genome assemblies. Note that the chromosome numbering for the version of 

the strain AEP H. vulgaris assembly available via GenBank (Accession JALDPZ000000000) was 

changed to be consistent with the numbering used for the strain 105 H. vulgaris assembly 

(Accession JAGKSS000000000) (Simakov et al. 2022). 

 

Table S4. Library quality statistics for cnidarian Hi-C sequencing libraries. 

 

Table S5. List of sources for proteomes used in the OrthoFinder analysis. * indicates 

transcriptomes that were translated into protein sequence before being used in the analysis. 
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Supplemental Data S1. Excel worksheet containing functional annotation data for the H. vulgaris 

strain AEP gene models. The first tab contains the combined results from our OrthoFinder, 

InterProScan, and BLAST annotation approaches. For these annotations, the longest isoform 

was used as the representative sequence for each gene. For the OrthoFinder results, the 

assigned orthogroup is included along with predicted orthologs from a select set of well-annotated 

bilaterian species. Specifically, the bilaterian orthologs were drawn from the Homo sapiens, Mus 

musculus, Xenopus tropicalis, Drosophila melanogaster, and Caenorhabditis elegans proteomes. 

For each strain AEP gene model, we only included orthologs from one of the five species, 

prioritizing the species based using the following hierarchy: 1) H. sapiens, 2) M. musculus, 3) X. 

tropicalis, 4) D. melanogaster, and 5) C. elegans (e.g., if the AEP gene had no orthologs in H. 

sapiens, we included the orthologs from M. musculus. If there were no orthologs in either H. 

sapiens or M. musculus we included the orthologs from X. tropicalis, etc.). The table also contains 

the Pfam and PANTHER predictions from the InterProScan analysis. The “Hydra GenBank 

BLAST Hit” column contains the best BLAST hits, when available, in a custom database of 

manually deposited Hydra transcript sequences from GenBank. Finally, the table includes the 

best BLAST hit, when available, for each gene model in the UniProtKB protein database. The 

second tab in the worksheet contains the InterProScan predictions for all putative transcription 

factors in the strain AEP gene models. 

 

Supplemental Data S2. Excel workbook containing association tables mapping contigs/scaffolds 

from the strain 105 H. vulgaris, H. oligactis, and H. viridissima genome assemblies to the strain 

AEP H. vulgaris reference. 

 

Supplemental Data S3. Excel workbook containing consensus peak coordinates for ATAC-seq 

and CUT&Tag datasets. The workbook includes peak sets for all biologically reproducible peaks 

(irreproducible discovery rate ≤ 0.1) as well as peak sets that are only those reproducible peaks 

that were also conserved in at least two other Hydra genomes. Conservation status was 

determined by using k-means clustering to partition peaks into two populations (conserved and 
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non-conserved) based on the percent of conserved bases for each non-AEP Hydra genome. The 

first six columns in the peak tables are identical to BED-formatted genome-coordinate files. 

H3K4me1, H3K4me3, and ATAC-seq peak lists also include three additional columns, generated 

via the UROPA annotation pipeline (Kondili et al. 2017), that provide information on the nearest 

gene to each peak. 

 

Supplemental Data S4. Table containing motif conservation analysis results. The ‘Conserved 

Motif Hits’ column represents the number of predicted instances of each motif in the AEP genome 

that were conserved in at least two other non-AEP genomes. The ‘Total Motif Hits’ column 

represents the total number of predicted instances for each motif in the AEP genome. ‘Motif 

Conservation Rate’ represents the ratio between ‘Conserved Motif Hits’ and ‘Total Motif Hits’. The 

‘Conserved Shuffled Motif Hits’, ‘Total Shuffled Motif Hits’, and ‘Shuffled Motif Conservation Rate’ 

columns are the same metrics as described above applied to a shuffled version of the same 

motif. Shuffled motifs are non-functional sequences with identical lengths and sequence biases 

as their non-shuffled equivalents. The ‘Log-Odds Ratio’ column represents the log-transformed 

ratio of the odds that an instance of the non-shuffled motif will be conserved compared to the 

same odds for the shuffled control motif. Positive values indicate higher rates of conservation in 

the non-shuffled motif. The ‘Rank’ column represents how strongly a motif was enriched relative 

to all other motifs in the analysis, with the smallest values corresponding to the highest log-odds 

ratio and the highest values corresponding to the lowest log-odds ratio. The ‘P-value’ and ‘FDR’ 

columns contain the results of a chi-square test comparing the conservation rates of shuffled and 

non-shuffled versions of the motif. The ‘Enrichment Result’ summarizes the classification for each 

motif based on the results of the chi-square test. We classified a motif as ‘enriched’ if the chi-

square FDR was ≤ 0.01 and the log-odds ratio was > 0 and ‘depleted’ if the chi-square FDR was 

≤ 0.01 and the log-odds ratio was < 0. A motif was classified as ‘neutral’ if the chi-square FDR 

was > 0.01. 
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Supplemental Data S5. Genome coordinates for all predicted motif instances in the AEP 

genome that were conserved in at least two other non-AEP Hydra genomes. The format is 

identical to the coordinate files in Supplemental Data S3. 

 

Supplemental Data S6. Excel spreadsheet containing the amino acid sequences of all proteins 

assigned by the Orthofinder2 pipeline to the orthogroups associated with the five ancestral 

Condensin II subunits in metazoans (SMC2, SMC4, CAP-D3, CAP-H2, and CAP-G2). These 

sequences served as the basis for the gene trees presented in Figure S6. 

 

Supplemental Data S7. BED-formatted genome coordinate file for chromatin contact domains 

generated by the hicFindTADs function from the HiCExplorer pipeline (Ramírez et al. 2018). The 

fifth column contains the insulation score at the start of each domain. The insulation score 

measures chromatin interaction levels, with lower values indicating a localized decrease in 

contact frequency.  

 

Supplemental Data S8. List of cell-type-specific markers for the strain AEP H. vulgaris single-cell 

RNA-seq atlas. Markers were found by comparing single cell transcriptomes of a given cell-type 

to all other cells in the atlas using a Wilcoxon Rank Sum test as implemented in Seurat. Markers 

were excluded if the estimated log2 fold-change was less than 1. Cluster names in the ‘Target 

Cluster’ column use the following abbreviations: Ec, ectoderm; En, endoderm; I, interstitial; SC, 

stem cell; BodyCol, body column; NB, nematoblast; NC, nematocyte; Nem, nematogenesis; N, 

neuron; Neuro, neurogenesis; Gl, gland cell; GC, germ cell; Progen, progenitor; Zymo, zymogen; 

SpumMuc, spumous mucous; Fem, female; ISC, interstitial stem cell; Desmo, desmoneme; 

Steno, stenotele; Iso, isorhiza. 

 

Supplemental Data S9. Metagene by gene matrix generated by NMF analysis of the Hydra cell 

atlas. Values in the matrix are Z-scores that measure how enriched a gene was in each 

metagene. Positive values represent stronger associations between a gene and a metagene.  
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Supplemental Data S10. Cell by metagene matrix generated by NMF analysis of the Hydra cell 

atlas. Values in the matrix reflect the extent to which each metagene contributes to the overall 

transcriptomic profile of each single-cell transcriptome, with higher values reflecting a stronger 

relative contribution. Values in this matrix are unitless. 

 

Supplemental Data S11. Excel workbook containing the phylostratigraphically estimated age for 

all Hydra genes that were assigned to an orthogroup in our OrthoFinder analysis. The table 

includes the gene model ID (“Hydra Gene ID”), the most ancient clade that contained all predicted 

orthologs of that gene (“Clade of Origin”), and the orthofinder-assigned node ID for the clade of 

origin (“Orthofinder Node ID”). 

 

Supplemental Data S12. Motif by cell-type matrices containing the enrichment results used to 

generate the heatmaps in Fig. S18. Values in the matrix are derived from normalized enrichment 

scores (NES) calculated using a gene set enrichment analysis (GSEA) (Subramanian et al. 2005; 

Korotkevich et al. 2021), with higher values indicating stronger enrichment for that motif in the 

specified cell type. Cell types with non-significant enrichment results (adjusted P-value > 0.01) 

were set to zero to reduce noise. 

 

Supplemental Data S13. Table of candidate regulators of gene co-expression in Hydra. Each 

row of the table represents a different candidate regulator. Genes were designated as candidate 

regulators of a motif if its expression correlated with the motif’s enrichment pattern in the single 

cell atlas and the gene possessed a DNA-binding domain that could bind the motif. Along with the 

regulator gene ID, each row includes all motifs with enrichment patterns that were correlated with 

the gene’s expression pattern (correlation score > 0.5) listed in decreasing order, functional 

annotations based on bilaterian orthologs identified by Orthofinder, all Pfam protein domains 

predicted by InterProScan, and GenBank accession numbers for the gene based on best BLAST 

hits against a curated list of Hydra GenBank entries. 



 
 

70 
 

 

Supplemental Data S14. Metagene by gene matrix generated by NMF analysis of the Clytia cell 

atlas. Values in the matrix are Z-scores that measure how enriched a gene was in each 

metagene. Positive values represent stronger associations between a gene and a metagene.  

 

Supplemental Data S15. Cell by metagene matrix generated by NMF analysis of the Clytia cell 

atlas. Values in the matrix reflect the extent to which each metagene contributes to the overall 

transcriptomic profile of each single-cell transcriptome, with higher values reflecting a stronger 

relative contribution. Values in this matrix are unitless. 

 

Supplemental Data S16. Excel worksheet containing results from the cross-species 

transcriptional regulation analysis. The ‘Clytia Motif Enrichment’ tab contains the output from the 

Clytia metagene Analysis of Motif Enrichment (AME). The ‘Mg Promoters w/ Motif’ column 

represents the number of genes that belong to a given metagene that had a predicted instance of 

the target motif. The ‘% MG Promoters w/ Motif’ represents this number as a percentage of the 

total number of genes belonging to a given metagene. The ‘Non-mg Promoters w/ Motif’ and ‘% 

Non-mg Promoters w/ Motif’ are equivalent metrics that instead refer to the genes that were not 

part of the target metagene. The ‘Fold-Enrichment’ was calculated by dividing the ‘% Mg 

Promoters w/ Motif’ by the ‘% Non-mg Promoters w/ Motif’. All motifs with an E-value > 10 were 

excluded from AME results tables. The ‘Cross-Species Motif Cor’ tab contains enrichment pattern 

correlation scores for all motifs that were enriched in both the Hydra and Clytia atlases. High 

correlation scores indicate a motif was enriched in similar cell types in the two species. The 

‘Cross-Species Shuf Motif Cor’ tab contains enrichment pattern correlation scores for shuffled, 

non-functional motif sequences.  

 

Supplemental Data S17. Expression correlation scores for orthologous gene pairs in the Hydra 

and Clytia cell atlases. Ortholog pairs were deemed to have similar expression in Clytia and 

Hydra if their pseudo-cell correlation score was ≥ 0.65. In addition to the Hydra and Clytia gene 
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IDs and the pseudo-cell correlation score, each row also contains functional annotations based 

on bilaterian orthologs identified by Orthofinder (both the abbreviated name and the Ensembl ID) 

and GenBank accession numbers for the gene based on best BLAST hits against a curated list of 

Hydra GenBank entries. 

 

Supplemental Code S1. Repository of all code used to generate the results presented in this 

manuscript. This repository is also available at github.com/cejuliano/brown_hydra_genomes.  
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