

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association Between Periodontitis and Hypertension: Cross-Sectional Survey from the Fourth National Oral Health Survey in China (2015-2016)

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-068724
Article Type:	Original research
Date Submitted by the Author:	02-Oct-2022
Complete List of Authors:	Zhan, Yalin; Peking University Hospital of Stomatology, First Clinical Division Jiao, Jian; Peking University Hospital of Stomatology, Department of Periodontology Jing, Wu-di; Peking University Hospital of Stomatology Feng, Xiping; Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Department of Preventive Dentistry Tai, Baojun; Wuhan University, School & Hospital of Stomatology Hu, Deyu; Sichuan University, West China School of Stomatology Lin, Huan-cai; Sun Yat-Sen University, Guanghua School of Stomatology, Hospital of Stomatology Wang, Bo; Peking University Hospital of Stomatology Wang, Chunxiao; Chinese Center for Disease Control and Prevention Zheng, Shuguo; Peking University Hospital of Stomatology Liu, Xuenan; Peking University Hospital of Stomatology Wang, Weisheng; Peking University Hospital of Stomatology Song, Wensheng; Peking University Hospital of Stomatology Wang, Xing; Peking University Hospital of Stomatology Meng, Huanxin; Peking University Hospital of Stomatology
Keywords:	Hypertension < CARDIOLOGY, ORAL MEDICINE, Epidemiology < TROPICAL MEDICINE, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Association Between Periodontitis and Hypertension: Cross-Sectional Survey from the Fourth National Oral Health Survey in China (2015-2016)

Running title: Association between periodontitis and hypertension

Ya-lin Zhan^{1*},PhD, Jian Jiao^{1*}, DDS, Wu-di Jing¹, DDS., Xi-ping Feng², PhD, Bao-jun Tai³, PhD, De-yu Hu⁴, PhD, Huan-cai Lin⁵, PhD, Bo Wang⁶,EMBA, Chun-xiao Wang⁷, PhD, Shu-guo Zheng⁸,PhD, Xue-nan Liu⁸, PhD, Wen-sheng Rong⁸, PhD, Wei-jian Wang⁸, PhD, Xing Wang⁶, PhD, Yan Si⁸, PhD, Huan-xin Meng¹, PhD,[†]

¹ Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, P.R. China ² Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.

³ School & Hospital of Stomatology, Wuhan University, Wuhan, P.R. China.

⁴ West China School of Stomatology, Sichuan University, Chengdu, P.R. China.

⁵ Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University,

Guangzhou, P.R. China.

⁶ Chinese Stomatological Association, Beijing, P.R. China.

⁷ Chinese Center for Disease Control and Prevention, Beijing, P.R. China.

⁸ Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of

 Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, P.R. China

*The two authors contributed equally to this work.

+ corresponding author

Corresponding author: Huanxin Meng

Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Zhongguancun Nandajie 22, Haidian District, 100081, Beijing, P.R.China

Email: kqhxmeng@126.com

Tel: +86-010-82195522; Fax: +86-010-82195522.

ABSTRACT

Objectives To evaluate the association between periodontitis severity and hypertension based on Chinese epidemiological data.

Design This cross-sectional survey enrolled adults from the Fourth National Oral Health Survey of China (2015-2016).

Setting The study data were obtained from the Fourth National Oral Health Survey of China (2015-2016).

Participants The study included dentate individuals aged 35-44 years (n = 4,409),

55-64 years (n = 4,568), and 65-74 years (n = 4,218).

Primary and secondary outcome measures Periodontal status, defined on the basis of the 2018 classification scheme, and periodontal parameters (e.g., bleeding on probing [BOP], probing depth [PD], and attachment loss [AL]) were compared between hypertensive and normotensive individuals. Smoothed scatterplots were constructed to demonstrate the associations of periodontal parameters and periodontal status with hypertension.

Results Severe periodontitis (stages III and IV) was present in 41.34% and 27.99% of hypertensive and normotensive individuals, respectively (p < 0.001). The prevalence of severe periodontitis was higher in hypertensive individuals than that in normotensive individuals among participants aged 35-44 years (18.12% and 10.09%, p < 0.001) and 55-64 years (40.12% and 36.77%, p = 0.035), but not in participants aged 65-74 years (46.40% and 45.14%, p = 0.429). Therefore, the difference in periodontal status between hypertensive and normotensive individuals decreased with age. There were higher prevalences of BOP, PD ≥ 4 mm, and PD ≥ 6 mm in hypertensive individuals than in normotensive individuals (57.71% vs 53.12%, 22.11% vs 16.29%, and 2.07% vs 1.22%, respectively). Periodontitis severity and the proportion of teeth with PD \ge 4 or ≥ 6 mm were positively associated with hypertension.

Conclusion Based on the data of the Fourth National Oral Health Survey of China, hypertensive individuals were more likely than normotensive individuals to have periodontitis. Periodontal severity is associated with hypertension.

Key Words: Hypertension, oral medicine, epidemiology, public health.

Strengths and limitations of this study

The study included data from a large-scale national survey in which participants were representative of the Chinese population. The periodontitis classification proposed at the 2017 World Workshop was used to determine the association between periodontitis and hypertension. Hypertension was self-reported and blood pressure was not measured.

INTRODUCTION

Hypertension, which affects 45% of the global population, is the most common cardiovascular disease (CVDs) worldwide ^{1,2}. It is defined as systolic or diastolic blood pressure (BP) of \geq 140 or \geq 90 mmHg, respectively. Hypertension is frequently poorly controlled and untreated ³. It ia a complex disease with multiple causes and a major risk factor for CVDs ⁴. Oxidative stress, endothelial dysfunction, and inflammation are associated with the development of hypertension ⁵. The results of experimental and clinical studies suggest that inflammation has a major role in the development of hypertension ⁶. Chronic inflammation predisposes to the development of prohypertensive inflammation.

Periodontal disease, an immune-inflammatory reaction to plaque biofilms ⁷, has received substantial attention because of its association with CVDs. The Global Burden of Disease Study revealed that periodontitis was the sixth most prevalent disease worldwide. Periodontitis affects 743 million people worldwide (11.2% of the global population); the prevalence is higher in China than in other countries. The Fourth National Oral Health Survey of China showed that 90.9% individuals aged 35-44 years

had periodontal disease ^{8, 9}. The low-grade inflammation associated with periodontitis has harmful effects on the endothelial function, which may result in hypertension ¹⁰. A recent study revealed that individuals with periodontitis have increased risks of hypertension and antihypertensive treatment failure ^{11,12}. Previous studies have suggested that dental treatment can improve blood pressure, although the findings have been inconclusive and further studies are needed ¹³⁻¹⁶.

Periodontitis and hypertension are major health problems, and their association received considerable public health attention. Therefore, we evaluated the relationship between periodontitis and hypertension based on the data from the Fourth National Oral Health Survey of China. We sought to determine whether individuals with periodontitis are more likely to have hypertension compared with individuals who do not have periodontitis; we also sought to determine whether periodontitis severity is associated with hypertension.

MATERIALS AND METHODS

Study design and sample

This cross-sectional study obtained data from adult participants of the Fourth National Oral Health Survey of China (2015-2016) ⁸. The planned sample size was 4,230 each for the age groups 35-44, 55-64 and 65-74 years. We excluded data from edentulous participants and from participants without complete information. Finally, 13,195 individuals were included (4,409, 4,568, and 4,218 individuals aged 35-44, 55-64, and 65-74 years, respectively).

Ethics approval

The study protocol was approved by the Ethics Committee of the Chinese Stomatological Association (approval no.: 2014-003). Written informed consent was obtained from all participants. This study was performed in accordance with the 2013 revision of the Declaration of Helsinki.

Data collection

We collected data related to oral examination findings and questionnaire answers.

1. Periodontal examination

Periodontal examinations were performed using a community periodontal index probe. A full-mouth examination was performed, during which the probe was walked along the gingival crevices using a force of ≤ 20 g to assess bleeding on probing (BOP), the presence of calculus, probing depth (PD), and attachment loss (AL). For each parameter, each tooth was scored according to the condition of the most severely affected site. Training programs were conducted for examiner calibration before the survey. The reliability of the results was assessed using kappa values; kappa values for periodontal pocket depth were ≥ 0.6 . Additionally, 5% of the participants were randomly selected for assessment of inter-examiner reproducibility. The kappa values for all age-groups were 0.76-0.80.

Patient and public involvement

The study participants or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

Study parameters

Supragingival and subgingival calculus were identified by visual examination and probing, respectively (0 = absent, 1 = present, 9 = tooth excluded, and X = tooth not present). PD was recorded as 0 (1–3 mm), 1 (4–5 mm), 2 (≥ 6 mm), 9 (tooth excluded), or X (tooth not present). BOP was recorded as 0 (absent), 1 (present), 9 (tooth excluded), or X (tooth not present). AL was measured as the distance from the cementoenamel junction to the bottom of the periodontal pocket; it was recorded as 0 (0–3 mm), 1 (4–5 mm), 2 (6–8 mm), 3 (9–11 mm), 4 (≥ 12 mm), 9 (tooth excluded), or X (tooth not present).

The classification scheme proposed at the 2017 World Workshop on the Classification of Periodontal and Per-Implant Diseases and Conditions was used to classify the periodontal status as periodontally healthy (< 10% BOP-positive sites and PD \leq 3 mm) or gingivitis (\geq 10% BOP-positive sites and PD \leq 3 mm). Periodontitis was staged using the algorithm developed by Graetz *et al* ¹⁷. For each tooth, stages I-III periodontitis were defined as AL of 1–2 mm, 3–4 mm, and \geq 5 mm, respectively. We also considered the number of teeth lost when classifying periodontitis: stages I and II, no tooth loss; stage III, \leq 4 teeth lost; and stage IV, \geq 5 teeth lost. The cause of tooth loss was not considered. Finally, we evaluated the complexity of patient management. Stage II patients were reclassified as stage III if the maximum PD was \geq 6 mm. Stage

III patients were reclassified as stage IV if there were < 10 opposing pairs of teeth).

2. Interview data from the questionnaire

Questionaires were administered during in-person interviews to collect data regarding demographics, socioeconomic status, habits, dental history, and health attitudes. The following information was collected for analysis: age (years), annual family income (in increments of 10,000 yuan), sex (male or female), duration of education (years), self-reported hypertension (yes or no), smoking status (current smoker, former smoker, or non-smoker), and region (urban or rural).

Statistical analyses

Statistical analyses were performed using SPSS (version 19; IBM Corp., Armonk, NY, USA) or R (version 3.6.1; R Foundation for Statistical Computing, Vienna, Austria). The primary outcome was periodontal status (healthy, gingivitis, and stages I-IV periodontitis). The secondary outcomes were the proportions of BOP-positive teeth, teeth with PD \geq 4 and \geq 6 mm, teeth with AL \geq 4, \geq 6, and \geq 9 mm; and missing teeth. First, descriptive analysis was performed. Quantitative data were reported as means and standard deviations; categorical data were reported as numbers and percentages. Periodontal parameters were compared between hypertensive and normotensive individuals; subgroup analyses were conducted according to age group and smoking status. Periodontal status and parameters were analysed using the chi-square test. Additionally, smoothed scatterplots based on generalised additive models

were constructed, with adjustment for confounders (sex, smoking status, region, duration of education, and annual family income), to evaluate the relationships of hypertension prevalence with periodontal status or parameters. The level of statistical significance was set at p < 0.05.

RESULTS

The participants were randomly selected from 31 provinces, autonomous regions, and municipalities in mainland China. In total, data from 13,195 individuals were included in the analysis; invalid data from five participants and data from 264 edentulous patients were excluded. The mean individual age was 56.43 ± 12.40 years. The sample consisted of 6,575 men (49.83%) and 6,620 women (50.17%). There were 3,470 non-smokers (26.30%), 8,405 current smokers (63.71%), and 1,318 former smokers (9.99%). Hypertension was present and absent in 3,154 (23.90%) and 10,041 (76.10%) participants, respectively.

Differences in periodontal status between hypertensive and normotensive participants decreased with age

Table 1 and S1 present the distributions of periodontal status according to age in participants with and without hypertension.

Significantly greater proportions of hypertensive participants had stages I-IV periodontitis (70.23% vs. 61.51%, p < 0.001) and severe periodontitis (stages III-IV, 41.34% vs. 27.99%, p < 0.001), compared with normotensive participants. Stratified

BMJ Open

analysis according to age showed that the prevalence of periodontitis (stage I-IV) was significantly greater in hypertensive participants than in normotensive participants among individuals aged 35-44 years (52.33% vs. 59.06%, p = 0.030), 55-64 years (72.61% vs. 69.19%, p = 0.023), and 65-74 years (70.23% vs. 66.35%, p = 0.009). Severe periodontitis (stage III and stage IV) was more common in hypertensive participants than in normotensive participants among individuals aged 35-44 years (18.12% vs. 10.09%, p < 0.001) and 55-64 years (40.12% vs. 36.77%, p = 0.035), but not among individuals aged 65-74 years (46.40% vs. 45.14%, p = 0.429). Therefore, differences in periodontal status between hypertensive and normotensive participants decreased with age (Table 1).

Table 1. Comparison of distribution of periodontal status according to the 2018 classification by age groups between hypertensive and normotensive subjects.

			NT	2		H	Г
		Ν	%	95% CI	Ν	%	95% CI
35-45 years	Health	658	15.9	14.8~17.1	40	14.5	10.7~19.0
	Gingivitis	1312	31.7	30.3~33.2	73	26.4	21.5~31.9
	Stage I	1134	27.4	26.1~28.8	69	25.0	20.2~30.4
	Stage II	612	14.8	13.7~15.9	44	15.9	12.0~20.6
	Stage III	360	8.7	7.9~9.6	40	14.5	10.7~19.0
	Stage IV	57	1.4	1.1~1.8	10	3.6	1.9~6.3
55-65 years	Health	347	10.6	9.6~11.7	116	9.0	7.5~10.6
	Gingivitis	661	20.2	18.9~21.6	239	18.4	16.4~20.6
	Stage I	403	12.3	11.2~13.5	174	13.4	11.7~15.4
	Stage II	658	20.1	18.8~21.5	247	19.1	17.0~21.3
	Stage III	659	20.1	18.8~21.5	273	21.1	18.9~23.3
	Stage IV	544	16.6	15.4~17.9	247	19.1	17.0~21.3
65-75 years	Health	348	13.2	12.0~14.5	182	11.5	10.0~13.1

	~		• • •		• • • •		
	Gingivitis	539	20.4	18.9~22.0	289	18.3	16.4~20.2
	Stage I	175	6.6	5.7~7.6	126	8.0	6.7~9.4
	Stage II	384	14.6	13.3~16.0	251	15.9	14.1~17.7
	Stage III	475	18.0	16.6~19.5	304	19.2	17.3~21.2
	Stage IV	715	27.1	25.5~28.8	430	27.2	25.0~29.4
Total	Health	1353	13.5	12.8~14.2	338	10.7	9.7~11.8
	Gingivitis	2512	25.0	24.2~25.9	601	19.1	17.7~20.5
	Stage I	1712	17.1	16.3~17.8	369	11.7	10.6~12.9
	Stage II	1654	16.5	15.8~17.2	542	17.2	15.9~18.5
	Stage III	1494	14.9	14.2~15.6	617	19.6	18.2~21.0
	Stage IV	1316	13.1	12.5~13.8	687	21.8	20.4~23.2

HT = Hypertension; NT = Normotension.

Table S1 showed the distribution of periodontal status stratified according to smoking status. Periodontitis (stage I-IV) was more common in hypertensive participants than in normotensive participants among current smokers (76.16% vs. 68.15%, p < 0.001) and non-smokers (67.25% vs. 57.41%, p < 0.001), but not among former smokers (73.59% vs. 70.58%, p = 0.270). Severe periodontitis (stage III and stage IV) was significantly more common in hypertensive participants than in normotensive participants among non-somkers (48.45% vs. 34.67%, p < 0.001), current smokers (36.82% vs. 23.75%, p < 0.001), and former smokers (50.26% vs 37.93%, p < 0.001).

Periodontal status was significantly worse in hypertensive participants than in normotensive participants

Tables 2 and 3 present comparisons of periodontal parameters between hypertensive and normotensive participants. Compared with normotensive participants, hypertensive participants had significantly greater proportions of teeth with BOP (57.71% vs. 53.12%), PD \geq 4 mm (22.11% vs. 16.29%), PD \geq 6 mm (2.07% vs. 1.22%), AL \geq

4 mm (28.86% vs. 20.56%), AL $\geq 6 \text{ mm}$ (8.44% vs. 5.54%), and AL $\geq 9 \text{ mm}$ (1.72%) vs. 1.18%). Differences in periodontal parameters between hypertensive and normotensive participants decreased with age. The differences in periodontal parameters between hypertensive and normotensive participants were similar among current smokers, former smokers, and non-smokers. Difference in the mean prevalence of periodontal pocket (PD \geq 4 mm) were consistent in the stratified analysis. Compared with normotensive participants, hypertensive participants had significantly greater proportions of teeth with PD \geq 4 mm (4.45 vs. 3.46), PD \geq 6 mm (0.37 vs. 0.22), AL \geq 4 mm (1.18 vs. 0.81), and AL \geq 6 mm (0.2 vs. 0.12). The mean number of BOP-positive teeth did not significant differ between hypertensive and normotensive participants (12.43 vs. 12.33). The mean number of teeth showed a distribution pattern similar to the distribution patterns of various periodontal parameters. The difference in the mean number of teeth between hypertensive and normotensive participants decreased with age. Furthermore, differences in the prevalences of teeth with PD ≥ 4 mm and deep PD sites were consistent in the stratified analysis.

 Table 2. Comparison of percentage of teeth affected by age groups and smoking status.

 NT
 HT

	РТА	Mean	95% CI	Mean	95% CI	p^*
35-45 years	BOP+	46.5	45.41~47.55.	50.32	45.92~54.72	0.096
	PD≥ 4mm	10.5	9.90~11.05	15.83	12.86~18.80	0.001
	PD≥ 6mm	0.5	0.40~0.59	1.09	0.56~1.63	0.031
	AL≥ 4mm	6	5.55~6.41	10.14	7.85~12.43	0.001
	AL≥ 6mm	0.8	0.69~0.95	1.62	0.82~2.42	0.052
55-65 years	BOP+	52.5	51.30~53.72	54.03	52.11~55.96	0.188
	PD≥ 4mm	17.9	17.11~18.76	20.3	18.92~21.68	0.004

	PD≥ 6mm	1.4	1.21~1.65	1.9	1.55~2.24	0.024
	AL≥ 4mm	22.1	21.16~22.95	21.53	20.15~22.92	0.543
	AL≥ 6mm	5.3	4.90~5.78	5.49	4.79~6.18	0.722
65-75 years	BOP+	49.3	47.91~50.59	50.84	49.09~52.58	0.157
	PD≥ 4mm	17.4	16.45~18.28	19.6	18.39~20.81	0.004
	PD≥ 6mm	1.5	1.29~1.81	1.84	1.49~2.19	0.185
	AL≥ 4mm	28.7	27.59~29.78	27.62	26.25~28.99	0.240
	AL≥ 6mm	8.9	8.28~9.61	8.29	7.47~9.11	0.226
Current	BOP+	49.6	46.77~52.42	49.89	45.99~53.79	0.311
smoker	PD≥ 4mm	21.4	19.36~23.52	22.94	20.16~25.72	0.000
	PD≥ 6mm	2.2	1.53~2.80	2.09	1.34~2.84	0.006
	AL≥ 4mm	36.3	33.86~38.78	33.54	30.24~36.84	0.000
	AL≥ 6mm	13.1	11.38~14.75	11.38	9.26~13.50	0.001
Non-						
smoker	BOP+	48.9	47.22~50.57	51.56	49.42~53.69	0.000
	PD≥ 4mm	15.4	14.30~16.47	17.91	16.49~19.33	0.000
	PD≥ 6mm	1.1	0.89~1.40	1.66	1.27~2.05	0.000
	AL≥ 4mm	25.1	23.79~26.41	24.67	23.10~26.23	0.000
	AL≥ 6mm	7.2	6.44~7.92	6.60	5.71~7.50	0.000
Former	BOP+	50.2	46.54~53.82	48.84	44.03~53.65	0.603
smoker	PD≥ 4mm	18.7	16.23~21.21	22.62	18.90~26.34	0.000
	PD≥ 6mm	2.2	1.32~3.13	2.31	1.07~3.56	0.126
	AL≥ 4mm	30.7	27.81~33.60	32.77	28.63~36.92	0.001
	AL≥ 6mm	9.3	7.63~10.97	11.66	9.01~14.30	0.002
Total	BOP+	0.0	0.00~0.00	0.00	0.00~0.00	0.000
	PD≥ 4mm	0.0	0.00~0.00	0.00	0.00~0.00	0.000
	PD≥ 6mm	0.0	0.00~0.00	0.00	0.00~0.00	0.000
	AL≥ 4mm	0.0	0.00~0.00	0.00	0.00~0.00	0.000
	AL≥ 6mm	0.0	0.00~0.00	0.00	0.00~0.00	0.001

AL= attachment loss; BOP = bleeding on probing; HT = Hypertension;

NT = Normotension; PD = probing depth; PTA = Percentage of teeth affected;

* significant difference by Student's t test.

Table 3. Number of percentage of teeth affected by age groups and smoking status.

			NT		HT	
	NTA	Mean	95% CI	Mean	95% CI	p*
35-45 years	BOP+	12.69	12.40~12.99	13.61	12.42~14.80	<u>р</u> 0.14
55-45 years	PD≥ 4mm	2.83	2.68~2.99	4.19	3.40~4.98	0.14
	PD≥ 4mm PD≥ 6mm		2.08~2.99	0.27	0.14~0.40	0.00
	PD≥ omm AL≥ 4mm	0.13				
		1.58	1.47~1.70	2.58	2.00~3.16	0.00
	AL≥ 6mm	0.20	0.17~0.24	0.38	0.21~0.55	0.04
55-65 years	BOP+	13.01	12.69~13.33	13.37	12.86~13.88	0.24
	PD≥ 4mm	4.21	4.02~4.40	4.76	4.43~5.08	0.00
	PD≥ 6mm	0.28	0.24~0.32	0.41	0.34~0.49	0.0
	AL≥ 4mm	5.03	4.82~5.23	4.80	4.49~5.11	0.22
	AL≥ 6mm	1.07	0.99~1.15	1.08	0.95~1.21	0.9
65 75 years	BOP+	10.92	10.59~11.26	11.47	11.03~11.91	0.0
65-75 years	BOP+ PD≥ 4mm					
		3.52	3.33~3.72	4.25	3.98~4.52	0.0
	PD≥ 6mm	0.27	0.23~0.31	0.36	0.29~0.42	0.0
	AL≥ 4mm	5.65	5.43~5.88	5.60	5.31~5.88	0.7
	AL≥ 6mm	1.46	1.36~1.56	1.40	1.27~1.53	0.5
Current	BOP+	12.30	11.93~12.67	12.09	0.33~0.42	0.5
smoker	PD≥ 4mm	4.59	4.36~4.82	5.49	594.42~0.00	0.0
	PD≥ 6mm	0.31	0.27~0.35	0.50	61.18~0.00	0.0
	AL≥ 4mm	4.86	4.62~5.09	6.13	658.63~0.00	0.0
	AL≥ 6mm	1.19	1.09~1.29	1.59	179.14~0.00	0.0
Non-smoker	BOP+	12.29	12.06~12.51	12.62	12.22~13.02	0.1
	PD≥ 4mm	2.89	2.78~3.01	3.91	3.68~4.15	0.0
	PD≥ 6mm			0.29	0.24~0.34	0.0
		016	$0.14 \sim 0.18$			
		0.16	0.14~0.18			
	AL≥ 4mm AL≥ 6mm	0.16 3.10 0.60	0.14~0.18 2.98~3.22 0.56~0.64	4.38 0.92	4.15~4.61 0.83~1.01	0.0
F	AL≥ 4mm AL≥ 6mm	3.10 0.60	2.98~3.22 0.56~0.64	4.38 0.92	4.15~4.61 0.83~1.01	0.0 0.0
Former	AL≥ 4mm AL≥ 6mm BOP+	3.10 0.60 12.72	2.98~3.22 0.56~0.64 12.13~13.32	4.38 0.92 12.21	4.15~4.61 0.83~1.01 11.28~13.14	0.0 0.0 0.3
Former smoker	AL≥ 4mm AL≥ 6mm BOP+ PD≥ 4mm	3.10 0.60 12.72 4.12	2.98~3.22 0.56~0.64 12.13~13.32 3.76~4.48	4.38 0.92 12.21 5.14	4.15~4.61 0.83~1.01 11.28~13.14 4.50~5.78	0.0 0.0 0.3 0.0
	AL≥ 4mm AL≥ 6mm BOP+ PD≥ 4mm PD≥ 6mm	3.10 0.60 12.72 4.12 0.36	2.98~3.22 0.56~0.64 12.13~13.32 3.76~4.48 0.27~0.44	4.38 0.92 12.21 5.14 0.53	4.15~4.61 0.83~1.01 11.28~13.14 4.50~5.78 0.37~0.69	0.0 0.0 0.3 0.0 0.0
	AL≥ 4mm AL≥ 6mm BOP+ PD≥ 4mm PD≥ 6mm AL≥ 4mm	3.10 0.60 12.72 4.12 0.36 5.29	2.98~3.22 0.56~0.64 12.13~13.32 3.76~4.48 0.27~0.44 4.90~5.68	4.38 0.92 12.21 5.14 0.53 5.94	4.15~4.61 0.83~1.01 11.28~13.14 4.50~5.78 0.37~0.69 5.32~6.55	0.00 0.00 0.00 0.00 0.00
	AL≥ 4mm AL≥ 6mm BOP+ PD≥ 4mm PD≥ 6mm	3.10 0.60 12.72 4.12 0.36	2.98~3.22 0.56~0.64 12.13~13.32 3.76~4.48 0.27~0.44	4.38 0.92 12.21 5.14 0.53	4.15~4.61 0.83~1.01 11.28~13.14 4.50~5.78 0.37~0.69	0.0 0.0 0.3 0.0 0.0 0.0
	AL≥ 4mm AL≥ 6mm BOP+ PD≥ 4mm PD≥ 6mm AL≥ 4mm	3.10 0.60 12.72 4.12 0.36 5.29	2.98~3.22 0.56~0.64 12.13~13.32 3.76~4.48 0.27~0.44 4.90~5.68	4.38 0.92 12.21 5.14 0.53 5.94	4.15~4.61 0.83~1.01 11.28~13.14 4.50~5.78 0.37~0.69 5.32~6.55	0.00 0.00 0.00 0.00 0.00 0.00
smoker	AL≥ 4mm AL≥ 6mm BOP+ PD≥ 4mm PD≥ 6mm AL≥ 4mm AL≥ 6mm	3.10 0.60 12.72 4.12 0.36 5.29 1.18	2.98~3.22 0.56~0.64 12.13~13.32 3.76~4.48 0.27~0.44 4.90~5.68 1.02~1.33	4.38 0.92 12.21 5.14 0.53 5.94 1.66	4.15~4.61 0.83~1.01 11.28~13.14 4.50~5.78 0.37~0.69 5.32~6.55 1.36~1.96	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
smoker	$AL \ge 4mm$ $AL \ge 6mm$ BOP+ $PD \ge 4mm$ $PD \ge 6mm$ $AL \ge 4mm$ $AL \ge 6mm$ BOP+	3.10 0.60 12.72 4.12 0.36 5.29 1.18 12.33	2.98~3.22 0.56~0.64 12.13~13.32 3.76~4.48 0.27~0.44 4.90~5.68 1.02~1.33 12.15~12.51	4.38 0.92 12.21 5.14 0.53 5.94 1.66 12.44	4.15~4.61 0.83~1.01 11.28~13.14 4.50~5.78 0.37~0.69 5.32~6.55 1.36~1.96 12.42~14.80	0.00 0.00 0.00 0.00 0.00 0.00 0.00

$AL \ge 6mm$ 0.81 0.77~0.85 1.18 0.21~0.55 0.

AL= attachment loss; BOP = bleeding on probing; HT = Hypertension;

NT = Normotension; NTA = Number of teeth affected; PD = probing depth;

* significant difference by Student's t test.

Hypertension prevalence increased with periodontitis severity

Multivariate regression analysis was performed to evaluate the relationship between hypertension and age stratified according to periodontal status, after adjustments for sex, smoking status, region, duration of education, and annual family income (Table 4). Compared with participants who did not have periodontitis, participants with stages III and IV periodontitis had a significant greater risk of hypertension (odds ratio [OR] = 1.698, 95% confidence interval [CI] = 1.45-1.99, p < 0.000). However, the difference between participants with stages I and II periodontitis and participants without periodontitis was not statistically significant (OR = 1.028, 95% CI = 0.88-1.20, p = 0.717). Therefore, hypertension prevalence increased with periodontitis severity. Notably, the OR for participants with stages III and IV periodontitis decreased with age; it was not statistically significant in participants aged 65-74 years (Table 4).

Table 4. Relationships between hypertension and periodontal status (compared with non-periodontitis) according to the 2018 classification analyzed by logistic regressions with adjustment for gender, smoking status, region, years of education, and annual family income

Age group	Periodontal stauts	OR	95% CI	р	

35-45 years	Periodontitis (stage III & IV)#	1.617	1.00~2.61	0.050
	Periodontitis (stage I & II)#	0.966	0.65~1.43	0.863
55-65 years	Periodontitis (stage III & IV)#	1 402	1.07~1.84	0.015
		1.301	1.00~1.69	0.051
	Periodontitis (stage I & II) [#]	1.301	1.00~1.09	0.031
65-75 years	Periodontitis (stage III & IV)#	1 205	0.96~1.42	0.113
	Periodontitis (stage I & II) [#]	1.121		0.336
	r enodonnins (stage r & n)	1.121	0.90~1.42	0.550
Total	Periodontitis (stage III & IV)#	1.698	1.45~1.99	0.000
	Periodontitis (stage I & II)#	1.028	0.88~1.20	0.717

Relationships of hypertension with periodontal parameters

Table 5 and Table 6 present the multivariate regression analyses of the relationships of hypertension with periodontal parameters, after adjustments for sex, smoking status, region, duration of education, and annual family income. Hypertension prevalence increased with increases in the proportions of teeth with BOP (OR = 1.204, 95% CI = 1.05-1.38, p = 0.006), PD \geq 4 mm (OR = 1.733, 95% CI = 1.43-2.10, p < 0.001), and PD \geq 6 mm (OR = 2.443, 95% CI = 1.19-5.03, p = 0.015), but it decreased with increases in the proportions of teeth with AL \geq 4 mm (OR = 0.874, 95% CI = 0.73-1.05, p = 0.155) and AL \geq 6 mm (OR = 0.743, 95% CI = 0.53-1.04, p = 0.083). There were significant positive associations of hypertension with the number of teeth with BOP (OR = 1.008, 95% CI = 1.00-1.01, p = 0.001), PD \geq 4 mm (OR = 1.029, 95% CI = 1.02-1.04, p = 0.000), and PD \geq 6mm (OR = 1.071, 95% CI = 1.03-1.11, p < 0.001). There were statistically insignificant negative associations of the presence of hypertension with the proportions of teeth with AL \geq 4 mm and AL \geq 6 mm (Table

6).

Table 5. Relationships between probability of hypertension and percentage of teeth affected with different threshold of periodontal parameters analyzed by logistic regressions with adjustment for age, gender, smoking status, region, years of education, and annual family income.

РТА		OR	95% CI	р
BOP+		1.204	1.05~1.38	0.006
PD≥ 4mm		1.733	1.43~2.10	0.000
PD≥ 6mm		2.443	1.19~5.03	0.015
AL≥ 4mm		0.874	0.73~1.05	0.155
AL≥ 6mm	C	0.743	0.53~1.04	0.083

AL= attachment loss; BOP = bleeding on probing; PD = probing depth; PTA = percentage of teeth affected.

Table 6. Relationships between probability of hypertension and percentage of teeth affected with different threshold of periodontal parameters analyzed by logistic regressions with adjustment for age, gender, smoking status, region, years of education,

and annual family income.

OR	95% CI	р
1.008	1.00~1.01	0.001
1.029	1.02~1.04	0.000
1.071	1.03~1.11	0.000
0.997	0.99~1.01	0.507
0.987	0.97~1.01	0.217
	1.008 1.029 1.071 0.997	OR 95% CI 1.008 1.00~1.01 1.029 1.02~1.04 1.071 1.03~1.11 0.997 0.99~1.01 0.987 0.97~1.01

AL= attachment loss; BOP = bleeding on probing; NTA = number of teeth affected;

PD = probing depth.

BMJ Open

Significantly more teeth were missing in hypertensive participants than in normotensive participants

Table S1 presents a comparison of the number of missing teeth between participants with and without hypertension. Significantly more teeth were missing in hypertensive participants than in normotensive participants (4.36 vs. 2.94 teeth). The difference in the number of missing teeth between hypertensive and normotensive participants decreased with age. Analysis of the relationship according to smoking status showed that hypertension prevalence increased and then decreased with increases in the number Per Ke of missing teeth.

DISCUSSION

Based on data from the Fourth National Oral Health Survey of China, periodontitis is significantly and strongly associated with hypertension among Chinese adults, independent of the effects of age, sex, and smoking. This association between periodontitis and hypertension has considerable importance¹⁸.

In this study, we used data from a large-scale national survey in which participants were representative of the Chinese population. Periodontitis was diagnosed in accordance with the classification proposed at the 2017 World Workshop. The association of hypertension with periodontitis was assessed according to age and smoking status to minimize errors and the effects of confounding factors. Periodontitis was associated with a higher prevalence of hypertension among Chinese adults, independent of known confounders.

Hypertension prevalence increased with periodontitis severity, particularly among young participants (35-44 years). Therefore, participants with risk factors, particularly young adults, should engage in healthy lifestyle habits to improve their oral health. Accordingly, there is a need to improve the education and awareness of dental treatment and preventive management among individuals at risk for hypertension, particularly in younger population. Periodontitis and hypertension are chronic diseases; therefore, substantial exposure time may be necessary for their development. The exposure time to risk factors may be considerably shorter in younger individuals than that in older individuals. The influence of the longer exposure time to the common risk factors for periodontitis and hypertension in older individuals may mask the effects of periodontitis on the development of hypertension. When the confounding effects of the risk factors were removed, a link between periodontitis and hypertension was identified. Therefore, severe periodontitis may have a greater role in the development of hypertension among younger individuals than among older individuals. The association of periodontitis with hypertension was also present in never smokers and former smokers, who had less exposure to common risk factors. The greater susceptibility to hypertension among young individuals with severe periodontitis may be attributed to periodontal inflammation.

This study evaluated the association between periodontal status and hypertension risk among young and older adults. Hypertension prevalence increased with periodontitis severity, which was most prominent in individuals aged 35-44 years. Adult aged < 65 years with hypertension had significantly greater risks of stages III and IV periodontitis, Page 21 of 31

BMJ Open

compared with individuals who did not have hypertension. Therefore, healthcare providers should carefully monitor oral health status in their patients to prevent hypertension, particularly among adults; they should conduct regular oral examinations and engage in periodontal disease management.

The association between periodontitis and hypertension was also present in participants who had a greater proportion of teeth with BOP or deep periodontal pockets. The findings suggest that severe periodontal inflammation, as evidenced by the depth of the inflamed periodontal pocket and the number of bleeding sites, is associated with hypertension. In particular, the presence of BOP indicates acute inflammation, which may lead to systemic effects and subsequent hypertension. The association of chronic inflammation (i.e., PD) with hypertension suggests that persistent, long-term inflammation may also underlie this relationship. Our study adds to the existing literature concerning oral health parameters associated with systemic outcomes ^{19, 20}. BOP and PD are the most appropriate clinical measures when the outcome of interest is an acute disease, whereas AL is more strongly correlated with chronic systemic conditions ¹⁹. Our findings of an association between hypertension and the severity of periodontal inflammation (BOP and PD) are consistent with the results of previous studies ^{12, 21}. Although the causality of the observed association remains unclear, several hypotheses have been proposed, including endothelial dysfunction, oxidative stress, worsening of systemic inflammation in response to bacteraemia, and dissemination of inflammatory mediators from periodontal pockets, particularly BOP²². This association is further supported by the results of a randomised clinical trial that showed short-term

benefits of periodontal therapy on hypertension ²³. Additionally, a recent study identified oral pathogens associated with high or uncontrolled BP, which supports our findings ²⁴.

Our finding of an association between the number of missing teeth and hypertension is consistent with the results reported by Taguchi et al ²⁵. Missing teeth are indicative of poor oral health; they presumably were lost because of caries and periodontal disease. Thus, the absence of several teeth suggests the presence of severe periodontal disease, caries, or other oral health problems; these may have contributed to the increased risk of hypertension. This association was strongest in younger adults. There were no residual confounding effects of age that may have affected our study results. Because of the high prevalence of hypertension in Chinese adults, further studies are needed to clarify the association between periodontitis and hypertension. Moreover, attention is needed concerning the prevention and treatment of periodontitis in the general population.

There is minimal knowledge concerning the natural history of the association between periodontal disease and hypertension ²⁶⁻³⁰. A significant linear trend was observed between the severity of periodontal disease and hypertension in a cross-sectional study of 3,352 patients with periodontal disease and 902 controls ²⁸. A recent prospective cohort study of Japanese individuals demonstrated an increased incidence of hypertension among participants with periodontal pockets \geq 4 mm at baseline ²⁹. Our findings are consistent with the results in a similar study of 6,617 men and 7,377 women who underwent dental examinations as part of the NHANES III in the USA ³¹. In the Page 23 of 31

BMJ Open

present study, after multivariate adjustment, gingival bleeding (BOP) was associated with an increased risk of hypertension, whereas periodontitis severity (defined using the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions) and PD were positively associated with hypertension. Participants with severe periodontal disease (stages III and IV periodontitis) had a greater risk of hypertension compared with participants who had mild or no periodontal disease. Furthermore, there was a threshold relationship between severe periodontal disease and hypertension.

To our knowledge, the present study is one of few concerning the association between periodontal disease and hypertension in a large sample of Chinese adults, after adjustments for potential confounders. We evaluated several clinical measures of periodontal disease that allowed analysis of the relationships between various aspects of periodontal disease and hypertension. We found consistent associations between PD and hypertension. PD may be indicative of poor oral health and periodontal inflammation. It was positively associated with hypertension, suggesting a link between inflammation and hypertension.

The main limitation of the present study was that hypertension was self-report and not based on blood pressure measurements, which is inherent to any epidemiological cohort study. However, field measurements of blood pressure are regarded as validated tools, have been used in previous studies ^{19, 22}, and are considered useful for the analysis of large samples. Furthermore, although recall and reporting bias could not be excluded, the results largely reflect real-world clinical practice. First, the self-reported diagnosis

was based on a face-to-face interview to ensure the validity and accuracy of the information. Second, the reliability of the study results is supported by data from the China Hypertension Survey (2012-2015) ³², which showed an overall hypertension prevalence of 23.2% in the Chinese adult population; this prevalence is similar to the prevalence observed in our study (23.9%).

In summary, our epidemiological analysis revealed an association between periodontitis and hypertension. We collected high-quality, large-scale clinical data related to periodontal disease and hypertension. We also collected detailed information regarding potential confounders, including variables that reflect health behavior (e.g., flossing). However, there was no strong evidence of a causal relationship. Future studies should be conducted to improve the understanding of the underlying mechanisms and interactions between periodontitis and hypertension, which will further strengthen collaborations between the dental and medical communities. Preventive measures for periodontal disease in oral health promotion programs should be emphasised to improve systemic health outcomes.

Contributorship statement

YZ is the major contributor in writing the manuscript and participates in data analysis and collation. JJ participates in data analysis and collation. WJ participates in writing the manuscript. XF, BT, DH, HL, BW, CW, SZ, XL, WR, WW, XW, and YS conceive the study design and draft the protocol. HM conceives the study design, drafts the protocol, and revise the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no conflict of interests.

Funding

This study was supported by "the Public Science and Technology Research Funds Project (2015) - the Fourth National Oral Health Survey (201502002)" and Peking University School and Hospital of Stomatology (PKUSS20180205).

Data sharing statement

Dataset available from the Fourth National Oral Health Survey of China (2015-2016).

12.0

Ethics approval

The study protocol was approved by the Ethics Committee of the Chinese Stomatological Association (approval no.: 2014-003). Written informed consent was obtained from all participants. This study was performed in accordance with the 2013 revision of the Declaration of Helsinki.

Reference

 Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al.
 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36 (10): 1953-2041. doi: 10.1097/HJH.000000000001940.

- Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC Practice Guidelines for the Management of Arterial Hypertension. Blood Press 2014; 23 (1): 3-16. doi: 10.3109/08037051.2014.868629.
- Joffres M, Falaschetti E, Gillespie C, Robitaille C, Loustalot F, Poulter N, et al. Hypertension prevalence, awareness, treatment and control in national surveys from England, the USA and Canada, and correlation with stroke and ischaemic heart disease mortality: a cross-sectional study. BMJ Open 2013; 3 (8): e003423. doi: 10.1136/bmjopen-2013-003423.
- Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology. Circulation 2000; 101 (3): 329-335. doi: 10.1161/01.cir.101.3.329.
- Czopek A, Moorhouse R, Guyonnet L, Farrah T, Lenoir O, Owen E, et al. A novel role for myeloid endothelin-B receptors in hypertension. Eur Heart J 2019; 40 (9): 768-784. doi: 10.1093/eurheartj/ehy881.
- Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2019; 19 (8): 517-532. doi: 10.1038/s41577-019-0160-5.
- Chapple IL, Genco R, Working group 2 of joint EFPAAPw. Diabetes and periodontal diseases: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Clin Periodontol 2013; 40 Suppl 14 S106-112. doi: 10.1111/jcpe.12077.
- Lu HX, Tao DY, Lo ECM, Li R, Wang X, Tai BJ, et al. The 4th National Oral Health Survey in the Mainland of China: Background and Methodology. Chin J Dent Res 2018; 21 (3): 161-165. doi: 10.3290/j.cjdr.a41079.
- Sun HY, Jiang H, Du MQ, Wang X, Feng XP, Hu Y, et al. The Prevalence and Associated Factors of Periodontal Disease among 35 to 44-year-old Chinese Adults in the 4th National Oral Health Survey. Chin J Dent Res 2018; 21 (4): 241-247. doi: 10.3290/j.cjdr.a41082.

1 2		
3	10.	Tonetti MS, D'Aiuto F, Nibali L, Donald A, Storry C, Parkar M, et al. Treatment
5		of periodontitis and endothelial function. N Engl J Med 2007; 356 (9): 911-920.
6 7		
8 9		doi: 10.1056/NEJMoa063186.
10	11.	Munoz Aguilera E, Suvan J, Buti J, Czesnikiewicz-Guzik M, Barbosa Ribeiro
11 12		A, Orlandi M, et al. Periodontitis is associated with hypertension: a systematic
13 14		review and meta-analysis. Cardiovasc Res 2020; 116 (1): 28-39. doi:
15		10.1093/cvr/cvz201.
16 17	12.	
18 19	12.	Pietropaoli D, Del Pinto R, Ferri C, Wright JT, Jr., Giannoni M, Ortu E, et al.
20		Poor Oral Health and Blood Pressure Control Among US Hypertensive Adults.
21 22		Hypertension 2018; 72 (6): 1365-1373. doi:
23		10.1161/HYPERTENSIONAHA.118.11528.
24 25	13.	Boos CJ, Lip GY. Is hypertension an inflammatory process? Curr Pharm Des
26	15.	
27 28		2006; 12 (13): 1623-1635. doi: 10.2174/138161206776843313.
29	14.	Li JJ. Inflammation in hypertension: primary evidence. Chin Med J (Engl) 2006;
30 31		119 (14): 1215-1221.
32 33	15.	Li JJ, Fang CH, Hui RT. Is hypertension an inflammatory disease? Med
34	10.	
35 36		Hypotheses 2005; 64 (2): 236-240. doi: 10.1016/j.mehy.2004.06.017.
37	16.	Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol
38 39		Hypertens 2006; 15 (2): 152-158. doi: 10.1097/01.mnh.0000203189.57513.76.
40 41	17.	Graetz C, Mann L, Krois J, Salzer S, Kahl M, Springer C, et al. Comparison of
42		
43 44		periodontitis patients' classification in the 2018 versus 1999 classification. J
45		Clin Periodontol 2019; 46 (9): 908-917. doi: 10.1111/jcpe.13157.
46 47	18.	Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr.,
48 49		et al. Seventh report of the Joint National Committee on Prevention, Detection,
50		Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42 (6):
51 52		
53		1206-1252. doi: 10.1161/01.HYP.0000107251.49515.c2.
54 55	19.	Beck JD, Offenbacher S. Relationships among clinical measures of periodontal
56		disease and their associations with systemic markers. Ann Periodontol 2002; 7
57 58		(1): 79-89. doi: 10.1902/annals.2002.7.1.79.
59 60	•	
00	20.	Demmer RT, Kocher T, Schwahn C, Volzke H, Jacobs DR, Jr., Desvarieux M.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Refining exposure definitions for studies of periodontal disease and systemic disease associations. Community Dent Oral Epidemiol 2008; 36 (6): 493-502. doi: 10.1111/j.1600-0528.2008.00435.x.

- Martin-Cabezas R, Seelam N, Petit C, Agossa K, Gaertner S, Tenenbaum H, et al. Association between periodontitis and arterial hypertension: A systematic review and meta-analysis. Am Heart J 2016; 180 98-112. doi: 10.1016/j.ahj.2016.07.018.
- Macedo Paizan ML, Vilela-Martin JF. Is there an association between periodontitis and hypertension? Curr Cardiol Rev 2014; 10 (4): 355-361. doi: 10.2174/1573403x10666140416094901.
- 23. Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, Nosalski R, Pelka P, Nowakowski D, et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur Heart J 2019; 40 (42): 3459-3470. doi: 10.1093/eurheartj/ehz646.
- 24. Pietropaoli D, Del Pinto R, Ferri C, Ortu E, Monaco A. Definition of hypertension-associated oral pathogens in NHANES. J Periodontol 2019; 90 (8): 866-876. doi: 10.1002/JPER.19-0046.
- 25. Taguchi A, Sanada M, Suei Y, Ohtsuka M, Lee K, Tanimoto K, et al. Tooth loss is associated with an increased risk of hypertension in postmenopausal women. Hypertension 2004; 43 (6): 1297-1300. doi: 10.1161/01.HYP.0000128335.45571.ce.
- D'Aiuto F, Parkar M, Nibali L, Suvan J, Lessem J, Tonetti MS. Periodontal infections cause changes in traditional and novel cardiovascular risk factors: results from a randomized controlled clinical trial. Am Heart J 2006; 151 (5): 977-984. doi: 10.1016/j.ahj.2005.06.018.
- 27. D'Aiuto F, Sabbah W, Netuveli G, Donos N, Hingorani AD, Deanfield J, et al. Association of the metabolic syndrome with severe periodontitis in a large U.S. population-based survey. J Clin Endocrinol Metab 2008; 93 (10): 3989-3994. doi: 10.1210/jc.2007-2522.

1 2		
- 3 4	28.	Holmlund A, Holm G, Lind L. Severity of periodontal disease and number of
5 6		remaining teeth are related to the prevalence of myocardial infarction and
7 8		hypertension in a study based on 4,254 subjects. J Periodontol 2006; 77 (7):
9		1173-1178. doi: 10.1902/jop.2006.050233.
10 11	20	
12	29.	Morita T, Yamazaki Y, Mita A, Takada K, Seto M, Nishinoue N, et al. A cohort
13 14		study on the association between periodontal disease and the development of
15 16		metabolic syndrome. J Periodontol 2010; 81 (4): 512-519. doi:
17		10.1902/jop.2010.090594.
18 19		
20	30.	Rivas-Tumanyan S, Spiegelman D, Curhan GC, Forman JP, Joshipura KJ.
21		Periodontal disease and incidence of hypertension in the health professionals
22 23		follow-up study. Am J Hypertens 2012; 25 (7): 770-776. doi:
24		
25 26		10.1038/ajh.2012.32.
27	31.	Dye BA, Barker LK, Selwitz RH, Lewis BG, Wu T, Fryar CD, et al. Overview
28		
29 30		and quality assurance for the National Health and Nutrition Examination Survey
31		(NHANES) oral health component, 1999-2002. Community Dent Oral
32 33		Epidemiol 2007; 35 (2): 140-151. doi: 10.1111/j.1600-0528.2007.00310.x.
34		
35	32.	Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, et al. Status of
36 37		Hypertension in China: Results From the China Hypertension Survey, 2012-
38		
39		2015. Circulation 2018; 137 (22): 2344-2356. doi:
40 41		10.1161/CIRCULATIONAHA.117.032380.
42		
43		
44 45		
46		
47		
48		
49		
50		
51 52		
52 53		
54		
55		
56		
57		

		NT			
	Mean	95% CI	Mean	95% CI	\mathbf{p}^*
35-44	0.70	0.65~0.75	1.01	0.74~1.28	0.024
55-64	3.26	3.10~3.43	3.42	3.15~3.69	0.305
65-74	6.04	5.79~6.30	5.70	5.39~6.01	0.104
Non-smoker	3.30	3.10~3.50	4.27	3.87~4.67	0.000
Current smoker	2.70	2.58~2.81	3.42	3.95~4.44	0.000
Former smoker	3.55	3.21~3.89	5.70	4.68~5.98	0.000
Total	2.94	2.84~3.04	4.35	4.15~4.55	0.000

Table s1. Number of missing teeth by age groups and smoking status

HT = Hypertension; NT = Normotension;

* significant difference by Student's t test.

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			1
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6-8
betting	5	recruitment, exposure, follow-up, and data collection	0-0
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8-9
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	8-9
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	NA
		(e) Describe any sensitivity analyses	NA
Results			1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9-1
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	10-
		T	13

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	12-
		estimates and their precision (eg, 95% confidence interval). Make clear	13
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	NA
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	NA
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	NA
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	13-
			14
Limitations	19	Discuss limitations of the study, taking into account sources of potential	18
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	14-
		limitations, multiplicity of analyses, results from similar studies, and other	17
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	19
		and, if applicable, for the original study on which the present article is	
			1

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association Between Periodontitis and Hypertension: Cross-Sectional Survey from the Fourth National Oral Health Survey in China (2015-2016)

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-068724.R1
Article Type:	Original research
Date Submitted by the Author:	06-Nov-2022
Complete List of Authors:	Zhan, Yalin; Peking University Hospital of Stomatology, First Clinical Division Jiao, Jian; Peking University Hospital of Stomatology, Department of Periodontology Jing, Wu-di; Peking University Hospital of Stomatology Feng, Xiping; Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Department of Preventive Dentistry Tai, Baojun; Wuhan University, School & Hospital of Stomatology Hu, Deyu; Sichuan University, West China School of Stomatology Lin, Huan-cai; Sun Yat-Sen University, Guanghua School of Stomatology Wang, Bo; Peking University Hospital of Stomatology Wang, Chunxiao; Chinese Center for Disease Control and Prevention Zheng, Shuguo; Peking University Hospital of Stomatology Liu, Xuenan; Peking University Hospital of Stomatology Wang, Wensheng; Peking University Hospital of Stomatology Wang, Weijian; Peking University Hospital of Stomatology Wang, Xing; Peking University Hospital of Stomatology Si, Yan; Peking University Hospital of Stomatology Meng, Huanxin; Peking University Hospital of Stomatology
Primary Subject Heading :	Dentistry and oral medicine
Secondary Subject Heading:	Infectious diseases, Cardiovascular medicine
Keywords:	Hypertension < CARDIOLOGY, ORAL MEDICINE, Epidemiology < TROPICAL MEDICINE, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Association Between Periodontitis and Hypertension: Cross-Sectional Survey from the Fourth National Oral Health Survey in China (2015-2016)

Running title: Association between periodontitis and hypertension

Ya-lin Zhan^{1*},PhD, Jian Jiao^{1*}, DDS, Wu-di Jing¹, DDS., Xi-ping Feng², PhD, Bao-jun Tai³, PhD, De-yu Hu⁴, PhD, Huan-cai Lin⁵, PhD, Bo Wang⁶,EMBA, Chun-xiao Wang⁷, PhD, Shu-guo Zheng⁸,PhD, Xue-nan Liu⁸, PhD, Wen-sheng Rong⁸, PhD, Wei-jian Wang⁸, PhD, Xing Wang⁶, PhD, Yan Si⁸, PhD, Huan-xin Meng¹, PhD,[†]

¹ Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, P.R. China ² Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.

³ School & Hospital of Stomatology, Wuhan University, Wuhan, P.R. China.

⁴ West China School of Stomatology, Sichuan University, Chengdu, P.R. China.

⁵ Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University,

Guangzhou, P.R. China.

⁶ Chinese Stomatological Association, Beijing, P.R. China.

⁷ Chinese Center for Disease Control and Prevention, Beijing, P.R. China.

⁸ Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of

 BMJ Open

1 2 3 4 5 6 7	Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, P.R. China
8 9	*The two authors contributed equally to this work.
10	The two autions contributed equally to this work.
11	
12	+ corresponding author
13	
14	
15	
16	
17	Corresponding author: Huanxin Meng
18 10	
19 20	Department of Periodontology, Peking University School and Hospital of Stomatology
20 21	
22	National Engineering Laboratering for Digital on d Matarial Tasky days of Otomotal
23	National Engineering Laboratory for Digital and Material Technology of Stomatolo
24	
25	Beijing Key Laboratory of Digital Stomatology Zhongguancun Nandajie 22. Haid

Peking University School and Hospital of Stomatology, y for Digital and Material Technology of Stomatology, ital Stomatology Zhongguancun Nandajie 22, Haidian District, 100081, Beijing, P.R.China

Email: kghxmeng@126.com

Tel: +86-010-82195522; Fax: +86-010-82195522.

ABSTRACT

Objectives To evaluate the association between periodontitis severity and hypertension based on Chinese epidemiological data.

Design This cross-sectional survey enrolled adults from the Fourth National Oral Health Survey of China (2015-2016).

Setting The study data were obtained from the Fourth National Oral Health Survey of China (2015-2016).

Participants The study included dentate individuals aged 35-44 years (n = 4,409),

55-64 years (n = 4,568), and 65-74 years (n = 4,218).

Primary and secondary outcome measures Periodontal status, defined on the basis of the 2018 classification scheme, and periodontal parameters (e.g., bleeding on probing [BOP], probing depth [PD], and attachment loss [AL]) were compared between hypertensive and normotensive individuals. Smoothed scatterplots were constructed to demonstrate the associations of periodontal parameters and periodontal status with hypertension.

Results Severe periodontitis (stages III and IV) was present in 41.34% and 27.99% of hypertensive and normotensive individuals, respectively (p < 0.001). The prevalence of severe periodontitis was increase in hypertensive individuals than that in normotensive individuals among participants aged 35-44 years (18.12% and 10.09%, p < 0.001) and 55-64 years (40.12% and 36.77%, p = 0.035), but not in participants aged 65-74 years (46.40% and 45.14%, p = 0.429). Therefore, the difference in periodontal status between hypertensive and normotensive individuals decreased with age. There were increased prevalences of BOP, PD \geq 4 mm, and PD \geq 6 mm in hypertensive individuals than in normotensive individuals (57.71% vs 53.12%, 22.11% vs 16.29%, and 2.07% vs 1.22%, respectively). Periodontitis severity and the proportion of teeth with PD \geq 4 or \geq 6 mm were positively associated with hypertension.

Conclusion Based on the data of the Fourth National Oral Health Survey of China, periodontitis is significantly and strongly associated with hypertension among Chinese adults, independent of the effects of age, sex, and smoking.

Key Words: Hypertension, oral medicine, epidemiology, public health.

Strengths and limitations of this study

- The subject group was based on a large-scale national survey in China, and the sample size of the study was relatively large.
- Periodontitis was diagnosed in accordance with the classification proposed at the 2017 World Workshop.
- Hypertension was self-report and not based on blood pressure measurements.

INTRODUCTION

Hypertension, which affects 45% of the global population, is the most common cardiovascular disease (CVDs) worldwide ^{1,2}. It is defined as systolic or diastolic blood pressure (BP) of \geq 140 or \geq 90 mmHg, respectively. Hypertension is frequently poorly controlled and untreated ³. It ia a complex disease with multiple causes and a major risk factor for CVDs ⁴. Oxidative stress, endothelial dysfunction, and inflammation are associated with the development of hypertension ⁵. The results of experimental and clinical studies suggest that inflammation has a major role in the development of hypertension ⁶. Chronic inflammation predisposes to the development of prohypertensive inflammation.

Periodontal disease, an immune-inflammatory reaction to plaque biofilms ⁷, has received substantial attention because of its association with CVDs. The Global Burden of Disease Study revealed that periodontitis was the sixth most prevalent disease worldwide. Periodontitis affects 743 million people worldwide (11.2% of the global population); the prevalence is higher in China than in other countries. The Fourth

National Oral Health Survey of China showed that 90.9% individuals aged 35-44 years had periodontal disease ^{8, 9}. The low-grade inflammation associated with periodontitis has harmful effects on the endothelial function, which may result in hypertension ¹⁰. A recent study revealed that individuals with periodontitis have increased risks of hypertension and antihypertensive treatment failure ^{11,12}. Previous studies have suggested that dental treatment can improve blood pressure, although the findings have been inconclusive and further studies are needed ¹³⁻¹⁶.

Periodontitis and hypertension are major health problems, and their association received considerable public health attention. Therefore, we evaluated the relationship between periodontitis and hypertension based on the data from the Fourth National Oral Health Survey of China. We sought to determine whether individuals with periodontitis are more likely to have hypertension compared with individuals who do not have periodontitis; we also sought to determine whether periodontitis severity is associated with hypertension.

MATERIALS AND METHODS

Study design and sample

This cross-sectional study obtained data from adult participants of the Fourth National Oral Health Survey of China (2015-2016) ⁸. The planned sample size was 4,230 each for the age groups 35-44, 55-64 and 65-74 years. We excluded data from edentulous participants and from participants without complete information. Finally, 13,195 individuals were included (4,409, 4,568, and 4,218 individuals aged 35-44, 55-64, and

65-74 years, respectively).

Ethics approval

The study protocol was approved by the Ethics Committee of the Chinese Stomatological Association (approval no.: 2014-003). Written informed consent was obtained from all participants. This study was performed in accordance with the 2013 revision of the Declaration of Helsinki.

Data collection

We collected data related to oral examination findings and questionnaire answers.

1. Periodontal examination

Periodontal examinations were performed using a community periodontal index probe. A full-mouth examination was performed, during which the probe was walked along the gingival crevices using a force of ≤ 20 g to assess bleeding on probing (BOP), the presence of calculus, probing depth (PD), and attachment loss (AL). For each parameter, each tooth was scored according to the condition of the most severely affected site. Training programs were conducted for examiner calibration before the survey. The reliability of the results was assessed using kappa values; kappa values for periodontal pocket depth were ≥ 0.6 . Additionally, 5% of the participants were randomly selected for assessment of inter-examiner reproducibility. The kappa values for all age-groups were 0.76-0.80.

Patient and public involvement

The study participants or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

Study parameters

Supragingival and subgingival calculus were identified by visual examination and probing, respectively (0 = absent, 1 = present, 9 = tooth excluded, and X = tooth not present). PD was recorded as 0 (1–3 mm), 1 (4–5 mm), 2 (≥ 6 mm), 9 (tooth excluded), or X (tooth not present). BOP was recorded as 0 (absent), 1 (present), 9 (tooth excluded), or X (tooth not present). AL was measured as the distance from the cementoenamel junction to the bottom of the periodontal pocket; it was recorded as 0 (0–3 mm), 1 (4–5 mm), 2 (6–8 mm), 3 (9–11 mm), 4 (≥ 12 mm), 9 (tooth excluded), or X (tooth not present).

The classification scheme proposed at the 2017 World Workshop on the Classification of Periodontal and Per-Implant Diseases and Conditions was used to classify the periodontal status as periodontally healthy (< 10% BOP-positive sites and PD \leq 3 mm) or gingivitis (\geq 10% BOP-positive sites and PD \leq 3 mm). Periodontitis was staged using the algorithm developed by Tonetti *et al* ¹⁷. For each tooth, stages I-III periodontitis were defined as AL of 1–2 mm, 3–4 mm, and \geq 5 mm, respectively. We also considered the number of teeth lost when classifying periodontitis: stages I and II, no tooth loss; stage III, \leq 4 teeth lost; and stage IV, \geq 5 teeth lost. The cause of tooth loss was not considered. Finally, we evaluated the complexity of patient management. Stage II patients were reclassified as stage III if the maximum PD was \geq 6 mm. Stage

III patients were reclassified as stage IV if there were < 10 opposing pairs of teeth). Stages of periodontitis reflects the severity and complexity of managing the individual patient.

2. Interview data from the questionnaire

Questionaires were administered during in-person interviews to collect data regarding demographics, socioeconomic status, habits, dental history, and health attitudes. The following information was collected for analysis: age (years), annual family income (in increments of 10,000 yuan), sex (male or female), duration of education (years), selfreported hypertension (yes or no), smoking status (current smoker, former smoker, or ıl). non-smoker), and region (urban or rural).

Statistical analyses

Statistical analyses were performed using SPSS (version 19; IBM Corp., Armonk, NY, USA) or R (version 3.6.1; R Foundation for Statistical Computing, Vienna, Austria). The primary outcome was periodontal status (healthy, gingivitis, and stages I-IV periodontitis). The secondary outcomes were the proportions of BOP-positive teeth, teeth with PD \geq 4 and \geq 6 mm, teeth with AL \geq 4, \geq 6, and \geq 9 mm; and missing teeth. First, descriptive analysis was performed. Quantitative data were reported as means and standard deviations; categorical data were reported as numbers and percentages. Periodontal parameters were compared between hypertensive and normotensive individuals; subgroup analyses were conducted according to age group

and smoking status. Periodontal status and parameters were analysed using the chisquare test. Additionally, smoothed scatterplots based on generalised additive models were constructed, with adjustment for confounders (sex, smoking status, region, duration of education, and annual family income), to evaluate the relationships of hypertension prevalence with periodontal status or parameters. The level of statistical significance was set at p < 0.05.

RESULTS

The participants were randomly selected from 31 provinces, autonomous regions, and municipalities in mainland China. In total, data from 13,195 individuals were included in the analysis; invalid data from five participants and data from 264 edentulous patients were excluded. The mean individual age was 56.43 ± 12.40 years. The sample consisted of 6,575 men (49.83%) and 6,620 women (50.17%). There were 3,470 non-smokers (26.30%), 8,405 current smokers (63.71%), and 1,318 former smokers (9.99%). Hypertension was present and absent in 3,154 (23.90%) and 10,041 (76.10%) participants, respectively.

Differences in periodontal status between hypertensive and normotensive participants decreased with age

Table 1 and S1 present the distributions of periodontal status according to age and gender in participants with and without hypertension.

BMJ Open

Significantly greater proportions of hypertensive participants had stages I-IV periodontitis (70.23% vs. 61.51%, p < 0.001) and severe periodontitis (stages III-IV, 41.34% vs. 27.99%, p < 0.001), compared with normotensive participants. Stratified analysis by gender showed that the prevalence of periodontitis (stage I-IV) was significantly greater in hypertensive participants than in normotensive participants in females (66.48 % vs. 55.92 %, p <0.001) but not in males (74.09 % vs. 67.10%, p = 0.057). Severe periodontitis (stage III and stage IV) was more common in hypertensive participants than in normotensive participants both in males (46.13% vs. 32.64%, p < 0.001) and females (36.60 % vs. 23.35 %, p < 0.001). Stratified analysis according to age showed that the prevalence of periodontitis (stage I-IV) was significantly greater in hypertensive participants than in normotensive participants among individuals aged 35-44 years (52.33% vs. 59.06%, p = 0.030), 55-64 years (72.61% vs. 69.19%, p = 0.023), and 65-74 years (70.23% vs. 66.35%, p = 0.009). Severe periodontitis (stage III and stage IV) was more common in hypertensive participants than in normotensive participants among individuals aged 35-44 years (18.12% vs. 10.09%, p < 0.001) and 55-64 years (40.12% vs. 36.77%, p = 0.035), but not among individuals aged 65-74 years (46.40% vs. 45.14%, p = 0.429). Therefore, differences in periodontal status between hypertensive and normotensive participants decreased with age (Table 1).

Table 1. Comparison of distribution of periodontal status according to the 2017 classification by age/gender groups between hypertensive and normotensive subjects.

			N	Г		Η	Т
		N	%	95% CI	N	%	95% CI
Male	Health	598	11.9	11.1~12.9	159	10.2	8.7~11.
	Gingivitis	1051	21.0	19.9~22.1	246	15.7	14.0~17.
	Stage I	844	16.8	15.8~17.9	171	10.9	9.5~12.
	Stage II	883	17.6	16.6~18.7	266	17.0	15.2~18.
	Stage III	906	18.1	17.0~19.2	357	22.8	20.8~25.
	Stage IV	730	14.6	13.6~15.6	364	23.3	21.2~25.
Female	Health	755	15.0	14.1~16.0	179	11.2	9.8~12.
	Gingivitis	1461	29.1	27.8~30.3	355	22.3	20.3~24.
	Stage I	867	17.2	16.2~18.3	199	12.5	10.9~14.
	Stage II	770	15.3	14.3~16.3	277	17.4	15.6~19.
	Stage III	588	11.7	10.8~12.6	260	16.3	14.6~18.
	Stage IV	586	11.7	10.8~12.6	323	20.3	18.4~22.
~ ~ / ~	XX 1.1				4.0		10 - 10
35-45 yrs	Health	658	15.9	14.8~17.1	40	14.5	10.7~19.
	Gingivitis	1312	31.7	30.3~33.2	73	26.4	21.5~31.
	Stage I	1134	27.4	26.1~28.8	69	25.0	20.2~30.
	Stage II	612	14.8	13.7~15.9	44	15.9	12.0~20.
	Stage III	360	8.7	7.9~9.6	40	14.5	10.7~19.
	Stage IV	57	1.4	1.1~1.8	10	3.6	1.9~6.
55-65 yrs	Health	347	10.6	9.6~11.7	116	9.0	7.5~10.
5	Gingivitis	661	20.2	18.9~21.6	239	18.4	16.4~20.
	Stage I	403	12.3	11.2~13.5	174	13.4	11.7~15.
	Stage II	658	20.1	18.8~21.5	247		17.0~21.
	Stage III	659	20.1	18.8~21.5		21.1	18.9~23.
	Stage IV	544	16.6	15.4~17.9		19.1	17.0~21.
	20082					- /	
(5.75	Usalth	240	13.2	120 145	100	115	10.0.12
65-75 yrs	Health	348		12.0~14.5	182	11.5	10.0~13.
	Gingivitis Stage I	539 175	20.4	18.9~22.0	289 126	18.3	16.4~20.
	Stage I	175	6.6	5.7~7.6	126 251	8.0	6.7~9.
	Stage II	384	14.6	13.3~16.0	251 204	15.9	14.1~17.
	Stage III Stage IV	475 715	18.0 27.1	16.6~19.5 25.5~28.8	304 430	19.2 27.2	17.3~21. 25.0~29.
Toto ¹	Haclth	1252	125	100 140	220	107	0711
Total	Health	1353	13.5	12.8~14.2	338 601	10.7	9.7~11.
	Gingivitis Stage I	2512	25.0	24.2~25.9	601 260	19.1	17.7~20.
	Stage I	1712	17.1	16.3~17.8	369 542	11.7	10.6~12.
	Stage II	1654	16.5	15.8~17.2	542	17.2	15.9~18.

Stage III	1494	14.9	14.2~15.6	617	19.6	18.2~21.0
Stage IV	1316	13.1	12.5~13.8	687	21.8	20.4~23.2

HT = Hypertension; NT = Normotension.

Table S1 showed the distribution of periodontal status stratified according to smoking status. Periodontitis (stage I-IV) was more common in hypertensive participants than in normotensive participants among current smokers (76.16% vs. 68.15%, p < 0.001) and non-smokers (67.25% vs. 57.41%, p < 0.001), but not among former smokers (73.59% vs. 70.58%, p = 0.270). Severe periodontitis (stage III and stage IV) was significantly more common in hypertensive participants than in normotensive participants among non-somkers (48.45% vs. 34.67%, p < 0.001), current smokers (36.82% vs. 23.75%, p < 0.001), and former smokers (50.26% vs 37.93%, p < 0.001).

Periodontal status was significantly worse in hypertensive participants than in normotensive participants

Tables 2 and 3 present comparisons of periodontal parameters between hypertensive and normotensive participants. Compared with normotensive participants, hypertensive participants had significantly greater proportions of teeth with BOP (57.71% vs. 53.12%), PD \geq 4 mm (22.11% vs. 16.29%), PD \geq 6 mm (2.07% vs. 1.22%), AL \geq 4 mm (28.86% vs. 20.56%), AL \geq 6 mm (8.44% vs. 5.54%), and AL \geq 9 mm (1.72% vs. 1.18%). Differences in periodontal parameters between hypertensive and normotensive participants decreased with age. The differences in periodontal parameters between hypertensive and normotensive participants were similar among

current smokers, former smokers, and non-smokers. Difference in the mean prevalence of periodontal pocket (PD \geq 4 mm) were consistent in the stratified analysis. Compared with normotensive participants, hypertensive participants had significantly greater proportions of teeth with PD \geq 4 mm (4.45 vs. 3.46), PD \geq 6 mm (0.37 vs. 0.22), AL \geq 4 mm (1.18 vs. 0.81), and AL \geq 6 mm (0.2 vs. 0.12). The mean number of BOP-positive teeth did not significant differ between hypertensive and normotensive participants (12.43 vs. 12.33). The mean number of teeth showed a distribution pattern similar to the distribution patterns of various periodontal parameters. The difference in the mean number of teeth between hypertensive and normotensive participants decreased with age. Furthermore, differences in the prevalences of teeth with PD \geq 4 mm and deep PD sites were consistent in the stratified analysis.

	IIA		111		111	
		Mean	95% CI	Mean	95% CI	p*
35-45 years	BOP+	46.5	45.41~47.55.	50.32	45.92~54.72	0.096
	PD≥ 4mm	10.5	9.90~11.05	15.83	12.86~18.80	0.001
	PD≥ 6mm	0.5	0.40~0.59	1.09	0.56~1.63	0.031
	AL≥ 4mm	6	5.55~6.41	10.14	7.85~12.43	0.001
	AL≥ 6mm	0.8	0.69~0.95	1.62	0.82~2.42	0.052
55-65 years	BOP+	52.5	51.30~53.72	54.03	52.11~55.96	0.188
	PD≥ 4mm	17.9	17.11~18.76	20.3	18.92~21.68	0.004
	PD≥ 6mm	1.4	1.21~1.65	1.9	1.55~2.24	0.024
	AL≥ 4mm	22.1	21.16~22.95	21.53	20.15~22.92	0.543
	AL≥ 6mm	5.3	4.90~5.78	5.49	4.79~6.18	0.722
65-75 years	BOP+	49.3	47.91~50.59	50.84	49.09~52.58	0.157
	PD≥ 4mm	17.4	16.45~18.28	19.6	18.39~20.81	0.004
	PD≥ 6mm	1.5	1.29~1.81	1.84	1.49~2.19	0.185
	AL≥ 4mm	28.7	27.59~29.78	27.62	26.25~28.99	0.240

Table 2. Comparison of percentage of teeth affected by age groups and smoking status.PTANTHT

	AL≥ 6mm	8.9	8.28~9.61	8.29	7.47~9.11	0.226
Current	BOP+	49.6	46.77~52.42	49.89	45.99~53.79	0.311
smoker	PD≥ 4mm	21.4	19.36~23.52	22.94	20.16~25.72	0.000
	PD≥ 6mm	2.2	1.53~2.80	2.09	1.34~2.84	0.006
	AL≥ 4mm	36.3	33.86~38.78	33.54	30.24~36.84	0.000
	AL≥ 6mm	13.1	11.38~14.75	11.38	9.26~13.50	0.001
Non-						
smoker	BOP+	48.9	47.22~50.57	51.56	49.42~53.69	0.000
	PD≥ 4mm	15.4	14.30~16.47	17.91	16.49~19.33	0.000
	PD≥ 6mm	1.1	0.89~1.40	1.66	1.27~2.05	0.000
	AL≥ 4mm	25.1	23.79~26.41	24.67	23.10~26.23	0.000
	AL≥ 6mm	7.2	6.44~7.92	6.60	5.71~7.50	0.000
Former	BOP+	50.2	46.54~53.82	48.84	44.03~53.65	0.603
smoker	PD≥ 4mm	18.7	16.23~21.21	22.62	18.90~26.34	0.000
	PD≥ 6mm	2.2	1.32~3.13	2.31	1.07~3.56	0.126
	AL≥ 4mm	30.7	27.81~33.60	32.77	28.63~36.92	0.001
	AL≥ 6mm	9.3	7.63~10.97	11.66	9.01~14.30	0.002
	D 0 D			0.00		0.000
Total	BOP+	0.0	0.00~0.00	0.00	0.00~0.00	0.000
	PD≥ 4mm	0.0	0.00~0.00	0.00	0.00~0.00	0.000
	PD≥ 6mm	0.0	0.00~0.00	0.00	0.00~0.00	0.000
	AL≥ 4mm	0.0	0.00~0.00	0.00	0.00~0.00	0.000
	AL≥ 6mm	0.0	0.00~0.00	0.00	0.00~0.00	0.001

AL= attachment loss; BOP = bleeding on probing; HT = Hypertension;

NT = Normotension; PD = probing depth; PTA = Percentage of teeth affected;

* significant difference by Student's t test.

	NTA		NT		HT	
_		Mean	95% CI	Mean	95% CI	p*
35-45 years	BOP+	12.69	12.40~12.99	13.61	12.42~14.80	0.143
	PD≥ 4mm	2.83	2.68~2.99	4.19	3.40~4.98	0.001
	PD≥ 6mm	0.13	0.10~0.15	0.27	0.14~0.40	0.036
	AL≥ 4mm	1.58	1.47~1.70	2.58	2.00~3.16	0.001

Table 3. Number of teeth affected by age groups and smoking status.

	AL≥ 6mm	0.20	0.17~0.24	0.38	0.21~0.55	0.049
55-65 years	BOP+	13.01	12.69~13.33	13.37	12.86~13.88	0.241
	PD≥ 4mm	4.21	4.02~4.40	4.76	4.43~5.08	0.005
	PD≥ 6mm	0.28	0.24~0.32	0.41	0.34~0.49	0.003
	AL≥ 4mm	5.03	4.82~5.23	4.80	4.49~5.11	0.222
	AL≥ 6mm	1.07	0.99~1.15	1.08	0.95~1.21	0.914
65-75 years	BOP+	10.92	10.59~11.26	11.47	11.03~11.91	0.051
	PD≥ 4mm	3.52	3.33~3.72	4.25	3.98~4.52	0.000
	PD≥ 6mm	0.27	0.23~0.31	0.36	0.29~0.42	0.042
	AL≥ 4mm	5.65	5.43~5.88	5.60	5.31~5.88	0.752
	AL≥ 6mm	1.46	1.36~1.56	1.40	1.27~1.53	0.508
Current	BOP+	12.30	11.93~12.67	12.09	0.33~0.42	0.583
smoker	PD≥ 4mm	4.59	4.36~4.82	5.49	594.42~0.00	0.001
	PD≥ 6mm	0.31	0.27~0.35	0.50	61.18~0.00	0.001
	AL≥ 4mm	4.86	4.62~5.09	6.13	658.63~0.00	0.000
	AL≥ 6mm	1.19	1.09~1.29	1.59	179.14~0.00	0.001
Non-smoker			12.06~12.51		12.22~13.02	0.159
INOII-SIIIOKCI	BOP+	12.29	12.00~12.31	12.62	12.22~13.02	0.139
	PD≥ 4mm	2.89	2.78~3.01	3.91	3.68~4.15	0.000
	PD≥ 6mm	0.16	0.14~0.18	0.29	0.24~0.34	0.000
	AL≥ 4mm	3.10	2.98~3.22	4.38	4.15~4.61	0.000
	AL≥ 6mm	0.60	0.56~0.64	0.92	0.83~1.01	0.000
Former	BOP+	12.72	12.13~13.32	12.21	11.28~13.14	0.359
smoker	PD≥ 4mm	4.12	3.76~4.48	5.14	4.50~5.78	0.006
	PD≥ 6mm	0.36	0.27~0.44	0.53	0.37~0.69	0.069
	AL≥ 4mm	5.29	4.90~5.68	5.94	5.32~6.55	0.081
					1 26 1 06	0.005
	AL≥ 6mm	1.18	1.02~1.33	1.66	1.36~1.96	0.005
Total	AL≥ 6mm BOP+	1.18 12.33	1.02~1.33 12.15~12.51	1.66 12.44	12.42~14.80	0.574
Total						
Total	BOP+	12.33	12.15~12.51	12.44	12.42~14.80	0.574
Total	BOP+ PD≥ 4mm	12.33 3.46	12.15~12.51 3.36~3.57	12.44 4.45	12.42~14.80 3.40~4.98	0.574 0.000

AL= attachment loss; BOP = bleeding on probing; HT = Hypertension;

NT = Normotension; NTA = Number of teeth affected; PD = probing depth;

* significant difference by Student's t test.

Hypertension prevalence increased with periodontitis severity

Multivariate regression analysis was performed to evaluate the relationship between hypertension and age stratified according to periodontal status, after adjustments for sex, smoking status, region, duration of education, and annual family income (Table 4). Compared with participants who did not have periodontitis, participants with stages III and IV periodontitis had a significant greater risk of hypertension (odds ratio [OR] = 1.698, 95% confidence interval [CI] = 1.45-1.99, p < 0.000). However, the difference between participants with stages I and II periodontitis and participants without periodontitis was not statistically significant (OR = 1.028, 95% CI = 0.88-1.20, p = 0.717). Therefore, hypertension prevalence increased with periodontitis severity. Notably, the OR for participants with stages III and IV periodontitis decreased with age; it was not statistically significant in participants aged 65-74 years (Table 4).

Table 4. Relationships between blood pressure (hypertension vs. normotension) and periodontal status (compared with non-periodontitis) according to the 2017 classification analyzed by logistic regressions with adjustment for gender, smoking status, region, years of education, and annual family income

Age group	Periodontal stauts*	OR	95% CI	р	
35-45 years	Periodontitis (stage III & IV)#	1.617	1.00~2.61		0.050
	Periodontitis (stage I & II) [#]	0.966	0.65~1.43		0.863
55-65 years	Periodontitis (stage III & IV) [#]	1.402	1.07~1.84		0.015
	Periodontitis (stage I & II)#	1.301	1.00~1.69		0.051

65-75 years	Periodontitis (stage III & IV) [#] Periodontitis (stage I & II) [#]	1.2050.96~1.421.1210.96~1.42	0.113 0.336
Total	Periodontitis (stage III & IV)#	1.698 1.45~1.99	0.000
	Periodontitis (stage I & II)#	1.028 0.88~1.20	0.717

* According to the 2017 World Workshop on the Classification of Periodontal and Per-Implant Diseases and Conditions ¹⁷.

Relationships of hypertension with periodontal parameters

Table 5 and Table 6 present the multivariate regression analyses of the relationships of hypertension with periodontal parameters, after adjustments for sex, smoking status, region, duration of education, and annual family income. Hypertension prevalence increased with increases in the proportions of teeth with BOP (OR = 1.204, 95% CI = 1.05-1.38, p = 0.006), PD \geq 4 mm (OR = 1.733, 95% CI = 1.43-2.10, p < 0.001), and PD \geq 6 mm (OR = 2.443, 95% CI = 1.19-5.03, p = 0.015), but it decreased with increases in the proportions of teeth with AL \geq 4 mm (OR = 0.874, 95% CI = 0.73-1.05, p = 0.155) and AL \geq 6 mm (OR = 0.743, 95% CI = 0.53-1.04, p = 0.083). There were significant positive associations of hypertension with the number of teeth with BOP (OR = 1.008, 95% CI = 1.00-1.01, p = 0.001), PD \geq 4 mm (OR = 1.029, 95% CI = 1.02-1.04, p < 0.000), and PD \geq 6mm (OR = 1.071, 95% CI = 1.03-1.11, p < 0.001). There were statistically insignificant negative associations of the presence of hypertension with the proportions of teeth with AL \geq 4 mm and AL \geq 6 mm (Table 6).

Table 5. Relationships between blood pressure (hypertension vs. normotension) and percentage of teeth affected with different threshold of periodontal parameters analyzed by logistic regressions with adjustment for age, gender, smoking status, region, years of education, and annual family income.

РТА		OR	95% CI	р
BOP+		1.204	1.05~1.38	0.006
PD≥ 4mm		1.733	1.43~2.10	0.000
PD≥ 6mm		2.443	1.19~5.03	0.015
AL≥ 4mm		0.874	0.73~1.05	0.155
AL≥ 6mm	U,	0.743	0.53~1.04	0.083

AL= attachment loss; BOP = bleeding on probing; PD = probing depth; PTA = mean percentage of teeth affected per individual.

Table 6. Relationships between blood pressur (hypertension vs. normotension) and percentage of teeth affected with different threshold of periodontal parameters analyzed by logistic regressions with adjustment for age, gender, smoking status, region, years of education, and annual family income.

0.001
0.000
0.000
0.507
).217

AL= attachment loss; BOP = bleeding on probing; NTA = mean number of teeth affected per individual; PD = probing depth.

Significantly more teeth were missing in hypertensive participants than in normotensive participants

Table S1 presents a comparison of the number of missing teeth between participants

with and without hypertension. Significantly more teeth were missing in hypertensive participants than in normotensive participants (4.36 vs. 2.94 teeth). The difference in the number of missing teeth between hypertensive and normotensive participants decreased with age. Analysis of the relationship according to smoking status showed that hypertension prevalence increased and then decreased with increases in the number of missing teeth.

DISCUSSION

 Based on data from the Fourth National Oral Health Survey of China, periodontitis is significantly and strongly associated with hypertension among Chinese adults, independent of the effects of age, sex, and smoking. The association between periodontitis and hypertension reported in this study is in agreement with that recently reported reviews ^{18,19}. This association between periodontitis and hypertension has considerable importance ²⁰.

In recent systemic reviews analyzing the association between periodontitis and hypertension, the included studies had been conducted in different countries across Asia, Europe, America, and Africa, lacking the large-scale data from China ^{18,19}. In this study, we used data from a large-scale national survey in which participants were representative of the Chinese population. Besides, the lack of consistent measures of case definition and severity of periodontitis in the retrieved studies did not allow for a relevant analysis of extent and severity of periodontitis with hypertension. In the present study, periodontitis was diagnosed in accordance with the classification

BMJ Open

proposed at the 2017 World Workshop. The association of hypertension with periodontitis was assessed according to age and smoking status to minimize errors and the effects of confounding factors. Periodontitis was associated with a increase prevalence of hypertension among Chinese adults, independent of known confounders. In most of the studies, periodontal status was clinically evaluated through PD and/or clinical attachment level measurement ^{18,19}. Nevertheless, several definitions of periodontal diseases have been used across studies and only a few have distinguished severe forms of periodontitis. In the present study, periodontitis severity was defined using the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Participants with severe periodontal disease (stages III and IV periodontitis) had a greater risk of hypertension compared with participants who had mild or no periodontal disease.

Hypertension prevalence increased with periodontitis severity, particularly among young participants (35-44 years). Therefore, participants with risk factors, particularly young adults, should engage in healthy lifestyle habits to improve their oral health. Accordingly, there is a need to improve the education and awareness of dental treatment and preventive management among individuals at risk for hypertension, particularly in younger population. Periodontitis and hypertension are chronic diseases; therefore, substantial exposure time may be necessary for their development. The exposure time to risk factors may be considerably shorter in younger individuals than that in older individuals. The influence of the longer exposure time to the common risk factors for periodontitis and hypertension in older individuals may mask the effects of

periodontitis on the development of hypertension. When the confounding effects of the risk factors were removed, a link between periodontitis and hypertension was identified. Therefore, severe periodontitis may have a greater role in the development of hypertension among younger individuals than among older individuals. The association of periodontitis with hypertension was also present in never smokers and former smokers, who had less exposure to common risk factors. The greater susceptibility to hypertension among young individuals with severe periodontitis may be attributed to periodontal inflammation.

This study evaluated the association between periodontal status and hypertension risk among young and older adults. Hypertension prevalence increased with periodontitis severity, which was most prominent in individuals aged 35-44 years. Adult aged < 65 years with hypertension had significantly greater risks of stages III and IV periodontitis, compared with individuals who did not have hypertension. Therefore, healthcare providers should carefully monitor oral health status in their patients to prevent hypertension, particularly among adults; they should conduct regular oral examinations and engage in periodontal disease management.

The association between periodontitis and hypertension was also present in participants who had a greater proportion of teeth with BOP or deep periodontal pockets. The findings suggest that severe periodontal inflammation, as evidenced by the depth of the inflamed periodontal pocket and the number of bleeding sites, is associated with hypertension. In particular, the presence of BOP indicates acute inflammation, which may lead to systemic effects and subsequent hypertension. The association of Page 23 of 33

BMJ Open

inflammation (i.e., PD) with hypertension suggests that persistent, long-term inflammation may also underlie this relationship. Compared with AL, PD seems to be more closely related to hypertension. For example, significant differences of the percentages/numbers of PD \geq 4mm and 6mm in 55-64 years were seen between hypertensive and normotensive individuals, but not in the percentages/numbers of AL ≥4mm and 6mm (Table 2 and 3). This is because AL is more related to periodontal attachment damage, while PD is more related to the existing periodontal inflammation. This also indicates that the correlation between periodontitis and hypertension may be related to the increase of systemic inflammation. Our study adds to the existing literature concerning oral health parameters associated with systemic outcomes ^{21, 22}. BOP and PD are the most appropriate clinical measures when the outcome of interest is an acute disease, whereas AL is more strongly correlated with chronic systemic conditions²¹. Our findings of an association between hypertension and the severity of periodontal inflammation (BOP and PD) are consistent with the results of previous studies ^{12, 18}. Although the causality of the observed association remains unclear, several hypotheses have been proposed, including endothelial dysfunction, oxidative stress, worsening of systemic inflammation in response to bacteraemia, and dissemination of inflammatory mediators from periodontal pockets, particularly BOP²³. This association is further supported by the results of a randomised clinical trial that showed short-term benefits of periodontal therapy on hypertension ²⁴. Additionally, a recent study identified oral pathogens associated with high or uncontrolled BP, which supports our findings ²⁵.

Our finding of an association between the number of missing teeth and hypertension is consistent with the results reported by Taguchi et al ²⁶. Missing teeth are indicative of poor oral health; they presumably were lost because of caries and periodontal disease. Thus, the absence of several teeth suggests the presence of severe periodontal disease, caries, or other oral health problems; these may have contributed to the increased risk of hypertension. This association was strongest in younger adults. There were no residual confounding effects of age that may have affected our study results. Because of the high prevalence of hypertension in Chinese adults, further studies are needed to clarify the association between periodontitis and hypertension. Moreover, attention is needed concerning the prevention and treatment of periodontitis in the general population.

There is minimal knowledge concerning the natural history of the association between periodontal disease and hypertension ²⁷⁻³¹. A significant linear trend was observed between the severity of periodontal disease and hypertension in a cross-sectional study of 3,352 patients with periodontal disease and 902 controls ²⁹. A recent prospective cohort study of Japanese individuals demonstrated an increased incidence of hypertension among participants with periodontal pockets \geq 4 mm at baseline ³⁰. Our findings are consistent with the results in a similar study of 6,617 men and 7,377 women who underwent dental examinations as part of the NHANES III in the USA ³². In the present study, after multivariate adjustment, gingival bleeding (BOP) was associated with an increased risk of hypertension, whereas periodontitis severity (defined using the 2017 World Workshop on the Classification of Periodontal and Peri-Implant

BMJ Open

Diseases and Conditions) and PD were positively associated with hypertension. Participants with severe periodontal disease (stages III and IV periodontitis) had a greater risk of hypertension compared with participants who had mild or no periodontal disease. Furthermore, there was a threshold relationship between severe periodontal disease and hypertension.

To our knowledge, the present study is one of few concerning the association between periodontal disease and hypertension in a large sample of Chinese adults, after adjustments for potential confounders. We evaluated several clinical measures of periodontal disease that allowed analysis of the relationships between various aspects of periodontal disease and hypertension. We found consistent associations between PD and hypertension. PD may be indicative of poor oral health and periodontal inflammation. It was positively associated with hypertension, suggesting a link between inflammation and hypertension.

The main limitation of the present study was that hypertension was self-report and not based on blood pressure measurements, which is inherent to any epidemiological cohort study. However, field measurements of blood pressure are regarded as validated tools, have been used in previous studies ^{21, 23}, and are considered useful for the analysis of large samples. Furthermore, although recall and reporting bias could not be excluded, the results largely reflect real-world clinical practice. First, the self-reported diagnosis was based on a face-to-face interview to ensure the validity and accuracy of the information. Second, the reliability of the study results is supported by data from the China Hypertension Survey (2012-2015) ³³, which showed an overall hypertension

prevalence of 23.2% in the Chinese adult population; this prevalence is similar to the prevalence observed in our study (23.9%).

In summary, our epidemiological analysis revealed an association between periodontitis and hypertension. We collected high-quality, large-scale clinical data related to periodontal disease and hypertension. We also collected detailed information regarding potential confounders, including variables that reflect health behavior (e.g., flossing). However, there was no strong evidence of a causal relationship. Future studies should be conducted to improve the understanding of the underlying mechanisms and interactions between periodontitis and hypertension, which will further strengthen collaborations between the dental and medical communities. Preventive measures for periodontal disease in oral health promotion programs should be emphasised to improve systemic health outcomes.

Contributorship statement

YZ is the major contributor in writing the manuscript and participates in data analysis and collation. JJ participates in data analysis and collation. WJ participates in writing the manuscript. XF, BT, DH, HL, BW, CW, SZ, XL, WR, WW, XW, and YS conceive the study design and draft the protocol. HM conceives the study design, drafts the protocol, and revise the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no conflict of interests.

Funding

This study was supported by "the Public Science and Technology Research Funds Project (2015) - the Fourth National Oral Health Survey (201502002)" and Peking University School and Hospital of Stomatology (PKUSS20180205).

Data sharing statement

Dataset available from the Fourth National Oral Health Survey of China (2015-2016).

Ethics approval

The study protocol was approved by the Ethics Committee of the Chinese Stomatological Association (approval no.: 2014-003). Written informed consent was obtained from all participants. This study was performed in accordance with the 2013 revision of the Declaration of Helsinki.

Reference

- Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36 (10): 1953-2041. doi: 10.1097/HJH.000000000001940.
- 2. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013

ESH/ESC Practice Guidelines for the Management of Arterial Hypertension. Blood Press 2014; 23 (1): 3-16. doi: 10.3109/08037051.2014.868629.

- Joffres M, Falaschetti E, Gillespie C, Robitaille C, Loustalot F, Poulter N, et al. Hypertension prevalence, awareness, treatment and control in national surveys from England, the USA and Canada, and correlation with stroke and ischaemic heart disease mortality: a cross-sectional study. BMJ Open 2013; 3 (8): e003423. doi: 10.1136/bmjopen-2013-003423.
- Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology. Circulation 2000; 101 (3): 329-335. doi: 10.1161/01.cir.101.3.329.
- Czopek A, Moorhouse R, Guyonnet L, Farrah T, Lenoir O, Owen E, et al. A novel role for myeloid endothelin-B receptors in hypertension. Eur Heart J 2019; 40 (9): 768-784. doi: 10.1093/eurheartj/ehy881.
- Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2019; 19 (8): 517-532. doi: 10.1038/s41577-019-0160-5.
- Chapple IL, Genco R, Working group 2 of joint EFPAAPw. Diabetes and periodontal diseases: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Clin Periodontol 2013; 40 Suppl 14 S106-112. doi: 10.1111/jcpe.12077.
- Lu HX, Tao DY, Lo ECM, Li R, Wang X, Tai BJ, et al. The 4th National Oral Health Survey in the Mainland of China: Background and Methodology. Chin J Dent Res 2018; 21 (3): 161-165. doi: 10.3290/j.cjdr.a41079.
- Sun HY, Jiang H, Du MQ, Wang X, Feng XP, Hu Y, et al. The Prevalence and Associated Factors of Periodontal Disease among 35 to 44-year-old Chinese Adults in the 4th National Oral Health Survey. Chin J Dent Res 2018; 21 (4): 241-247. doi: 10.3290/j.cjdr.a41082.
- Tonetti MS, D'Aiuto F, Nibali L, Donald A, Storry C, Parkar M, et al. Treatment of periodontitis and endothelial function. N Engl J Med 2007; 356 (9): 911-920. doi: 10.1056/NEJMoa063186.
- 11. Munoz Aguilera E, Suvan J, Buti J, Czesnikiewicz-Guzik M, Barbosa Ribeiro

BMJ Open

	review and meta-analysis. Cardiovasc Res 2020; 116 (1): 28-39. doi:
	10.1093/cvr/cvz201.
12.	Pietropaoli D, Del Pinto R, Ferri C, Wright JT, Jr., Giannoni M, Ortu E, et al.
	Poor Oral Health and Blood Pressure Control Among US Hypertensive Adults.
	Hypertension 2018; 72 (6): 1365-1373. doi:
	10.1161/HYPERTENSIONAHA.118.11528.
3.	Boos CJ, Lip GY. Is hypertension an inflammatory process? Curr Pharm Des
	2006; 12 (13): 1623-1635. doi: 10.2174/138161206776843313.
4.	Li JJ. Inflammation in hypertension: primary evidence. Chin Med J (Engl) 2006;
	119 (14): 1215-1221.
5.	Li JJ, Fang CH, Hui RT. Is hypertension an inflammatory disease? Med
	Hypotheses 2005; 64 (2): 236-240. doi: 10.1016/j.mehy.2004.06.017.
6.	Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol
	Hypertens 2006; 15 (2): 152-158. doi: 10.1097/01.mnh.0000203189.57513.76.
7.	Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis:
	Framework and proposal of a new classification and case definition. J
	Periodontol. 2018 Jun;89 Suppl 1:S159-S172. doi: 10.1002/JPER.18-0006.
3.	Martin-Cabezas R, Seelam N, Petit C, Agossa K, Gaertner S, Tenenbaum H, et
	al. Association between periodontitis and arterial hypertension: A systematic
	review and meta-analysis. Am Heart J 2016; 180 98-112. doi:
	10.1016/j.ahj.2016.07.018.
9.	Muñoz Aguilera E, Suvan J, Buti J, Czesnikiewicz-Guzik M, Barbosa Ribeiro
	A, Orlandi M, Guzik TJ, Hingorani AD, Nart J, D'Aiuto F. Periodontitis is
	associated with hypertension: a systematic review and meta-analysis.
	Cardiovasc Res. 2020 Jan 1;116(1):28-39. doi: 10.1093/cvr/cvz201. PMID:
	31549149.
20.	Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr.,
	et al. Seventh report of the Joint National Committee on Prevention, Detection,
	Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42 (6):

1206-1252. doi: 10.1161/01.HYP.0000107251.49515.c2.

- Beck JD, Offenbacher S. Relationships among clinical measures of periodontal disease and their associations with systemic markers. Ann Periodontol 2002; 7 (1): 79-89. doi: 10.1902/annals.2002.7.1.79.
- Demmer RT, Kocher T, Schwahn C, Volzke H, Jacobs DR, Jr., Desvarieux M. Refining exposure definitions for studies of periodontal disease and systemic disease associations. Community Dent Oral Epidemiol 2008; 36 (6): 493-502. doi: 10.1111/j.1600-0528.2008.00435.x.
- Macedo Paizan ML, Vilela-Martin JF. Is there an association between periodontitis and hypertension? Curr Cardiol Rev 2014; 10 (4): 355-361. doi: 10.2174/1573403x10666140416094901.
- 24. Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, Nosalski R, Pelka P, Nowakowski D, et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur Heart J 2019; 40 (42): 3459-3470. doi: 10.1093/eurheartj/ehz646.
- Pietropaoli D, Del Pinto R, Ferri C, Ortu E, Monaco A. Definition of hypertension-associated oral pathogens in NHANES. J Periodontol 2019; 90 (8): 866-876. doi: 10.1002/JPER.19-0046.
- 26. Taguchi A, Sanada M, Suei Y, Ohtsuka M, Lee K, Tanimoto K, et al. Tooth loss is associated with an increased risk of hypertension in postmenopausal women. Hypertension 2004; 43 (6): 1297-1300. doi: 10.1161/01.HYP.0000128335.45571.ce.
- D'Aiuto F, Parkar M, Nibali L, Suvan J, Lessem J, Tonetti MS. Periodontal infections cause changes in traditional and novel cardiovascular risk factors: results from a randomized controlled clinical trial. Am Heart J 2006; 151 (5): 977-984. doi: 10.1016/j.ahj.2005.06.018.
- D'Aiuto F, Sabbah W, Netuveli G, Donos N, Hingorani AD, Deanfield J, et al. Association of the metabolic syndrome with severe periodontitis in a large U.S. population-based survey. J Clin Endocrinol Metab 2008; 93 (10): 3989-3994.

doi: 10.1210/jc.2007-2522.

- Holmlund A, Holm G, Lind L. Severity of periodontal disease and number of remaining teeth are related to the prevalence of myocardial infarction and hypertension in a study based on 4,254 subjects. J Periodontol 2006; 77 (7): 1173-1178. doi: 10.1902/jop.2006.050233.
- Morita T, Yamazaki Y, Mita A, Takada K, Seto M, Nishinoue N, et al. A cohort study on the association between periodontal disease and the development of metabolic syndrome. J Periodontol 2010; 81 (4): 512-519. doi: 10.1902/jop.2010.090594.
- Rivas-Tumanyan S, Spiegelman D, Curhan GC, Forman JP, Joshipura KJ. Periodontal disease and incidence of hypertension in the health professionals follow-up study. Am J Hypertens 2012; 25 (7): 770-776. doi: 10.1038/ajh.2012.32.
- 32. Dye BA, Barker LK, Selwitz RH, Lewis BG, Wu T, Fryar CD, et al. Overview and quality assurance for the National Health and Nutrition Examination Survey (NHANES) oral health component, 1999-2002. Community Dent Oral Epidemiol 2007; 35 (2): 140-151. doi: 10.1111/j.1600-0528.2007.00310.x.
- Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, et al. Status of Hypertension in China: Results From the China Hypertension Survey, 2012-2015. Circulation 2018; 137 (22): 2344-2356. doi: 10.1161/CIRCULATIONAHA.117.032380.

		NT			
	Mean	95% CI	Mean	95% CI	p *
35-44	0.70	0.65~0.75	1.01	0.74~1.28	0.024
55-64	3.26	3.10~3.43	3.42	3.15~3.69	0.305
65-74	6.04	5.79~6.30	5.70	5.39~6.01	0.104
Non-smoker	3.30	3.10~3.50	4.27	3.87~4.67	0.000
Current smoker	2.70	2.58~2.81	3.42	3.95~4.44	0.000
Former smoker	3.55	3.21~3.89	5.70	4.68~5.98	0.000
Total	2.94	2.84~3.04	4.35	4.15~4.55	0.000

Table s1. Number of missing teeth by age groups and smoking status

HT = Hypertension; NT = Normotension;

* significant difference by Student's t test.

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8-9
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	8-9
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	NA
		(e) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9-1
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	10-
		· , · · · · ·	13

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	12-
		estimates and their precision (eg, 95% confidence interval). Make clear	13
		which confounders were adjusted for and why they were included	
		(<i>b</i>) Report category boundaries when continuous variables were categorized	NA
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	13-
			14
Limitations	19	Discuss limitations of the study, taking into account sources of potential	18
		bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	14-
		limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	19
		and, if applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association Between Periodontitis and Hypertension: Cross-Sectional Survey from the Fourth National Oral Health Survey in China (2015-2016)

Journal:	BMJ Open		
Manuscript ID	bmjopen-2022-068724.R2		
Article Type:	Original research		
Date Submitted by the Author:			
Complete List of Authors:	Zhan, Yalin; Peking University Hospital of Stomatology, First Clinical Division Jiao, Jian; Peking University Hospital of Stomatology, Department of Periodontology Jing, Wu-di; Peking University Hospital of Stomatology Feng, Xiping; Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Department of Preventive Dentistry Tai, Baojun; Wuhan University, School & Hospital of Stomatology Hu, Deyu; Sichuan University, West China School of Stomatology Lin, Huan-cai; Sun Yat-Sen University, Guanghua School of Stomatology Wang, Bo; Peking University Hospital of Stomatology Wang, Chunxiao; Chinese Center for Disease Control and Prevention Zheng, Shuguo; Peking University Hospital of Stomatology Liu, Xuenan; Peking University Hospital of Stomatology Wang, Weijian; Peking University Hospital of Stomatology Wang, Xing; Peking University Hospital of Stomatology Meng, Huanxin; Peking University Hospital of Stomatology		
Primary Subject Heading :	Dentistry and oral medicine		
Secondary Subject Heading:	Infectious diseases, Cardiovascular medicine		
Keywords:	Hypertension < CARDIOLOGY, ORAL MEDICINE, Epidemiology < TROPICAL MEDICINE, Public health < INFECTIOUS DISEASES		

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Association Between Periodontitis and Hypertension: Cross-Sectional Survey from the Fourth National Oral Health Survey in China (2015-2016)

Running title: Association between periodontitis and hypertension

Ya-lin Zhan^{1*}, PhD, Jian Jiao^{1*}, DDS, Wu-di Jing¹, DDS., Xi-ping Feng², PhD, Baojun Tai³, PhD, De-yu Hu⁴, PhD, Huan-cai Lin⁵, PhD, Bo Wang⁶, EMBA, Chun-xiao Wang⁷, PhD, Shu-guo Zheng⁸, PhD, Xue-nan Liu⁸, PhD, Wen-sheng Rong⁸, PhD, Weijian Wang⁸, PhD, Xing Wang⁶, PhD, Yan Si⁸, PhD, Huan-xin Meng¹, PhD,⁺

¹ Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, P.R. China ² Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.

³ School & Hospital of Stomatology, Wuhan University, Wuhan, P.R. China.

⁴ West China School of Stomatology, Sichuan University, Chengdu, P.R. China.

⁵ Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University,

Guangzhou, P.R. China.

⁶ Chinese Stomatological Association, Beijing, P.R. China.

⁷ Chinese Center for Disease Control and Prevention, Beijing, P.R. China.

⁸ Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of

 BMJ Open

*The two authors contributed equally to this work.

+ corresponding author

Corresponding author: Huanxin Meng

Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Zhongguancun Nandajie 22, Haidian District, 100081, Beijing, P.R.China

Email: kqhxmeng@126.com

Tel: +86-010-82195522; Fax: +86-010-82195522.

ABSTRACT

Objectives To evaluate the association between periodontitis severity and hypertension based on Chinese epidemiological data.

Design This cross-sectional survey enrolled adults from the Fourth National Oral Health Survey of China (2015-2016).

Setting The data were obtained from the Fourth National Oral Health Survey of China (2015-2016).

Participants The study included individuals aged 35-44 years (n = 4,409), 55-64 years (n = 4,568), and 65-74 years (n = 4,218).

Primary and secondary outcome measures Periodontal status, defined on the basis of the 2017 classification scheme, and periodontal parameters (e.g., bleeding on probing [BOP]) were compared between hypertensive and normotensive individuals. Smoothed scatterplots were constructed to demonstrate the associations of periodontal parameters and periodontal status with hypertension.

Results Severe periodontitis (stages III and IV) was present in 41.4% and 28.0% of hypertensive and normotensive individuals, respectively (p < 0.001). The prevalence of severe periodontitis was increase in hypertensive individuals than that in normotensive individuals among participants aged 35-44 years (18.0% and 10.1%, p < 0.001) and 55-64 years (40.2% and 36.7%, p = 0.035), but not in participants aged 65-74 years (46.4% and 45.1%, p = 0.429). Therefore, the difference in periodontal status between hypertensive and normotensive individuals decreased with age. There were increased prevalence of BOP, PD \ge 4 mm, and PD \ge 6 mm in hypertensive individuals than in normotensive individuals (52.1% vs 49.2%, 19.6% vs 14.7%, and 1.8% vs 1.1%, respectively). Periodontitis severity and the proportion of teeth with PD \ge 4 or \ge 6 mm were positively associated with hypertension.

Conclusion Periodontitis is associated with hypertension among Chinese adults. Hypertension prevalence increased with periodontitis severity, particularly among young participants. Accordingly, there is a need to improve the education and awareness of periodontal treatment and preventive management among individuals at risk for hypertension, particularly in younger population.

 Key Words: Hypertension, oral medicine, epidemiology, public health.

Strengths and limitations of this study

- The subject group was based on a large-scale national survey in China, and the sample size of the study was relatively large.
- Periodontitis was diagnosed in accordance with the classification proposed at the 2017 World Workshop.
- Hypertension was self-report and not based on blood pressure measurements.

INTRODUCTION

Hypertension, which affects 45% of the global population, is the most common cardiovascular disease (CVDs) worldwide ^{1,2}. It is defined as systolic or diastolic blood pressure (BP) of \geq 140 or \geq 90 mmHg, respectively. Hypertension is frequently poorly controlled and untreated ³. It is a complex disease with multiple causes and a major risk factor for CVDs ⁴. Oxidative stress, endothelial dysfunction, and inflammation are associated with the development of hypertension ⁵. The results of experimental and clinical studies suggest that inflammation has a major role in the development of hypertension ⁶. Chronic inflammation predisposes to the development of prohypertensive inflammation.

Periodontal disease, an immune-inflammatory reaction to plaque biofilms ⁷, has received substantial attention because of its association with CVDs. The Global Burden of Disease Study revealed that periodontitis was the sixth most prevalent disease

BMJ Open

worldwide. Periodontitis affects 743 million people worldwide (11.2% of the global population); the prevalence is higher in China than in other countries. The Fourth National Oral Health Survey of China showed that 90.9% individuals aged 35-44 years had periodontal disease ^{8, 9}. The low-grade inflammation associated with periodontitis has harmful effects on the endothelial function, which may result in hypertension ¹⁰. A recent study revealed that individuals with periodontitis have increased risks of hypertension and antihypertensive treatment failure ^{11,12}. Previous studies have suggested that dental treatment can improve blood pressure, although the findings have been inconclusive and further studies are needed ¹³⁻¹⁶.

Periodontitis and hypertension are major health problems, and their association received considerable public health attention. Therefore, we evaluated the relationship between periodontitis and hypertension based on the data from the Fourth National Oral Health Survey of China. We sought to determine whether individuals with periodontitis are more likely to have hypertension compared with individuals who do not have periodontitis; we also sought to determine whether periodontitis severity is associated with hypertension.

MATERIALS AND METHODS

Study design and sample

This cross-sectional study obtained data from adult participants of the Fourth National Oral Health Survey of China (2015-2016) ⁸. The planned sample size was 4,230 each for the age groups 35-44, 55-64 and 65-74 years. We excluded data from edentulous

BMJ Open

participants and from participants without complete information. Finally, 13,195 individuals were included (4,409, 4,568, and 4,218 individuals aged 35-44, 55-64, and 65-74 years, respectively).

Data collection

We collected data related to oral examination findings and questionnaire answers.

1. Periodontal examination

Periodontal examinations were performed using a community periodontal index probe. A full-mouth examination was performed, during which the probe was walked along the gingival crevices using a force of ≤ 20 g to assess bleeding on probing (BOP), the presence of calculus, probing depth (PD), and attachment loss (AL). For each parameter, each tooth was scored according to the condition of the most severely affected site. Training programs were conducted for examiner calibration before the survey. The reliability of the results was assessed using kappa values; kappa values for periodontal pocket depth were ≥ 0.6 . Additionally, 5% of the participants were randomly selected for assessment of inter-examiner reproducibility. The kappa values for all age-groups were 0.76-0.80.

Patient and public involvement

The study participants or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

Study parameters

Supragingival and subgingival calculus were identified by visual examination and probing, respectively (0 = absent, 1 = present, 9 = tooth excluded, and X = tooth not present). PD was recorded as 0 (1–3 mm), 1 (4–5 mm), 2 (\geq 6 mm), 9 (tooth excluded), or X (tooth not present). BOP was recorded as 0 (absent), 1 (present), 9 (tooth excluded), or X (tooth not present). AL was measured as the distance from the cementoenamel junction to the bottom of the periodontal pocket; it was recorded as 0 (0–3 mm), 1 (4–5 mm), 2 (6–8 mm), 3 (9–11 mm), 4 (\geq 12 mm), 9 (tooth excluded), or X (tooth not present).

The classification scheme proposed at the 2017 World Workshop on the Classification of Periodontal and Per-Implant Diseases and Conditions was used to classify the periodontal status as periodontally healthy (< 10% BOP-positive sites and PD \leq 3 mm) or gingivitis (\geq 10% BOP-positive sites and PD \leq 3 mm). Periodontitis was staged using the algorithm developed by Tonetti *et al* ¹⁷. For each tooth, stages I-III periodontitis were defined as AL of 1–2 mm, 3–4 mm, and \geq 5 mm, respectively. We also considered the number of teeth lost when classifying periodontitis: stages I and II, no tooth loss; stage III, \leq 4 teeth lost; and stage IV, \geq 5 teeth lost. The cause of tooth loss was not considered. Finally, we evaluated the complexity of patient management. Stage II patients were reclassified as stage III if the maximum PD was \geq 6 mm. Stage III patients were reclassified as stage IV if there were < 10 opposing pairs of teeth). Stages of periodontitis reflects the severity and complexity of managing the individual patient.

2. Interview data from the questionnaire

Questionaires were administered during in-person interviews to collect data regarding demographics, socioeconomic status, habits, dental history, and health attitudes. The following information was collected for analysis: age (years), annual family income (in increments of 10,000 yuan), sex (male or female), duration of education (years), self-reported hypertension (yes or no), smoking status (current smoker, former smoker, or non-smoker), and region (urban or rural).

Statistical analyses

Statistical analyses were performed using SPSS (version 19; IBM Corp., Armonk, NY, USA) or R (version 3.6.1; R Foundation for Statistical Computing, Vienna, Austria). The primary outcome was periodontal status (healthy, gingivitis, and stages I-IV periodontitis). The secondary outcomes were periodontal parameters (BOP-positive teeth, teeth with PD \geq 4 and \geq 6 mm, teeth with AL \geq 4, \geq 6, and \geq 9 mm, presented as percentages of teeth affected and numbers of teeth affected) and missing teeth. First, descriptive analysis was performed. Quantitative data were reported as means and standard deviations; categorical data were reported as numbers and percentages. Periodontal parameters were compared between hypertensive and normotensive individuals; subgroup analyses were conducted according to age group and smoking status. Periodontal status and parameters were analyzed using the chi-square test. Additionally, smoothed scatterplots based on generalized additive models

were constructed, with adjustment for confounders (sex, smoking status, region, duration of education, and annual family income), to evaluate the relationships of hypertension prevalence with periodontal status or parameters. The level of statistical significance was set at p < 0.05.

RESULTS

The participants were randomly selected from 31 provinces, autonomous regions, and municipalities in mainland China. In total, data from 13,195 individuals were included in the analysis; invalid data from five participants and data from 264 edentulous patients were excluded. The mean individual age was 56.43 ± 12.40 years. The sample consisted of 6,575 men (49.8%) and 6,620 women (50.2%). There were 3,470 non-smokers (26.3%), 8,405 current smokers (63.7%), and 1,318 former smokers (10.0%). Hypertension was present and absent in 3,154 (23.9%) and 10,041 (76.1%) participants, respectively.

Differences in periodontal status between hypertensive and normotensive participants decreased with age

Table 1 present the distributions of periodontal status according to age, gender, and smoking status in participants with and without hypertension.

Significantly increase proportions of hypertensive participants had stages I-IV periodontitis (70.3 % vs. 61.5%, p < 0.001) and severe periodontitis (stages III-IV, 41.4 % vs. 28.0%, p < 0.001), compared with normotensive participants. Stratified analysis

Page 11 of 34

BMJ Open

by gender showed that the prevalence of periodontitis (stage I-IV) was significantly increase in hypertensive participants than in normotensive participants in females (66.5 % vs. 55.9 %, p < 0.001) but not in males (74.0 % vs. 67.1%, p = 0.057). Severe periodontitis (stage III and stage IV) was more common in hypertensive participants than in normotensive participants both in males (46.1% vs. 32.7 %, p < 0.001) and females (36.6 % vs. 23.4 %, p < 0.001). Stratified analysis according to age showed that the prevalence of periodontitis (stage I-IV) was significantly increase in hypertensive participants than in normotensive participants among individuals aged 35-44 years (59.2% vs. 52.3%, p = 0.030), 55-64 years (72.7% vs. 69.1%, p = 0.023), and 65-74 years (70.3% vs. 66.2%, p = 0.009). Severe periodontitis (stage III and stage IV) was more common in hypertensive participants than in normotensive participants among individuals aged 35-44 years (18.0% vs. 10.1%, p < 0.001) and 55-64 years (40.2% vs. 36.7%, p = 0.035), but not among individuals aged 65-74 years (46.4% vs. 45.1%, p = 0.429). Therefore, differences in periodontal status between hypertensive and normotensive participants decreased with age (Table 1). Stratified analysis by smoking status showed that the prevalence of periodontitis (stage I-IV) was significantly increase in hypertensive participants than in normotensive participants in current smokers (76.2 % vs. 68.1%, p = 0.016) and non-smokers (67.3 % vs. 57.4%, p < 0.001) but not in former smokers (73.8 % vs. 70.6%, p = 0.972). Severe periodontitis (stage III and stage IV) was more common in hypertensive participants than in normotensive participants in all three sub-groups: current smokers (48.4% vs. 34.7%, p < 0.001), non-smokers (36.9% vs. 23.7%, p < 0.001) and in former smokers (50.2 %

vs. 38.0%, p < 0.001).

Table 1. Comparison of distribution of periodontal status according to the 2017 classification by age/gender/smoking groups between hypertensive and normotensive subjects.

	Periodontal		N	Г		Н	T		
Group	status	N	%	95% CI	Ν	%	95% CI	p1*	p2#
Male	Health	598	11.9	11.1~12.9	159	10.2	8.7~11.7		
	Gingivitis	1051	21.0	19.9~22.1	246	15.7	14.0~17.6		
	Stage I	844	16.8	15.8~17.9	171	10.9	9.5~12.6	0.057	< 0.001
	Stage II	883	17.6	16.6~18.7	266	17.0	15.2~18.9	0.037	< 0.001
	Stage III	906	18.1	17.0~19.2	357	22.8	20.8~25.0		
	Stage IV	730	14.6	13.6~15.6	364	23.3	21.2~25.4		
Female	Health	755	15.0	14.1~16.0	179	11.2	9.8~12.9		
	Gingivitis	1461	29.1	27.8~30.3	355	22.3	20.3~24.4		
	Stage I	867	17.2	16.2~18.3	199	12.5	10.9~14.2	< 0.001	< 0.001
	Stage II	770	15.3	14.3~16.3	277	17.4	15.6~19.3	< 0.001	< 0.001
	Stage III	588	11.7	10.8~12.6	260	16.3	14.6~18.2		
	Stage IV	586	11.7	10.8~12.6	323	20.3	18.4~22.3		
35-44	Health	658	15.9	14.8~17.1	40	14.4	10.7~18.9		
years	Gingivitis	1312	31.8	30.3~33.2	73	26.4	21.4~31.8		
	Stage I	1133	27.4	26.1~28.8	70	25.3	20.4~30.6	0.030	< 0.001
	Stage II	612	14.8	13.8~15.9	44	15.9	11.9~20.5	0.030	< 0.001
	Stage III	360	8.7	7.9~9.6	40	14.4	10.7~18.9		
	Stage IV	57	1.4	1.1~1.8	10	3.6	1.9~6.3		
55-64	Health	347	10.6	9.6~11.7	116	9.0	7.5~10.6		
years	Gingivitis	661	20.2	18.9~21.6	239	18.4	16.4~20.6		
	Stage I	403	12.3	11.2~13.5	174	13.4	11.7~15.4	0.023	0.035
	Stage II	658	20.1	18.8~21.5	247	19.1	17.0~21.3	0.025	0.035
	Stage III	659	20.1	18.8~21.5	273	21.1	18.9~23.3		
	Stage IV	544	16.6	15.4~17.9	247	19.1	17.0~21.3		
65-74	Health	348	13.2	12.0~14.5	182	11.5	10.0~13.1		
years	Gingivitis	539	20.5	18.9~22.0	289	18.3	16.4~20.2		
	Stage I	175	6.6	5.7~7.6	126	8.0	6.7~9.4	0.009	0.429
	Stage II	383	14.5	13.2~15.9	252	15.9	14.2~17.8		
	Stage III	475	18.0	16.6~19.5	304	19.2	17.3~21.2		

	Stage IV	715	27.1	25.5~28.8	430	27.2	25.0~29.4			
Current	Health	346	12.8	11.6~14.2	75	9.7	7.7~11.9			
smoker	Gingivitis	512	19.0	17.6~20.5	110	14.2	11.8~16.7			
	Stage I	423	15.7	14.4~17.1	82	10.6	8.5~12.9	0.016	< 0.001	
	Stage II	478	17.7	16.3~19.2	134	17.2	14.7~20.0	0.010	< 0.001	
	Stage III	491	18.2	16.8~19.7	198	25.5	22.5~28.6			
	Stage IV	443	16.5	15.1~17.9	178	22.9	20.1~26.0			
Non-	Health	909	14.2	13.3~15.0	221	11.1	9.8~12.6			
smoker	Gingivitis	1825	28.4	27.3~29.5	430	21.6	19.9~23.5			
	Stage I	1167	18.2	17.3~19.1	249	12.5	11.1~14.0	< 0.001	< 0.001	
	Stage II	994	15.5	14.6~16.4	356	17.9	16.3~19.6	< 0.001	< 0.001	
	Stage III	803	12.5	11.7~13.3	337	17.0	15.4~18.6			
	Stage IV	721	11.2	10.5~12.0	395	19.9	18.2~21.7			
Former	Health	98	10.6	8.7~12.7	42	10.7	8.0~14.1			
smoker	Gingivitis	175	18.9	16.5~21.5	61	15.6	12.3~19.4			
	Stage I	121	13.1	11.0~15.3	39	10.0	7.3~13.2	0.972	< 0.001	
	Stage II	181	19.5	17.1~22.2	53	13.6	10.4~17.2	0.972	< 0.001	
	Stage III	200	21.6	19.0~24.3	82	21.0	17.2~25.2			
	Stage IV	98	10.6	8.7~12.7	42	10.7	8.0~14.1			
Total	Health	1353	13.5	12.8~14.2	338	10.7	9.7~11.8			
	Gingivitis	2512	25.0	24.2~25.9	601	19.0	17.7~20.4			
	Stage I	1711	17.0	<u>16.3~17.8</u>	370	11.7	10.6~12.9	< 0.001	< 0.001	
	Stage II	1653	16.5	15.8~17.2	543	17.2	15.9~18.6	< 0.001	< 0.001	
	Stage III	1494	14.9	14.2~15.6	617	19.6	18.2~21.0			
	Stage IV	1316	13.1	12.5~13.8	687	21.8	20.4~23.2			

HT = Hypertension; NT = Normotension.

*Significance values of differences of distribution proportion of periodontitis (stage I to IV) and non-periodontitis (health and gingivitis) between hypertensive and normotensive subjects by Chi square test;

[#]Significance values of differences of distribution proportion of severe periodontitis (stage III and IV) and non-severe-periodontitis (health, gingivitis, stage I and stage II) between hypertensive and normotensive subjects by Chi square test.

Periodontal parameters were significantly worse in hypertensive participants than in

normotensive participants

Tables 2 and 3 present comparisons of periodontal parameters between hypertensive

and normotensive participants. Compared with normotensive participants, hypertensive

participants had significantly increase proportions of teeth with BOP (52.1% vs. 49.2%),

 $PD \ge 4 \text{ mm} (19.6\% \text{ vs. } 14.7\%), PD \ge 6 \text{ mm} (1.8\% \text{ vs. } 1.1\%), AL \ge 4 \text{ mm} (23.6\% \text{ vs. } 1.1\%)$ vs. 17.2%), AL \geq 6 mm (6.6% vs. 4.4%). Differences in the percentage of teeth with each periodontal parameters between hypertensive and normotensive participants were consistent in males and females, and among current smokers, former smokers, and nonsmokers (except for BOP, whose significant differences were not found in males, current smokers and former smokers; and PD ≥ 6 mm, whose significant differences were not found in former smokers). Differences in periodontal parameters between hypertensive and normotensive participants decreased with age. Difference in the mean prevalence of PD \geq 4 mm were consistent in all age-groups. Compared with normotensive participants, hypertensive participants significantly increased numbers of teeth with PD $\ge 4 \text{ mm} (4.5 \text{ vs. } 3.5)$, PD $\ge 6 \text{ mm} (0.4 \text{ vs. } 0.2)$, AL $\ge 4 \text{ mm} (5.0 \text{ vs. } 3.8)$, and $AL \ge 6 \text{ mm}$ (1.2 vs. 0.8). The mean number of BOP-positive teeth was not significant difference between hypertensive and normotensive participants (12.4 vs. 12.3). Differences in the mean number of teeth with each periodontal parameters between hypertensive and normotensive participants were consistent in males and females, and among current smokers, former smokers, and non-smokers (except for BOP, whose significant differences were found in females, and PD≥6 mm, whose significant differences were not found in former smokers). The difference in the mean number of teeth between hypertensive and normotensive participants decreased with age. Furthermore, differences in the number of teeth with PD \geq 4 mm and PD \geq 6 mm sites were consistent in all age-groups.

BMJ Open

 Table 2. Comparison of the percentage of teeth with each periodontal parameter

 between hypertensive and normotensive subjects by gender, age groups and smoking

	D]	NT	H	Г	
Group	Periodontal parameter	Maan	059/ CI	Maan	059/ CI	p^*
Male	BOP+	Mean 50.9	95% CI 49.9~51.9	Mean 52.2	95% CI 50.4~54.0	0.232
Iviale	PD≥ 4mm	17.9	49.9~31.9 17.2~18.6	32.2 22.6	30.4~34.0 21.3~24.0	< 0.001
	PD≥ 6mm	1.5	1.3~1.6	22.0	21.3~24.0 1.9~2.7	< 0.001
	AL≥ 4mm	20.9	20.2~21.7	2.5	26.0~28.9	< 0.001
	AL≥ 6mm	5.7	5.3~6.1	8.3	7.5~9.1	< 0.001
Female	BOP+	47.4	46.5~48.4	52.1	50.4~53.8	< 0.001
i enhaie	PD≥ 4mm	11.5	11.0~12.0	16.5	15.4~17.6	< 0.001
	PD≥ 6mm	0.7	0.6~0.8	1.3	1.0~1.6	< 0.001
	AL≥ 4mm	13.5	12.9~14.0	19.8	18.6~20.9	< 0.001
	AL≥ 6mm	3.2	2.9~3.4	4.8	4.2~5.4	< 0.001
35-44 years	BOP+	46.5	45.4~47.5	50.5	46.1~54.9	0.096
j i i i	PD≥ 4mm	10.5	9.9~11.1	15.8	12.8~18.8	0.001
	PD≥ 6mm	0.5	0.4~0.6	1.1	0.6~1.6	0.031
	AL≥ 4mm	6	5.6~6.4	10.1	7.8~12.4	0.001
	AL≥ 6mm	0.8	0.7~0.9	1.6	0.8~2.4	0.053
55-64 years	BOP+	52.5	51.3~53.7	54.0	52.1~56.0	0.188
2	PD≥ 4mm	17.9	17.1~18.8	20.3	18.9~21.7	0.004
	PD≥ 6mm	1.4	1.2~1.6	1.9	1.6~2.2	0.024
	AL≥ 4mm	22.1	21.2~22.9	21.5	20.1~22.9	0.543
	AL≥ 6mm	5.3	4.9~5.8	5.5	4.8~6.2	0.722
65-74 years	BOP+	49.2	47.9~50.6	50.8	49.1~52.6	0.144
	PD≥ 4mm	17.4	16.5~18.3	19.6	18.4~20.8	0.004
	PD≥ 6mm	1.5	1.3~1.8	1.8	1.5~2.2	0.188
	AL≥ 4mm	28.7	27.6~29.8	27.6	26.3~29.0	0.239
	AL≥ 6mm	8.9	8.3~9.6	8.3	7.5~9.1	0.220
Current	BOP+	49.7	48.3~51.1	51.3	48.8~53.9	0.286
smoker	PD≥ 4mm	19.9	18.9~20.9	24.1	22.2~26.0	< 0.001
	PD≥ 6mm	1.6	1.4~1.9	2.4	1.9~3.0	0.007
	AL≥ 4mm	22.5	21.4~23.6	28.8	26.7~30.9	< 0.001
	AL≥ 6mm	6.6	6.0~7.2	8.8	7.6~10.0	0.001
Non-smoker	BOP+	48.5	47.7~49.4	52.3	50.7~53.8	< 0.001
	PD≥ 4mm	12.1	11.6~12.6	17.0	16.0~18.0	< 0.001
	PD≥ 6mm	0.7	0.6~0.8	1.4	1.1~1.6	< 0.001
	AL≥ 4mm	14.0	13.4~14.5	20.4	19.3~21.4	< 0.001
	AL≥ 6mm	3.3	3.0~3.5	5.1	4.6~5.7	< 0.001

Former	BOP+	51.7	49.4~54.0	53.0	49.4~56.6	0.548
smoker	PD≥ 4mm	17.8	16.3~19.4	23.7	20.9~26.5	< 0.001
	PD≥ 6mm	1.9	1.4~2.4	2.6	1.8~3.4	0.129
	AL≥ 4mm	23.8	27.8~33.6	32.8	28.6~36.9	0.001
	AL≥ 6mm	6.2	5.3~7.1	9.4	7.6~11.1	0.002
Total	BOP+	49.2	48.5~49.9	52.1	50.9~53.4	< 0.001
	PD≥ 4mm	14.7	14.3~15.2	19.6	18.7~20.4	< 0.001
	PD≥ 6mm	1.1	1.0~1.2	1.8	1.6~2.0	< 0.001
	AL≥ 4mm	17.2	16.7~17.7	23.6	22.7~24.5	< 0.001
	AL≥ 6mm	4.4	4.2~4.7	6.6	6.0~7.1	< 0.001

AL= attachment loss; BOP = bleeding on probing; HT = Hypertension;

NT = Normotension; PD = probing depth;

* significant difference by Student's t test.

Table 3. Comparison of the number of teeth with each periodontal parameter between

	D: 1 (1		NT			
Group	Periodontal					p^*
	parameter	Mean	95% CI	Mean	95% CI	
Male	BOP+	12.7	12.5~13.0	12.3	11.8~12.8	0.111
	PD≥ 4mm	4.2	4.0~4.4	5.1	4.8~5.4	< 0.001
	PD≥ 6mm	0.3	0.3~0.3	0.5	0.4~0.6	< 0.001
	AL≥ 4mm	4.6	4.5~4.8	5.7	5.4~6.0	< 0.001
	AL≥ 6mm	1.1	1.0~1.1	1.5	1.3~1.6	< 0.001
Female	BOP+	11.9	11.7~12.1	12.6	12.1~13.0	0.013
	PD≥ 4mm	2.7	2.6~2.9	3.8	3.6~4.1	< 0.001
	PD≥ 6mm	0.1	0.1~0.2	0.3	0.2~0.3	< 0.001
	AL≥ 4mm	2.9	2.8~3.1	4.3	4.0~4.5	< 0.001
	AL≥ 6mm	0.6	0.5~0.6	0.9	0.8~1.0	< 0.001
35-44	BOP+	12.7	12.4~13.0	13.6	12.4~14.8	0.143
years	PD≥ 4mm	2.8	2.7~3.0	4.2	3.4~5.0	0.001
	PD≥ 6mm	0.1	0.1~0.2	0.3	0.1~0.4	0.036
	AL≥ 4mm	1.6	1.5~1.7	2.6	2.0~3.2	0.001
	AL≥ 6mm	0.2	0.2~0.2	0.4	0.2~0.6	0.049
55-64	BOP+	13.0	12.7~13.3	13.4	12.9~13.9	0.241
years	PD≥ 4mm	4.2	4.0~4.4	4.8	4.4~5.1	0.005
	PD≥ 6mm	0.3	0.2~0.3	0.4	0.3~0.5	0.003
	AL≥ 4mm	5.0	4.8~5.2	4.8	4.5~5.1	0.222
	AL≥ 6mm	1.1	1.0~1.2	1.1	1.0~1.2	0.914

hypertensive and normotensive subjects by gender, age groups and smoking status.

65-74	BOP+	10.9	10.6~11.3	11.5	11.0~11.9	0.051
years	PD≥ 4mm	3.5	3.3~3.7	4.3	4.0~4.5	< 0.001
	PD≥ 6mm	0.3	0.2~0.3	0.4	0.3~0.4	0.042
	AL≥ 4mm	5.7	5.4~5.9	5.6	5.3~5.9	0.752
	AL≥ 6mm	1.5	1.4~1.6	1.4	1.3~1.5	0.508
Current	BOP+	12.3	11.9~12.7	12.1	11.4~12.8	0.583
smoker	PD≥ 4mm	4.6	4.4~4.8	5.5	5.0~6.0	0.001
	PD≥ 6mm	0.3	0.3~0.4	0.5	0.4~0.6	0.001
	AL≥ 4mm	4.9	4.6~5.1	6.1	5.7~6.6	< 0.001
	AL≥ 6mm	1.2	1.1~1.3	1.6	1.4~1.8	0.001
Non-	BOP+	12.3	12.1~12.5	12.6	12.2~13.0	0.159
smoker	PD≥ 4mm	2.9	2.8~3.0	3.9	3.7~4.2	< 0.001
	PD≥ 6mm	0.2	0.1~0.2	0.3	0.2~0.3	< 0.001
	AL≥ 4mm	3.1	3.0~3.2	4.4	4.2~4.6	< 0.001
	AL≥ 6mm	0.6	0.6~0.6	0.9	0.8~1.0	< 0.001
Former	BOP+	12.7	12.1~13.3	12.2	11.3~13.1	0.359
smoker	PD≥ 4mm	4.1	3.8~4.5	5.1	4.5~5.8	0.006
	PD≥ 6mm	0.4	0.3~0.4	0.5	0.4~0.7	0.069
	AL≥ 4mm	5.3	4.9~5.7	5.9	5.3~6.6	0.081
	AL≥ 6mm	1.2	1.0~1.3	1.7	1.4~2.0	0.005
Total	BOP+	12.3	12.2~12.5	12.4	12.1~14.8	0.574
	PD≥ 4mm	3.5	3.4~3.6	4.5	4.2~4.7	< 0.001
	PD≥ 6mm	0.2	0.2~0.2	0.4	0.3~0.4	< 0.001
	AL≥ 4mm	3.8	3.7~3.9	5.0	4.8~5.2	< 0.001
	AL≥ 6mm	0.8	0.8~0.9	1.2	1.1~1.3	< 0.001

AL= attachment loss; BOP = bleeding on probing; HT = Hypertension;

NT = Normotension; PD = probing depth;

* significant difference by Student's t test.

Hypertension prevalence increased with periodontitis severity

Multivariate regression analysis was performed to evaluate the relationship between hypertension and age stratified according to periodontal status, after adjustments for sex, smoking status, region, duration of education, and annual family income (Table 4). Compared with participants who did not have periodontitis, participants with stages III and IV periodontitis had a significant increased risk of hypertension (odds ratio [OR] = 1.70, 95% confidence interval [CI] = 1.45-1.99, p < 0.001). However, the difference between participants with stages I and II periodontitis and participants without periodontitis was not statistically significant (OR = 1.03, 95% CI = 0.88-1.20, p =0.717). Therefore, hypertension prevalence increased with periodontitis severity. Notably, the OR for participants with stages III and IV periodontitis decreased with age; it was not statistically significant in participants aged 65-74 years (Table 4).

Table 4. Relationships between blood pressure (hypertension vs. normotension) and periodontal status (compared with non-periodontitis) according to the 2017 classification analyzed by logistic regressions with adjustment for gender, smoking status, region, years of education, and annual family income

Age group	Periodontal stauts*	OR	95% CI	р
35-44 years	Periodontitis (stage III & IV)#	1.62	1.00~2.61	0.050
33-44 years	Periodontitis (stage I & II) [#]	0.97	0.65~1.43	0.863
55-64 years	Periodontitis (stage III & IV)#	1.40	1.07~1.84	0.015
	Periodontitis (stage I & II) [#]	1.30	1.00~1.69	0.051
65-74 years	Periodontitis (stage III & IV)#	1.21	0.96~1.42	0.113
	Periodontitis (stage I & II)#	1.12	0.96~1.42	0.336
Total	Periodontitis (stage III & IV) [#]	1.70	1.45~1.99	< 0.001
	Periodontitis (stage I & II) [#]	1.03	0.88~1.20	0.717

* According to the 2017 World Workshop on the Classification of Periodontal and Per-Implant Diseases and Conditions ¹⁷.

Relationships of hypertension with periodontal parameters

Table 5 and Table 6 present the multivariate regression analyses of the relationships of hypertension with periodontal parameters, after adjustments for sex, smoking status,

BMJ Open

region, duration of education, and annual family income. Hypertension prevalence increased with increases in the proportions of teeth with BOP (OR = 1.20, 95% CI = 1.05-1.38, p = 0.006), PD ≥ 4 mm (OR = 1.73, 95% CI = 1.43-2.10, p < 0.001), and PD ≥ 6 mm (OR = 2.44, 95% CI = 1.19-5.03, p = 0.015), but it decreased with increases in the proportions of teeth with AL ≥ 4 mm (OR = 0.87, 95% CI = 0.73-1.05, p = 0.155) and AL ≥ 6 mm (OR = 0.74, 95% CI = 0.53-1.04, p = 0.083). There were significant positive associations of hypertension with the number of teeth with BOP (OR = 1.01, 95% CI = 1.00-1.01, p = 0.001), PD ≥ 4 mm (OR = 1.03, 95% CI = 1.02-1.04, p < 0.001), and PD ≥ 6mm (OR = 1.07, 95% CI = 1.03-1.11, p < 0.001). There were statistically insignificant negative associations of the presence of hypertension with the proportions of teeth with AL ≥ 4 mm and AL ≥ 6 mm (Table 6).

Table 5. Relationships between blood pressure (hypertension vs. normotension) and percentage of teeth affected with different threshold of periodontal parameters analyzed by logistic regressions with adjustment for age, gender, smoking status, region, years of education, and annual family income.

Periodontal parameter	OR*	95% CI	р
BOP+	1.20	1.05~1.38	0.006
PD≥ 4mm	1.73	1.43~2.10	< 0.001
PD≥ 6mm	2.44	1.19~5.03	0.015
AL≥ 4mm	0.87	0.73~1.05	0.155
AL≥ 6mm	0.74	0.53~1.04	0.083

AL= attachment loss; BOP = bleeding on probing; PD = probing depth;

* The odds ratio as periodontal parameter increased by one percent (for example, as BOP+% increases by 1%, the odds of hypertension increase by 20%, in another word,

1.20 minus 1) ^{18,19}.

Table 6. Relationships between blood pressure (hypertension vs. normotension) and number of teeth affected with different threshold of periodontal parameters analyzed by logistic regressions with adjustment for age, gender, smoking status, region, years of education, and annual family income.

BMJ Open

Periodontal parameter	OR^*	95% CI	р
BOP+	1.01	1.00~1.01	0.001
PD≥ 4mm	1.03	1.02~1.04	< 0.001
PD≥ 6mm	1.07	1.03~1.11	< 0.001
AL≥ 4mm	1.00	0.99~1.01	0.507
AL≥ 6mm	0.99	0.97~1.01	0.217

AL= attachment loss; BOP = bleeding on probing; PD = probing depth.

* The odds ratio as periodontal parameters increased by one percent (for example, as BOP+% increases by one tooth, the odds of hypertension increase by 1%, in another word, 1.01 minus 1)^{18,19}.

Significantly more teeth were missing in hypertensive participants than in

normotensive participants

Table S1 presents a comparison of the number of missing teeth between participants with and without hypertension. Significantly more teeth were missing in hypertensive participants than in normotensive participants (4.4 vs. 2.9 teeth). The difference in the number of missing teeth between hypertensive and normotensive participants decreased with age. The differences in missing teeth between hypertensive and normotensive and normotensive participants were generally consistent in males and females, and among current smokers, former smokers, and non-smokers.

Page 21 of 34

BMJ Open

Based on data from the Fourth National Oral Health Survey of China, periodontitis is significantly and strongly associated with hypertension among Chinese adults, independent of the effects of age, sex, and smoking. The association between periodontitis and hypertension reported in this study is in agreement with that recently reported reviews ^{20,21}. This association between periodontitis and hypertension has considerable importance ²².

In recent systemic reviews analyzing the association between periodontitis and hypertension, the included studies had been conducted in different countries across Asia, Europe, America, and Africa, lacking the large-scale data from China^{20,21}. In this study, we used data from a large-scale national survey in which participants were representative of the Chinese population. Besides, the lack of consistent measures of case definition and severity of periodontitis in the retrieved studies did not allow for a relevant analysis of extent and severity of periodontitis with hypertension. In the present study, periodontitis was diagnosed in accordance with the classification proposed at the 2017 World Workshop. The association of hypertension with periodontitis was assessed according to age and smoking status to minimize errors and the effects of confounding factors. Periodontitis was associated with an increase prevalence of hypertension among Chinese adults, independent of known confounders. In most of the studies, periodontal status was clinically evaluated through PD and/or clinical attachment level measurement 20,21. Nevertheless, several definitions of periodontal diseases have been used across studies and only a few have distinguished severe forms of periodontitis. In the present study, periodontitis severity was defined

using the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Participants with severe periodontal disease (stages III and IV periodontitis) had an increased risk of hypertension compared with participants who had mild or no periodontal disease.

Hypertension prevalence increased with periodontitis severity, particularly among young participants (35-44 years). Therefore, participants with risk factors, particularly young adults, should engage in healthy lifestyle habits to improve their oral health. Accordingly, there is a need to improve the education and awareness of dental treatment and preventive management among individuals at risk for hypertension, particularly in younger population. Periodontitis and hypertension are chronic diseases; therefore, substantial exposure time may be necessary for their development. The exposure time to risk factors may be considerably shorter in younger individuals than that in older individuals. The influence of the longer exposure time to the common risk factors for periodontitis and hypertension in older individuals may mask the effects of periodontitis on the development of hypertension. When the confounding effects of the risk factors were removed, a link between periodontitis and hypertension was identified. Therefore, severe periodontitis may have a greater role in the development of hypertension among younger individuals than among older individuals. The association of periodontitis with hypertension was also present in never smokers and former smokers, who had less exposure to common risk factors. The greater susceptibility to hypertension among young individuals with severe periodontitis may be attributed to periodontal inflammation.

Page 23 of 34

BMJ Open

This study evaluated the association between periodontal status and hypertension risk among young and older adults. Hypertension prevalence increased with periodontitis severity, which was most prominent in individuals aged 35-44 years. Adult aged < 65 years with hypertension had significantly greater risks of stages III and IV periodontitis, compared with individuals who did not have hypertension. Therefore, healthcare providers should carefully monitor oral health status in their patients to prevent hypertension, particularly among adults; they should conduct regular oral examinations and engage in periodontal disease management.

This study exhibited the percentage of teeth with each periodontal status that means extension of periodontal pathology in the oral cavity. The association between periodontitis and hypertension was also present in participants who had a greater proportion of teeth with BOP or deep periodontal pockets. The findings suggest that severe and extensive periodontal inflammation, as evidenced by the depth of the inflamed periodontal pocket and the number of bleeding sites, is associated with hypertension. In particular, the presence of BOP indicates acute inflammation, which may lead to systemic effects and subsequent hypertension. The association of inflammation (i.e., PD) with hypertension suggests that persistent, long-term, and extensive inflammation may also underlie this relationship. Compared with AL, PD seems to be more closely related to hypertension. For example, significant differences of the percentages/numbers of PD \geq 4mm and 6mm in 55-64 years were seen between hypertensive and normotensive individuals, but not in the percentages/numbers of AL \geq 4mm and 6mm (Table 2 and 3). This is because AL is more related to periodontal

BMJ Open

attachment damage, while PD is more related to the existing periodontal inflammation. This also indicates that the correlation between periodontitis and hypertension may be related to the increase of systemic inflammation. Our study adds to the existing literature concerning oral health parameters associated with systemic outcomes ^{23, 24}. BOP and PD are the most appropriate clinical measures when the outcome of interest is an acute disease, whereas AL is more strongly correlated with chronic systemic conditions²¹. Our findings of an association between hypertension and the severity of periodontal inflammation (BOP and PD) are consistent with the results of previous studies ^{12, 18}. Although the causality of the observed association remains unclear, several hypotheses have been proposed, including endothelial dysfunction, oxidative stress, worsening of systemic inflammation in response to bacteremia, and dissemination of inflammatory mediators from periodontal pockets, particularly BOP²⁵. This association is further supported by the results of a randomized clinical trial that showed short-term benefits of periodontal therapy on hypertension $\frac{26}{26}$. Additionally, a recent study identified oral pathogens associated with high or uncontrolled BP, which supports our findings ²⁷.

Our finding of an association between the number of missing teeth and hypertension is consistent with the results reported by Taguchi et al ²⁸. Missing teeth are indicative of poor oral health; they presumably were lost because of caries and periodontal disease. Thus, the absence of several teeth suggests the presence of severe periodontal disease, caries, or other oral health problems; these may have contributed to the increased risk of hypertension. This association was strongest in younger adults. There were no

BMJ Open

residual confounding effects of age that may have affected our study results. Because of the high prevalence of hypertension in Chinese adults, further studies are needed to clarify the association between periodontitis and hypertension. Moreover, attention is needed concerning the prevention and treatment of periodontitis in the general population.

There is minimal knowledge concerning the natural history of the association between periodontal disease and hypertension ²⁹⁻³³. A significant linear trend was observed between the severity of periodontal disease and hypertension in a cross-sectional study of 3,352 patients with periodontal disease and 902 controls ³¹. A recent prospective cohort study of Japanese individuals demonstrated an increased incidence of hypertension among participants with periodontal pockets ≥ 4 mm at baseline ³². Our findings are consistent with the results in a similar study of 6,617 men and 7,377 women who underwent dental examinations as part of the NHANES III in the USA ³⁴. In the present study, after multivariate adjustment, gingival bleeding (BOP) was associated with an increased risk of hypertension, whereas periodontitis severity (defined using the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions) and PD were positively associated with hypertension. Participants with severe periodontal disease (stages III and IV periodontitis) had an increased risk of hypertension compared with participants who had mild or no periodontal disease. Furthermore, there was a threshold relationship between severe periodontal disease and hypertension.

To our knowledge, the present study is one of few concerning the association between

BMJ Open

periodontal disease and hypertension in a large sample of Chinese adults, after adjustments for potential confounders. The assessment of extent of pathological condition for periodontal disease is thought to be important, however, the most severe pathological condition in the oral cavity is assessed in many studies. In this study, the extent of pathological condition for periodontal disease in the oral cavity was assessed the percentage of teeth with each periodontal status. In addition, we evaluated several clinical measures of periodontal disease that allowed analysis of the relationships between various aspects of periodontal disease and hypertension. We found consistent associations between PD and hypertension. PD may be indicative of poor oral health and periodontal inflammation. It was positively associated with hypertension, suggesting a link between inflammation and hypertension.

The main limitation of the present study was that hypertension was self-report and not based on blood pressure measurements, which is inherent to any epidemiological cohort study. However, field measurements of blood pressure are regarded as validated tools, have been used in previous studies ^{23, 25}, and are considered useful for the analysis of large samples. Furthermore, although recall and reporting bias could not be excluded, the results largely reflect real-world clinical practice. First, the self-reported diagnosis was based on a face-to-face interview to ensure the validity and accuracy of the information. Second, the reliability of the study results is supported by data from the China Hypertension Survey (2012-2015) ³⁵, which showed an overall hypertension prevalence of 23.2% in the Chinese adult population; this prevalence is similar to the prevalence observed in our study (23.9%).

BMJ Open

In summary, our epidemiological analysis revealed an association between periodontitis and hypertension. We collected high-quality, large-scale clinical data related to periodontal disease and hypertension. We also collected detailed information regarding potential confounders, including variables that reflect health behavior (e.g., flossing). However, there was no strong evidence of a causal relationship. Future studies should be conducted to improve the understanding of the underlying mechanisms and interactions between periodontitis and hypertension, which will further strengthen collaborations between the dental and medical communities. Preventive measures for periodontal disease in oral health promotion programs should be emphasised to improve systemic health outcomes.

Contributorship statement

YZ is the major contributor in writing the manuscript and participates in data analysis and collation. JJ participates in data analysis and collation. WJ participates in writing the manuscript. XF, BT, DH, HL, BW, CW, SZ, XL, WR, WW, XW, and YS conceive the study design and draft the protocol. HM conceives the study design, drafts the protocol, and revise the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no conflict of interests.

Funding

This study was supported by "the Public Science and Technology Research Funds Project (2015) - the Fourth National Oral Health Survey (201502002)" and Peking University School and Hospital of Stomatology (PKUSS20180205).

Data sharing statement

This study is based on the data of the Fourth National Oral Health Survey of China (2015-2016), which was provided by the Chinese Stomatological Association.

Ethics approval

The study protocol was approved by the Ethics Committee of the Chinese Stomatological Association (approval no.: 2014-003). Written informed consent was obtained from all participants. This study was performed in accordance with the 2013 revision of the Declaration of Helsinki.

Reference

- Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36 (10): 1953-2041. doi: 10.1097/HJH.000000000001940.
- Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC Practice Guidelines for the Management of Arterial Hypertension. Blood Press 2014; 23 (1): 3-16. doi: 10.3109/08037051.2014.868629.

Page 29 of 34

1

2		
3 4	3.	Joffres M, Falaschetti E, Gillespie C, Robitaille C, Loustalot F, Poulter N, et al.
5 6		Hypertension prevalence, awareness, treatment and control in national surveys
7 8		from England, the USA and Canada, and correlation with stroke and ischaemic
9		heart disease mortality: a cross-sectional study. BMJ Open 2013; 3 (8): e003423.
10 11		
12 13		doi: 10.1136/bmjopen-2013-003423.
14	4.	Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology.
15 16		Circulation 2000; 101 (3): 329-335. doi: 10.1161/01.cir.101.3.329.
17 18	5.	Czopek A, Moorhouse R, Guyonnet L, Farrah T, Lenoir O, Owen E, et al. A
19		novel role for myeloid endothelin-B receptors in hypertension. Eur Heart J 2019;
20 21		40 (9): 768-784. doi: 10.1093/eurheartj/ehy881.
22 23	6.	Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of
24	0.	
25 26		hypertension. Nat Rev Immunol 2019; 19 (8): 517-532. doi: 10.1038/s41577-
27 28		019-0160-5.
29 30	7.	Chapple IL, Genco R, Working group 2 of joint EFPAAPw. Diabetes and
31		periodontal diseases: consensus report of the Joint EFP/AAP Workshop on
32 33		Periodontitis and Systemic Diseases. J Clin Periodontol 2013; 40 Suppl 14
34 35		S106-112. doi: 10.1111/jcpe.12077.
36	8.	Lu HX, Tao DY, Lo ECM, Li R, Wang X, Tai BJ, et al. The 4th National Oral
37 38	0.	
39 40		Health Survey in the Mainland of China: Background and Methodology. Chin
41 42		J Dent Res 2018; 21 (3): 161-165. doi: 10.3290/j.cjdr.a41079.
43	9.	Sun HY, Jiang H, Du MQ, Wang X, Feng XP, Hu Y, et al. The Prevalence and
44 45		Associated Factors of Periodontal Disease among 35 to 44-year-old Chinese
46 47		Adults in the 4th National Oral Health Survey. Chin J Dent Res 2018; 21 (4):
48		241-247. doi: 10.3290/j.cjdr.a41082.
49 50	10.	Tonetti MS, D'Aiuto F, Nibali L, Donald A, Storry C, Parkar M, et al. Treatment
51 52	10.	
53		of periodontitis and endothelial function. N Engl J Med 2007; 356 (9): 911-920.
54 55		doi: 10.1056/NEJMoa063186.
56 57	11.	Munoz Aguilera E, Suvan J, Buti J, Czesnikiewicz-Guzik M, Barbosa Ribeiro
58 59		A, Orlandi M, et al. Periodontitis is associated with hypertension: a systematic
60		review and meta-analysis. Cardiovasc Res 2020; 116 (1): 28-39. doi:

10.1093/cvr/cvz201.

- 12. Pietropaoli D, Del Pinto R, Ferri C, Wright JT, Jr., Giannoni M, Ortu E, et al. Poor Oral Health and Blood Pressure Control Among US Hypertensive Adults. Hypertension 2018; 72 (6): 1365-1373. doi: 10.1161/HYPERTENSIONAHA.118.11528.
- Boos CJ, Lip GY. Is hypertension an inflammatory process? Curr Pharm Des 2006; 12 (13): 1623-1635. doi: 10.2174/138161206776843313.
- 14. Li JJ. Inflammation in hypertension: primary evidence. Chin Med J (Engl) 2006;119 (14): 1215-1221.
- 15. Li JJ, Fang CH, Hui RT. Is hypertension an inflammatory disease? Med Hypotheses 2005; 64 (2): 236-240. doi: 10.1016/j.mehy.2004.06.017.
- Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol Hypertens 2006; 15 (2): 152-158. doi: 10.1097/01.mnh.0000203189.57513.76.
- Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Periodontol 2018 Jun;89 Suppl 1:S159-S172. doi: 10.1002/JPER.18-0006.
- Kumins NH, King AH, Ambani RN, Thomas JP, Bose S, Shishehbor MH, Li J, Wong VL, Harth KC, Cho JS, Kashyap VS. Paclitaxel-coated peripheral artery devices are not associated with increased mortality. J Vasc Surg 2020 Sep;72(3):968-976. doi: 10.1016/j.jvs.2019.10.100. Epub 2020 Jan 6. PMID: 31917036.
- Jiao J, Zhang L, Meng HX, Shi D, Lu RF, Xu L, Feng XH, Cao ZQ. Clinical performance of non-surgical periodontal therapy in a large Chinese population with generalized aggressive periodontitis. J Clin Periodontol 2018 Oct;45(10):1184-1197. doi: 10.1111/jcpe.12981. Epub 2018 Aug 21. PMID: 29974483.
- Martin-Cabezas R, Seelam N, Petit C, Agossa K, Gaertner S, Tenenbaum H, et al. Association between periodontitis and arterial hypertension: A systematic review and meta-analysis. Am Heart J 2016; 180 98-112. doi: 10.1016/j.ahj.2016.07.018.

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30

31 32

33 34

35 36

37 38

39 40

41 42

43 44

45 46

47 48

49 50

51 52

53 54

55 56

57 58

59 60

- 21. Muñoz Aguilera E, Suvan J, Buti J, Czesnikiewicz-Guzik M, Barbosa Ribeiro A, Orlandi M, Guzik TJ, Hingorani AD, Nart J, D'Aiuto F. Periodontitis is associated with hypertension: a systematic review and meta-analysis. Cardiovasc Res. 2020 Jan 1;116(1):28-39. doi: 10.1093/cvr/cvz201. PMID: 31549149. 22. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42 (6): 1206-1252. doi: 10.1161/01.HYP.0000107251.49515.c2. 23. Beck JD, Offenbacher S. Relationships among clinical measures of periodontal disease and their associations with systemic markers. Ann Periodontol 2002; 7 (1): 79-89. doi: 10.1902/annals.2002.7.1.79. 24. Demmer RT, Kocher T, Schwahn C, Volzke H, Jacobs DR, Jr., Desvarieux M. Refining exposure definitions for studies of periodontal disease and systemic disease associations. Community Dent Oral Epidemiol 2008; 36 (6): 493-502. doi: 10.1111/j.1600-0528.2008.00435.x. 25. Macedo Paizan ML, Vilela-Martin JF. Is there an association between periodontitis and hypertension? Curr Cardiol Rev 2014; 10 (4): 355-361. doi: 10.2174/1573403x10666140416094901. 26. Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, Nosalski R, Pelka P, Nowakowski D, et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur Heart J 2019; 40 (42): 3459-3470. doi: 10.1093/eurheartj/ehz646. 27. Pietropaoli D, Del Pinto R, Ferri C, Ortu E, Monaco A. Definition of hypertension-associated oral pathogens in NHANES. J Periodontol 2019; 90 (8): 866-876. doi: 10.1002/JPER.19-0046.
 - Taguchi A, Sanada M, Suei Y, Ohtsuka M, Lee K, Tanimoto K, et al. Tooth loss is associated with an increased risk of hypertension in postmenopausal women. Hypertension 2004; 43 (6): 1297-1300. doi:

10.1161/01.HYP.0000128335.45571.ce.

- D'Aiuto F, Parkar M, Nibali L, Suvan J, Lessem J, Tonetti MS. Periodontal infections cause changes in traditional and novel cardiovascular risk factors: results from a randomized controlled clinical trial. Am Heart J 2006; 151 (5): 977-984. doi: 10.1016/j.ahj.2005.06.018.
- 30. D'Aiuto F, Sabbah W, Netuveli G, Donos N, Hingorani AD, Deanfield J, et al. Association of the metabolic syndrome with severe periodontitis in a large U.S. population-based survey. J Clin Endocrinol Metab 2008; 93 (10): 3989-3994. doi: 10.1210/jc.2007-2522.
- Holmlund A, Holm G, Lind L. Severity of periodontal disease and number of remaining teeth are related to the prevalence of myocardial infarction and hypertension in a study based on 4,254 subjects. J Periodontol 2006; 77 (7): 1173-1178. doi: 10.1902/jop.2006.050233.
- Morita T, Yamazaki Y, Mita A, Takada K, Seto M, Nishinoue N, et al. A cohort study on the association between periodontal disease and the development of metabolic syndrome. J Periodontol 2010; 81 (4): 512-519. doi: 10.1902/jop.2010.090594.
- Rivas-Tumanyan S, Spiegelman D, Curhan GC, Forman JP, Joshipura KJ. Periodontal disease and incidence of hypertension in the health professionals follow-up study. Am J Hypertens 2012; 25 (7): 770-776. doi: 10.1038/ajh.2012.32.
- 34. Dye BA, Barker LK, Selwitz RH, Lewis BG, Wu T, Fryar CD, et al. Overview and quality assurance for the National Health and Nutrition Examination Survey (NHANES) oral health component, 1999-2002. Community Dent Oral Epidemiol 2007; 35 (2): 140-151. doi: 10.1111/j.1600-0528.2007.00310.x.
- Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, et al. Status of Hypertension in China: Results From the China Hypertension Survey, 2012-2015. Circulation 2018; 137 (22): 2344-2356. doi: 10.1161/CIRCULATIONAHA.117.032380.

	U	50			C
Crosse	NT		H	IT	*
Group	Mean	95% CI	Mean	95% CI	p^*
Male	3.0	2.9~3.2	4.5	4.2~4.8	< 0.001
Female	2.8	2.7~3.0	4.2	4.0~4.5	< 0.001
35-44 years	0.7	$0.7 \sim 0.7$	1.0	0.7~1.3	0.024
55-64 years	3.3	3.1~3.4	3.4	3.2~3.7	0.305
65-74 years	6.0	5.8~6.3	5.7	5.4~6.0	0.104
Current smoker	2.7	2.6~2.8	4.2	3.9~4.4	< 0.001
Non-smoker	3.3	3.1~3.5	4.3	3.9~4.7	< 0.001
Former smoker	3.5	3.2~3.9	5.3	4.7~6.0	< 0.001
Total	2.9	2.8~3.0	4.4	4.2~4.6	< 0.001

Table S1. Number of missing teeth by gender, age groups and smoking status

HT = Hypertension; NT = Normotension;

* significant difference by Student's t test.

Reteries only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies	
IA	.

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6-8
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	5
		of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-8
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	8-9
		(d) If applicable, describe analytical methods taking account of sampling	NA
		strategy	
		(e) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	9
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	9-10
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	10-
			13

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential	
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Association between Periodontitis and Hypertension: Cross-Sectional Survey from the Fourth National Oral Health Survey of China (2015-2016)

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-068724.R3
Article Type:	Original research
Date Submitted by the Author:	07-Mar-2023
Complete List of Authors:	Zhan, Yalin; Peking University Hospital of Stomatology, First Clinical Division Jiao, Jian; Peking University Hospital of Stomatology, Department of Periodontology Jing, Wu-di; Peking University Hospital of Stomatology Feng, Xiping; Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Department of Preventive Dentistry Tai, Baojun; Wuhan University, School & Hospital of Stomatology Hu, Deyu; Sichuan University, West China School of Stomatology Lin, Huan-cai; Sun Yat-Sen University, Guanghua School of Stomatology, Hospital of Stomatology Wang, Bo; Peking University Hospital of Stomatology Wang, Chunxiao; Chinese Center for Disease Control and Prevention Zheng, Shuguo; Peking University Hospital of Stomatology Liu, Xuenan; Peking University Hospital of Stomatology Wang, Wensheng; Peking University Hospital of Stomatology Wang, Weijian; Peking University Hospital of Stomatology Wang, Xing; Peking University Hospital of Stomatology Si, Yan; Peking University Hospital of Stomatology Meng, Huanxin; Peking University Hospital of Stomatology
Primary Subject Heading :	Dentistry and oral medicine
Secondary Subject Heading:	Infectious diseases, Cardiovascular medicine
Keywords:	Hypertension < CARDIOLOGY, ORAL MEDICINE, Epidemiology < TROPICAL MEDICINE, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Association between Periodontitis and Hypertension: Cross-Sectional Survey from the Fourth National Oral Health Survey of China (2015-2016) Running title: Association between periodontitis and hypertension

Ya-lin Zhan^{1*}, PhD, Jian Jiao^{1*}, DDS, Wu-di Jing¹, DDS., Xi-ping Feng², PhD, Baojun Tai³, PhD, De-yu Hu⁴, PhD, Huan-cai Lin⁵, PhD, Bo Wang⁶, EMBA, Chun-xiao Wang⁷, PhD, Shu-guo Zheng⁸, PhD, Xue-nan Liu⁸, PhD, Wen-sheng Rong⁸, PhD, Weijian Wang⁸, PhD, Xing Wang⁶, PhD, Yan Si⁸, PhD, Huan-xin Meng¹, PhD,^{,†}

¹ Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, P.R. China ² Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.

³ School & Hospital of Stomatology, Wuhan University, Wuhan, P.R. China.

⁴ West China School of Stomatology, Sichuan University, Chengdu, P.R. China.

⁵ Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University,

Guangzhou, P.R. China.

⁶ Chinese Stomatological Association, Beijing, P.R. China.

⁷ Chinese Center for Disease Control and Prevention, Beijing, P.R. China.

⁸ Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of

 BMJ Open

*The two authors contributed equally to this work.

+ corresponding author

Corresponding author: Huanxin Meng

Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology Zhongguancun Nandajie 22, Haidian District, 100081, Beijing, P.R.China

Email: kqhxmeng@126.com

Tel: +86-010-82195522; Fax: +86-010-82195522.

ABSTRACT

Objectives To evaluate the association between periodontitis severity and hypertension based on Chinese epidemiological data.

Design This cross-sectional survey enrolled adults from the Fourth National Oral Health Survey of China (2015-2016).

Setting The data were obtained from the Fourth National Oral Health Survey of China (2015-2016).

Participants The study included individuals aged 35-44 years (n = 4,409), 55-64 years (n = 4,568), and 65-74 years (n = 4,218).

Primary and secondary outcome measures Periodontal status, defined on the basis of the 2017 classification scheme, and periodontal parameters (e.g., bleeding on probing [BOP]) were compared between hypertensive and normotensive individuals. Smoothed scatterplots were constructed to demonstrate the associations of periodontal parameters and periodontal status with hypertension.

Results Severe periodontitis (stages III and IV) was present in 41.4% and 28.0% of hypertensive and normotensive individuals, respectively (p < 0.001). The prevalence of severe periodontitis was higher in hypertensive individuals than that in normotensive individuals among participants aged 35-44 years (18.0% vs. 10.1%, p < 0.001) and 55-64 years (40.2% vs. 36.7%, p = 0.035), but not in participants aged 65-74 years (46.4% vs. 45.1%, p = 0.429). Therefore, the difference in periodontal status between hypertensive and normotensive individuals decreased with age. There were higher prevalences of BOP, probing depth [PD] ≥ 4 mm, and PD ≥ 6 mm in hypertensive individuals than in normotensive individuals (52.1% vs. 49.2%, 19.6% vs. 14.7%, and 1.8% vs. 1.1%, respectively). Periodontitis severity and the proportion of teeth with PD ≥ 4 or ≥ 6 mm were positively associated with hypertension.

Conclusion Periodontitis is associated with hypertension in Chinese adults. Hypertension prevalence increased with periodontitis severity, particularly among young participants. Accordingly, it is necessary to improve the education, awareness of periodontal treatment, and preventive management among individuals at risk of hypertension, particularly in the younger population.

 Key Words: Hypertension, oral medicine, epidemiology, public health.

Strengths and limitations of this study

- The participant group was based on a large-scale national survey in China, and the sample size of the study was relatively large.
- Periodontitis was diagnosed in accordance with the classification proposed at the 2017 World Workshop.
- Hypertension was self-reported and not based on blood pressure measurements.

INTRODUCTION

Hypertension, which affects 45% of the global population, is the most common cardiovascular diseases (CVDs) worldwide.¹² It is defined as systolic or diastolic blood pressure (BP) of \geq 140 or \geq 90 mmHg, respectively. Hypertension is frequently poorly controlled and untreated.³ It is a complex disease with multiple causes and a major risk factor for CVDs.⁴ Oxidative stress, endothelial dysfunction, and inflammation are associated with the development of hypertension.⁵ The results of experimental and clinical studies suggest that inflammation has a major role in the development of hypertension.⁶ Chronic inflammation predisposes to the development of pro-hypertensive inflammation.

Periodontal disease, an immune-inflammatory reaction to plaque biofilms,⁷ has received substantial attention because of its association with CVDs. The Global Burden of Disease Study revealed that periodontitis was the sixth most prevalent disease

worldwide. Periodontitis affects 743 million people worldwide (11.2% of the global population); the prevalence is higher in China than in other countries. The Fourth National Oral Health Survey of China showed that 90.9% of individuals aged 35-44 years had periodontal disease.⁸ ⁹ The low-grade inflammation associated with periodontitis has harmful effects on endothelial function, which may result in hypertension.¹⁰ A recent study revealed that individuals with periodontitis have increased risks of hypertension and antihypertensive treatment failure.¹¹ ¹² Previous studies have suggested that dental treatment can improve blood pressure, although the findings have been inconclusive and further studies are needed.¹³⁻¹⁶

Periodontitis and hypertension are major health problems, and their association received considerable public health attention. Therefore, we evaluated the relationship between periodontitis and hypertension based on data from the Fourth National Oral Health Survey of China. We sought to determine whether individuals with periodontitis are more likely to have hypertension than are individuals who do not have periodontitis and whether periodontitis severity is associated with hypertension.

MATERIALS AND METHODS

Study design and sample

This cross-sectional study obtained data from adult participants of the Fourth National Oral Health Survey of China (2015-2016).⁸ The planned sample size was 4,230 each for the age groups 35-44, 55-64 and 65-74 years. We excluded data from edentulous participants and from those without complete information. Finally, 13,195 individuals

BMJ Open

were included (4,409, 4,568, and 4,218 individuals aged 35-44, 55-64, and 65-74 years, respectively).

Data collection

We collected data related to oral examination findings and questionnaire answers.

1. Periodontal examination

Periodontal examinations were performed using a community periodontal index probe. A full-mouth examination was performed, during which the probe was walked along the gingival crevices using a force of ≤ 20 g to assess bleeding on probing (BOP), the presence of calculus, probing depth (PD), and attachment loss (AL). For each parameter, each tooth was scored according to the condition of the most severely affected site. Training programs were conducted for examiner calibration before the survey. The reliability of the results was assessed using kappa values; kappa values for periodontal pocket depth were ≥ 0.6 . Additionally, 5% of the participants were randomly selected for assessment of inter-examiner reproducibility. The kappa values for all age-groups were 0.76-0.80.

Patient and public involvement

The study participants and the public were not involved in the design, conduct, reporting, or dissemination plans of our research.

Study parameters

Supragingival and subgingival calculus were identified by visual examination and probing, respectively (0 = absent, 1 = present, 9 = tooth excluded, and X = tooth not present). PD was recorded as 0 (1–3 mm), 1 (4–5 mm), 2 (\geq 6 mm), 9 (tooth excluded),

or X (tooth not present). BOP was recorded as 0 (absent), 1 (present), 9 (tooth excluded), or X (tooth not present). AL was measured as the distance from the cementoenamel junction to the bottom of the periodontal pocket; it was recorded as 0 (0–3 mm), 1 (4–5 mm), 2 (6–8 mm), 3 (9–11 mm), 4 (\geq 12 mm), 9 (tooth excluded), or X (tooth not present).

The classification scheme proposed at the 2017 World Workshop on the Classification of Periodontal and Per-Implant Diseases and Conditions was used to classify the periodontal status as periodontally healthy (< 10% BOP-positive sites and PD \leq 3 mm) or gingivitis (\geq 10% BOP-positive sites and PD \leq 3 mm). Periodontitis was staged using the algorithm developed by Tonetti *et al.*¹⁷ For each tooth, periodontitis of stages I-III were defined as AL of 1–2 mm, 3–4 mm, and \geq 5 mm, respectively. We also considered the number of teeth lost when classifying periodontitis: stages I and II, no tooth loss; stage III, \leq 4 teeth lost; and stage IV, \geq 5 teeth lost. The cause of tooth loss was not considered. Finally, we evaluated the complexity of patient management. Stage II patients were reclassified as stage IV if there were < 10 opposing pairs of teeth). The stages of periodontitis reflect the severity and complexity of managing the individual patient.

2. Interview data from the questionnaire

Questionaries were administered during in-person interviews to collect data regarding demographics, socioeconomic status, habits, dental history, and health attitudes. The following information was collected for analysis: age (years), annual family income (in

BMJ Open

increments of 10,000 yuan), sex (male or female), duration of education (years), selfreported hypertension (yes or no), smoking status (current smoker, former smoker, or non-smoker), and region (urban or rural).

Statistical analyses

Statistical analyses were performed using SPSS (version 19; IBM Corp., Armonk, NY, USA) or R (version 3.6.1; R Foundation for Statistical Computing, Vienna, Austria). The primary outcome was periodontal status (health, gingivitis, and stages I-IV periodontitis). The secondary outcomes were periodontal parameters (BOP-positive teeth, teeth with PD \geq 4 and \geq 6 mm, and teeth with AL \geq 4, \geq 6, and \geq 9 mm, presented as the percentages and numbers of teeth affected) and missing teeth. First, descriptive analysis was performed. Quantitative data are reported as means and standard deviations; categorical data are reported as numbers and percentages. Periodontal parameters were compared between hypertensive and normotensive individuals; subgroup analyses were conducted according to age group and smoking status. Periodontal status and parameters were analyzed using the Chi-square test. Additionally, smoothed scatterplots based on generalized additive models were constructed, with adjustment for confounders (gender, smoking status, region, duration of education, and annual family income), to evaluate the relationships of hypertension prevalence with periodontal status or parameters. The level of statistical significance was set at p < 0.05.

RESULTS

The participants were randomly selected from 31 provinces, autonomous regions, and municipalities in mainland China. In total, data from 13,195 individuals were included in the analysis; invalid data from five participants and data from 264 edentulous patients were excluded. The mean participant age was 56.43 ± 12.40 years. The sample consisted of 6,575 men (49.8%) and 6,620 women (50.2%). There were 3,470 non-smokers (26.3%), 8,405 current smokers (63.7%), and 1,318 former smokers (10.0%). Hypertension was present and absent in 3,154 (23.9%) and 10,041 (76.1%) participants, respectively.

Differences in periodontal status between hypertensive and normotensive participants decreased with age

Table 1 presents the distributions of periodontal status according to age, gender, and smoking status in participants with and without hypertension.

Significantly greater proportions of hypertensive participants had stages I-IV periodontitis (70.3 % vs. 61.5%, p < 0.001) and severe periodontitis (stages III-IV, 41.4 % vs. 28.0%, p < 0.001), compared with normotensive participants. Stratified analysis according to gender showed that the prevalence of periodontitis (stages I-IV) was significantly higher in hypertensive participants than in normotensive participants in females (66.5 % vs. 55.9 %, p < 0.001), but not in males (74.0 % vs. 67.1%, p = 0.057). Severe periodontitis (stages III and IV) was more common in hypertensive participants than in normotensive participants in females (36.6 % vs. 23.4 %, p < 0.001). Stratified analysis according to age showed

Page 11 of 42

BMJ Open

that the prevalence of periodontitis (stages I-IV) was significantly higher in hypertensive participants than in normotensive participants among individuals aged 35-44 years (59.2% vs. 52.3%, p = 0.030), 55-64 years (72.7% vs. 69.1%, p = 0.023), and 65-74 years (70.3% vs. 66.2%, p = 0.009). Severe periodontitis (stages III and IV) was more common in hypertensive participants than in normotensive participants among individuals aged 35-44 years (18.0% vs. 10.1%, p < 0.001) and 55-64 years (40.2% vs. 36.7%, p = 0.035), but not among individuals aged 65-74 years (46.4% vs. 45.1%, p = 0.429). Therefore, differences in periodontal status between hypertensive and normotensive participants decreased with age (Table 1). Stratified analysis according to smoking status showed that the prevalence of periodontitis (stages I-IV) was significantly higher in hypertensive participants than in normotensive participants among current smokers (76.2 % vs. 68.1%, p = 0.016) and non-smokers (67.3 % vs. 57.4%, p < 0.001), but not in former smokers (73.8 % vs. 70.6%, p = 0.972). Severe periodontitis (stages III and IV) was more common in hypertensive participants than in normotensive participants in all three sub-groups: current smokers (48.4% vs. 34.7%, p < 0.001), non-smokers (36.9% vs. 23.7%, p < 0.001), and former smokers (50.2 % vs. 38.0%, p < 0.001).

Table 1. Comparison of distribution of periodontal status according to the 2017 classification by age/gender group between hypertensive and normotensive participants.

	Periodontal		HT		NT		
	status	Ν	Percentage	Ν	Percentage	p1*	p2#
	status	1	(95% CI)	IN	(95% CI)		
Male	Health	598	11.1~12.9	159	8.7~11.7		
	Gingivitis	1051	19.9~22.1	246	14.0~17.6		
	Stage I	844	15.8~17.9	171	9.5~12.6	0.057	<
	Stage II	883	16.6~18.7	266	15.2~18.9	0.037	0.001
	Stage III	906	17.0~19.2	357	20.8~25.0		
	Stage IV	730	13.6~15.6	364	21.2~25.4		
Female	Health	755	14.1~16.0	179	9.8~12.9		
	Gingivitis	1461	27.8~30.3	355	20.3~24.4		
	Stage I	867	16.2~18.3	199	10.9~14.2	< 0.001	< 0.00
	Stage II	770	14.3~16.3	277	15.6~19.3	< 0.001	< 0.00
	Stage III	588	10.8~12.6	260	14.6~18.2		
	Stage IV 🗸	586	10.8~12.6	323	18.4~22.3		
35-44	Health	658	14.8~17.1	40	10.7~18.9		
years	Gingivitis	1312	30.3~33.2	73	21.4~31.8		
	Stage I	1133	26.1~28.8	70	20.4~30.6	0.020	< 0.00
	Stage II	612	13.8~15.9	44	11.9~20.5	0.030	< 0.00
	Stage III	360	7.9~9.6	40	10.7~18.9		
	Stage IV	57	1.1~1.8	10	1.9~6.3		
55-64	Health	347	9.6~11.7	116	7.5~10.6		
years	Gingivitis	661	18.9~21.6	239	16.4~20.6		
	Stage I	403	11.2~13.5	174	11.7~15.4	0.022	0.025
	Stage II	658	18.8~21.5	247	17.0~21.3	0.023	0.035
	Stage III	659	18.8~21.5	273	18.9~23.3		
	Stage IV	544	15.4~17.9	247	17.0~21.3		
65-74	Health	348	12.0~14.5	182	10.0~13.1		
years	Gingivitis	539	18.9~22.0	289	16.4~20.2		
	Stage I	175	5.7~7.6	126	6.7~9.4	0.000	0 420
	Stage II	383	13.2~15.9	252	14.2~17.8	0.009	0.429
	Stage III	475	16.6~19.5	304	17.3~21.2		
	Stage IV	715	25.5~28.8	430	25.0~29.4		
Total	Health	1353	12.8~14.2	338	9.7~11.8		
	Gingivitis	2512	24.2~25.9	601	17.7~20.4		
	Stage I	1711	16.3~17.8	370	10.6~12.9	< 0.001	
	Stage II	1653	15.8~17.2	543	15.9~18.6	< 0.001	< 0.00
	Stage III	1494	14.2~15.6	617	18.2~21.0		
	Stage IV	1316	12.5~13.8	687	20.4~23.2		

HT, hypertension; NT, normotension.

* Significance differences in the proportions of periodontitis (stages I-IV) and nonperiodontitis (health and gingivitis) between hypertensive and normotensive

BMJ Open

participants according to the Chi-square test;

[#] Significance differences in the proportions of severe periodontitis (stages III and IV) and non-severe-periodontitis (health, gingivitis, stages I and II) between hypertensive and normotensive participants according to the Chi-square test.

Due to the limitation of the publishment format, the percentages of HT group and NT group and the distribution of periodontal status by smoking group are omitted in Table 1. The full table is uploaded as a supplementary material (Table S1).

Periodontal parameters were significantly worse in hypertensive participants than in normotensive participants

Tables 2, S2, 3, and S3 present comparisons of periodontal parameters between hypertensive and normotensive participants. Compared with normotensive participants, hypertensive participants had significantly increased proportions of teeth with BOP (52.1% vs. 49.2%), PD \geq 4 mm (19.6% vs. 14.7%), PD \geq 6 mm (1.8% vs. 1.1%), AL \geq 4 mm (23.6% vs. 17.2%), and AL \geq 6 mm (6.6% vs. 4.4%). The differences in the percentages of teeth with each periodontal parameter between hypertensive and normotensive participants were consistent in males and females, and among current smokers, former smokers, and non-smokers (except for BOP, which showed no significant difference in males, current smokers and former smokers; and PD \geq 6 mm, which showed no significant difference in former smokers). Differences in periodontal parameters between hypertensive and normotensive participants decreased with age. The differences in the mean prevalence of PD \geq 4 mm were consistent in all age

groups. Compared with normotensive participants, hypertensive participants had significantly more teeth with PD \geq 4 mm (4.5 vs. 3.5), PD \geq 6 mm (0.4 vs. 0.2), AL \geq 4 mm (5.0 vs. 3.8), and AL \geq 6 mm (1.2 vs. 0.8). The mean number of BOP-positive teeth was not significantly different between hypertensive and normotensive participants (12.4 vs. 12.3). Differences in the mean number of teeth with each periodontal parameter between hypertensive and normotensive participants were consistent in males and females, and among current smokers, former smokers, and non-smokers (except for BOP, which had significant differences in females, and PD \geq 6 mm, which had no significant difference in former smokers). The difference in the mean number of teeth between hypertensive and normotensive participants decreased with age. Furthermore, differences in the number of teeth with PD \geq 4 mm and PD \geq 6 mm sites were consistent in all age groups.

Table 2. Comparison of the percentage of teeth with each periodontal parameter between hypertensive and normotensive participants according to gender, age group.

Page 15 of 42

	Periodontal		NT]	HT	
Group	parameter	Mean	95% CI	Mean	95% CI	p*
Male	BOP+	50.9	49.9~51.9	52.2	50.4~54.0	0.232
	$PD \ge 4 mm$	17.9	17.2~18.6	22.6	21.3~24.0	< 0.00
	PD ≥ 6 mm	1.5	1.3~1.6	2.3	1.9~2.7	< 0.00
	$AL \ge 4 \text{ mm}$	20.9	20.2~21.7	27.5	26.0~28.9	< 0.00
	$AL \ge 6 mm$	5.7	5.3~6.1	8.3	7.5~9.1	< 0.00
Female	BOP+	47.4	46.5~48.4	52.1	50.4~53.8	< 0.00
	$PD \ge 4 mm$	11.5	11.0~12.0	16.5	15.4~17.6	< 0.00
	PD ≥ 6 mm	0.7	0.6~0.8	1.3	1.0~1.6	< 0.00
	$AL \ge 4 \text{ mm}$	13.5	12.9~14.0	19.8	18.6~20.9	< 0.00
	AL ≥ 6 mm	3.2	2.9~3.4	4.8	4.2~5.4	< 0.00
35-44	BOP+	46.5	45.4~47.5	50.5	46.1~54.9	0.096
years	PD ≥ 4 mm	10.5	9.9~11.1	15.8	12.8~18.8	0.001
	PD ≥ 6 mm 🧹	0.5	0.4~0.6	1.1	0.6~1.6	0.031
	$AL \ge 4 \text{ mm}$	6	5.6~6.4	10.1	7.8~12.4	0.001
	$AL \ge 6 mm$	0.8	0.7~0.9	1.6	0.8~2.4	0.053
55-64	BOP+	52.5	51.3~53.7	54.0	52.1~56.0	0.188
years	PD ≥ 4 mm	17.9	17.1~18.8	20.3	18.9~21.7	0.004
	PD ≥ 6 mm	1.4	1.2~1.6	1.9	1.6~2.2	0.024
	$AL \ge 4 \text{ mm}$	22.1	21.2~22.9	21.5	20.1~22.9	0.543
	$AL \ge 6 mm$	5.3	4.9~5.8	5.5	4.8~6.2	0.722
65-74	BOP+	49.2	47.9~50.6	50.8	49.1~52.6	0.144
years	PD ≥ 4 mm	17.4	16.5~18.3	19.6	18.4~20.8	0.004
	PD ≥ 6 mm	1.5	1.3~1.8	1.8	1.5~2.2	0.188
	$AL \ge 4 \text{ mm}$	28.7	27.6~29.8	27.6	26.3~29.0	0.239
	$AL \ge 6 mm$	8.9	8.3~9.6	8.3	7.5~9.1	0.220
Total	BOP+	49.2	48.5~49.9	52.1	50.9~53.4	< 0.00
	PD ≥ 4 mm	14.7	14.3~15.2	19.6	18.7~20.4	< 0.00
	PD ≥ 6 mm	1.1	1.0~1.2	1.8	1.6~2.0	< 0.00
	$AL \ge 4 \text{ mm}$	17.2	16.7~17.7	23.6	22.7~24.5	< 0.00
	$AL \ge 6 mm$	4.4	4.2~4.7	6.6	6.0~7.1	< 0.00

AL, attachment loss; BOP, bleeding on probing; HT, hypertension; NT, normotension;

PD, probing depth

* Significant difference according to Student's t-test.

Due to the limitation of the publishment format, the comparison of the percentage of teeth with each periodontal parameter between hypertensive and normotensive

participants according to smoking status are omitted in Table 2. The full table is uploaded as a supplementary material (Table S2).

Table 3. Comparison of the number of teeth with each periodontal parameter between hypertensive and normotensive participants according to gender, age group.

Periodontal			NT			
Group	parameter	Mean	95% CI	Mean	95% CI	p*
Male	BOP+	12.7	12.5~13.0	12.3	11.8~12.8	0.111
	PD ≥ 4 mm	4.2	4.0~4.4	5.1	4.8~5.4	< 0.001
	PD ≥ 6 mm	0.3	0.3~0.3	0.5	0.4~0.6	< 0.001
	AL ≥ 4 mm	4.6	4.5~4.8	5.7	5.4~6.0	< 0.001
	AL ≥ 6 mm	1.1	1.0~1.1	1.5	1.3~1.6	< 0.001
Female	BOP+	11.9	11.7~12.1	12.6	12.1~13.0	0.013
	$PD \ge 4 mm$	2.7	2.6~2.9	3.8	3.6~4.1	< 0.001
	PD ≥ 6 mm	0.1	0.1~0.2	0.3	0.2~0.3	< 0.001
	$AL \ge 4 \text{ mm}$	2.9	2.8~3.1	4.3	4.0~4.5	< 0.001
	$AL \ge 6 mm$	0.6	0.5~0.6	0.9	0.8~1.0	< 0.001
35-44	BOP+	12.7	12.4~13.0	13.6	12.4~14.8	0.143
years	$PD \ge 4 mm$	2.8	2.7~3.0	4.2	3.4~5.0	0.001
	PD ≥ 6 mm	0.1	0.1~0.2	0.3	0.1~0.4	0.036
	$AL \ge 4 \text{ mm}$	1.6	1.5~1.7	2.6	2.0~3.2	0.001
	$AL \ge 6 mm$	0.2	0.2~0.2	0.4	0.2~0.6	0.049
55-64	BOP+	13.0	12.7~13.3	13.4	12.9~13.9	0.241
years	PD ≥ 4 mm	4.2	4.0~4.4	4.8	4.4~5.1	0.005
	PD ≥ 6 mm	0.3	0.2~0.3	0.4	0.3~0.5	0.003
	$AL \ge 4 \text{ mm}$	5.0	4.8~5.2	4.8	4.5~5.1	0.222
	$AL \ge 6 mm$	1.1	1.0~1.2	1.1	1.0~1.2	0.914
65-74	BOP+	10.9	10.6~11.3	11.5	11.0~11.9	0.051
years	PD ≥ 4 mm	3.5	3.3~3.7	4.3	4.0~4.5	< 0.001
	PD ≥ 6 mm	0.3	0.2~0.3	0.4	0.3~0.4	0.042
	$AL \ge 4 \text{ mm}$	5.7	5.4~5.9	5.6	5.3~5.9	0.752
	$AL \ge 6 \text{ mm}$	1.5	1.4~1.6	1.4	1.3~1.5	0.508
Total	BOP+	12.3	12.2~12.5	12.4	12.1~14.8	0.574
	$PD \ge 4 mm$	3.5	3.4~3.6	4.5	4.2~4.7	< 0.001
	PD ≥ 6 mm	0.2	0.2~0.2	0.4	0.3~0.4	< 0.001
	$AL \ge 4 \text{ mm}$	3.8	3.7~3.9	5.0	4.8~5.2	< 0.001
	$AL \ge 6 mm$	0.8	0.8~0.9	1.2	1.1~1.3	< 0.001

AL, attachment loss; BOP, bleeding on probing; HT, hypertension; NT, normotension;

PD, probing depth

* Significant difference according to Student's t-test.

Due to the limitation of the publishment format, the comparison of the number of teeth with each periodontal parameter between hypertensive and normotensive participants according to smoking status are omitted in Table 3. The full table is uploaded as a supplementary material (Table S3).

Hypertension prevalence increased with periodontitis severity

Multivariate regression analysis was performed to evaluate the relationship between hypertension and age stratified according to periodontal status, after adjustments for sex, smoking status, region, duration of education, and annual family income (Table 4). Compared with participants who did not have periodontitis, participants with stages III and IV periodontitis had a significantly increased risk of hypertension (odds ratio [OR] = 1.70, 95% confidence interval [CI] = 1.45-1.99, p < 0.001). However, the difference between participants with stages I and II periodontitis and participants without periodontitis was not statistically significant (OR = 1.03, 95% CI = 0.88-1.20, p = 0.717). Therefore, hypertension prevalence increased with periodontitis severity. Notably, the OR for participants with stages III and IV periodontitis decreased with age; it was not statistically significant in participants aged 65-74 years (Table 4).

Table 4. Relationships between blood pressure (hypertension vs. normotension) and periodontal status (compared with non-periodontitis) according to the 2017

classification, analyzed by logistic regression after adjusting for gender, smoking status,

•	C 1	1 1	C '1 '
region vears	of equication	and annual	family income
region, years	or equeution,	una unnuur	fulling moonie

Age group	Periodontal status*	OR	95% CI	р
35-44 years	Periodontitis (stages III & IV) [#]	1.62	1.00~2.61	0.050
55-44 years	Periodontitis (stages I & II)#	0.97	0.65~1.43	0.863
55-64 years	Periodontitis (stages III & IV) [#]	1.40	1.07~1.84	0.015
	Periodontitis (stages I & II)#	1.30	1.00~1.69	0.051
65-74 years	Periodontitis (stages III & IV)#	1.21	0.96~1.42	0.113
05-74 years	Periodontitis (stages I & II)#	1.12	0.96~1.42	0.336
Total	Periodontitis (stages III & IV) [#]	1.70	1.45~1.99	< 0.001
	Periodontitis (stages I & II) [#]	1.03	0.88~1.20	0.717

* According to the 2017 World Workshop on the Classification of Periodontal and Per-

Implant Diseases and Conditions.¹⁷

Relationships of hypertension with periodontal parameters

Tables 5 and 6 present the multivariate regression analyses of the relationships of hypertension with periodontal parameters, after adjustments for gender, smoking status, region, duration of education, and annual family income. Hypertension prevalence increased with increases in the proportions of teeth with BOP (OR = 1.20, 95% CI = 1.05-1.38, p = 0.006), PD \geq 4 mm (OR = 1.73, 95% CI = 1.43-2.10, p < 0.001), and PD \geq 6 mm (OR = 2.44, 95% CI = 1.19-5.03, p = 0.015), but it decreased with increases in the proportions of teeth with AL \geq 4 mm (OR = 0.87, 95% CI = 0.73-1.05, p = 0.155) and AL \geq 6 mm (OR = 0.74, 95% CI = 0.53-1.04, p = 0.083). There were significant positive associations of hypertension with the number of teeth with BOP (OR = 1.01, 95% CI = 1.00-1.01, p = 0.001), PD \geq 4 mm (OR = 1.03, 95% CI = 1.02-1.04, p < 0.001), and PD \geq 6 mm (OR = 1.07, 95% CI = 1.03-1.11, p < 0.001).

BMJ Open

There were statistically insignificant negative associations of the presence of hypertension with the proportions of teeth with $AL \ge 4 \text{ mm}$ and $AL \ge 6 \text{ mm}$ (Table 6).

Table 5. Relationships between blood pressure (hypertension vs. normotension) and percentage of teeth affected by different thresholds of periodontal parameters, analyzed by logistic regression after adjusting for age, gender, smoking status, region, years of education, and annual family income.

	Periodontal parameter	OR*	95% CI	р	
	BOP+	1.20	1.05~1.38	0.006	
	$PD \ge 4 mm$	1.73	1.43~2.10	< 0.001	
	$PD \ge 6 mm$	2.44	1.19~5.03	0.015	
	$AL \ge 4 mm$	0.87	0.73~1.05	0.155	
	$AL \ge 6 mm$	0.74	0.53~1.04	0.083	
_					_

AL, attachment loss; BOP, bleeding on probing; PD, probing depth

* The odds ratio as the periodontal parameter increased by 1% (for example, as the BOP+% increases by 1%, the odds of hypertension increase by 20%; in other words, 1.20 minus 1). ^{18 19}

Table 6. Relationships between blood pressure (hypertension vs. normotension) and the number of teeth affected by different thresholds of periodontal parameters, analyzed by logistic regression after adjusting for age, gender, smoking status, region, years of education, and annual family income.

Periodontal parameter	OR*	95% CI	р
BOP+	1.01	1.00~1.01	0.001
$PD \ge 4 mm$	1.03	1.02~1.04	< 0.001
$PD \ge 6 mm$	1.07	1.03~1.11	< 0.001
$AL \ge 4 mm$	1.00	0.99~1.01	0.507
$AL \ge 6 mm$	0.99	0.97~1.01	0.217

AL, attachment loss; BOP, bleeding on probing; PD, probing depth

* The odds ratio as the periodontal parameter increased by 1% (for example, as BOP+% increases by one tooth, the odds of hypertension increase by 1%; in other words, 1.01 minus 1).^{18 19}

Significantly more teeth were missing in hypertensive participants than in normotensive participants

Table S4 presents a comparison of the number of missing teeth between participants with and without hypertension. Significantly more teeth were missing in hypertensive participants than in normotensive participants (4.4 vs. 2.9 teeth). The difference in the number of missing teeth between hypertensive and normotensive participants decreased with age. The differences in missing teeth between hypertensive and normotensive and normotensive participants were generally consistent in males and females, and among current smokers, former smokers, and non-smokers.

DISCUSSION

Based on data from the Fourth National Oral Health Survey of China, periodontitis is significantly and strongly associated with hypertension among Chinese adults, independent of the effects of age, gender, and smoking. The association between periodontitis and hypertension reported here is in agreement with recent reviews.^{20 21} This association between periodontitis and hypertension has considerable importance since the high prevalence of both in the population and the serious impact on oral health

BMJ Open

and general health.²²

In recent systemic reviews analyzing the association between periodontitis and hypertension, the included studies had been conducted in different countries across Asia, Europe, America, and Africa, but large-scale data from China were lacking.^{20 21} In this study, we used data from a large-scale national survey in which participants were representative of the Chinese population. In addition, the lack of consistent definitions of case and the severity of periodontitis in the retrieved studies did not allow for a relevant analysis of the extent and severity of periodontitis with hypertension. In the present study, periodontitis was diagnosed in accordance with the classification proposed at the 2017 World Workshop. The association of hypertension with periodontitis was assessed according to age and smoking status to minimize errors and the effects of confounding factors. Periodontitis was associated with a higher prevalence of hypertension among Chinese adults, independent of known confounders. In most studies, periodontal status was evaluated clinically via PD or clinical attachment level measurements.^{20 21} Nevertheless, several definitions of periodontal disease have been used across studies, and only a few have distinguished severe forms of periodontitis. In the present study, periodontitis severity was defined using the new 2017 classification mentioned above. Participants with severe periodontal disease (stages III and IV periodontitis) had an increased risk of hypertension compared with participants who had mild or no periodontal disease.

Hypertension prevalence increased with periodontitis severity, particularly among young participants (35-44 years). Therefore, participants with risk factors, particularly

young adults, should engage in healthy lifestyle habits to improve their oral health. Accordingly, there is a need to improve the education and awareness of dental treatment and preventive management among individuals at risk for hypertension, particularly in the younger population. Periodontitis and hypertension are chronic diseases; therefore, substantial exposure time may be necessary for their development. The exposure time to risk factors may be considerably shorter in younger individuals than in older individuals. The influence of the longer exposure time to the common risk factors for periodontitis and hypertension in older individuals may mask the effects of periodontitis on the development of hypertension. When the confounding effects of the risk factors were removed, a link between periodontitis and hypertension was identified. Therefore, severe periodontitis may have a greater role in the development of hypertension among younger individuals than among older individuals. The association of periodontitis with hypertension was also present in never smokers and former smokers, who had less exposure to common risk factors. The greater susceptibility to hypertension among young individuals with severe periodontitis may be attributed to periodontal inflammation. Periodontitis is a chronic infection that leads to inflammation. Previous evidence suggested the connection between periodontal disease and systemic inflammation, which in turn was associated with an increased risk of hypertension.¹³⁻¹⁶ The inflammatory response with periodontal disease has been proposed as one of the factors that induces vascular inflammation leading to endothelial dysfunction and exerts an adverse effect on the regulation of hypertension.²³ After periodontal therapy, endothelial dysfunction is reversible in hypertension patients.^{23 24} Periodontal treatment

Page 23 of 42

BMJ Open

can improve the endothelial function effectively.²⁵ In addition, the periodontal pathogens may directly invade the arterial wall and lead to vascular inflammation.²⁶ There is growing evidence indicating that periodontitis induces excessive production of reactive oxygen species (ROS) in periodontal tissue.²⁷⁻²⁹ The production of ROS increases in response to periodontal inflammation; then ROS enter the systemic circulation.³⁰ ROS is one of the regulator for vascular inflammation and vasoconstriction.¹³ ²³ It has been reported that high BP was related to the unbalance between ROS production and antioxidant.²³ ³¹ ³²

This study evaluated the association between periodontal status and hypertension risk among young and older adults. Hypertension prevalence increased with periodontitis severity, which was most prominent in individuals aged 35-44 years. Adults aged < 65 years with hypertension had significantly greater risks of stages III and IV periodontitis, compared with individuals who did not have hypertension. Therefore, healthcare providers should carefully monitor oral health status in their patients to prevent hypertension, particularly among adults; they should conduct regular oral examinations and engage in periodontal disease management.

This study showed the percentage of teeth of each periodontal status that reflected the extent of periodontal pathology in the oral cavity. The association between periodontitis and hypertension was also present in participants who had a greater proportion of teeth with BOP or deep periodontal pockets. The findings suggest that severe extensive periodontal inflammation, as evidenced by the depth of the inflamed periodontal pocket and the number of bleeding sites, is associated with hypertension.

In particular, the presence of BOP indicates acute inflammation, which may lead to systemic effects and subsequent hypertension. The association of inflammation (i.e., PD) with hypertension suggests that persistent, long-term, extensive inflammation may also underlie this relationship. Compared with AL, PD seems to be more closely related to hypertension. For example, significant differences in the percentages/numbers of teeth with PD \geq 4 mm and \geq 6 mm, but not AL \geq 4 mm and \geq 6 mm, in those 55-64 years old were seen between hypertensive and normotensive individuals (Tables 2 and 3). This is because AL is more related to periodontal attachment damage, while PD is more closely related to the existing periodontal inflammation. This also indicates that the correlation between periodontitis and hypertension may be related to the increase in systemic inflammation. Our study adds to the existing literature concerning oral health parameters associated with systemic outcomes.^{33 34} BOP and PD are the most appropriate clinical measures when the outcome of interest is an acute disease, whereas AL is more strongly correlated with chronic systemic conditions.²¹ Our findings of an association between hypertension and the severity of periodontal inflammation (BOP and PD) are consistent with the results of previous studies.¹²¹⁸ Although the causality of the observed association remains unclear, several hypotheses have been proposed, including endothelial dysfunction, oxidative stress, worsening of systemic inflammation in response to bacteraemia, and dissemination of inflammatory mediators from periodontal pockets, particularly BOP.³⁵ This association is further supported by the results of a randomized clinical trial that showed short-term benefits of periodontal therapy on hypertension.³⁶ Additionally, a recent study identified oral pathogens

BMJ Open

associated with high or uncontrolled BP, which supports our findings.³⁷

Our finding of an association between the number of missing teeth and hypertension is consistent with the results reported by Taguchi et al.³⁸ Missing teeth are indicative of poor oral health; they presumably were lost because of caries and periodontal disease. Thus, the absence of several teeth suggests the presence of severe periodontal disease, caries, or other oral health problems; these may have contributed to the increased risk of hypertension. This association was strongest in younger adults. There were no residual confounding effects of age that may have affected our study results. Because of the high prevalence of hypertension in Chinese adults, further studies are needed to clarify the association between periodontitis and hypertension. Moreover, attention is needed concerning the prevention and treatment of periodontitis in the general population.

There is minimal knowledge concerning the natural history of the association between periodontal disease and hypertension.³⁹⁻⁴³ A significant linear trend was observed between the severity of periodontal disease and hypertension in a crosssectional study of 3,352 patients with periodontal disease and 902 controls.⁴¹ A recent prospective cohort study of Japanese individuals demonstrated an increased incidence of hypertension among participants with periodontal pockets \geq 4 mm at baseline.⁴² Our findings are consistent with the results in a similar study of 6,617 men and 7,377 women who underwent dental examinations as part of the NHANES III in the USA.⁴⁴ In the present study, after multivariate adjustment, gingival bleeding (BOP) was associated with an increased risk of hypertension, whereas periodontitis severity

(defined using the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions) and PD were positively associated with hypertension. Participants with severe periodontal disease (stages III and IV periodontitis) had a higher risk of hypertension than participants who had mild or no periodontal disease. Furthermore, there was a threshold relationship between severe periodontal disease and hypertension.

To assess the association between the two diseases accurately, several potential confounders were adjusted for, and the associations were evaluated in multiple ways, including not only periodontal severity but also several clinical parameters. The assessment of the extent of the pathological condition in periodontal disease is considered important; however, the most severe pathological condition in the oral cavity has been assessed in many studies. In this study, the extent of the pathological condition of periodontal disease in the oral cavity was assessed using the percentage of teeth of each periodontal status. In addition, we evaluated several clinical measures of periodontal disease that allowed analysis of the relationships between various aspects of periodontal disease and hypertension. We found consistent associations between PD and hypertension. PD may be indicative of poor oral health and periodontal inflammation. When the periodontal tissues are inflamed, the PD increases, allowing more bacteria to accumulate and exacerbating the inflammation.⁴⁵ The total surface area of the pocket epithelium in contact with subgingival bacteria and their products in patients with generalised moderate periodontitis is estimated to be approximately the size of an adult hand palm, with even larger exposure areas in cases with more advanced

BMJ Open

periodontal destruction.⁴⁶ Therefore, the PD can be used as an indicator of the severity of periodontitis. It was positively associated with hypertension, suggesting a link between inflammation and hypertension.

The main limitation of our study was that hypertension was self-reported and not based on blood pressure measurements, which is inherent to any epidemiological cohort study. However, field measurements of blood pressure are regarded as validated tools, have been used in previous studies,^{33 35} and are considered useful for the analysis of large samples. Furthermore, although recall and reporting bias could not be excluded, the results largely reflect real-world clinical practice. First, the self-reported diagnosis was based on a face-to-face interview to ensure the validity and accuracy of the information. Second, the reliability of the study results is supported by data from the China Hypertension Survey (2012-2015),⁴⁷ which showed an overall hypertension prevalence of 23.2% in the Chinese adult population; this prevalence is similar to the prevalence observed in our study (23.9%).

In summary, our epidemiological analysis revealed an association between periodontitis and hypertension. We collected high-quality, large-scale clinical data related to periodontal disease and hypertension. We also collected detailed information regarding potential confounders, including variables that reflect health behaviour (e.g., flossing). As this study was a cross-sectional study, we cannot draw a causal relationship between periodontitis and hypertension. Future studies should be conducted to improve the understanding of the underlying mechanisms and interactions between periodontitis and hypertension, which will further strengthen collaborations between the dental and medical communities. Preventive measures for periodontal disease in oral health promotion programs should be emphasised to improve systemic health outcomes.

Contributorship statement

YZ contributed largely to writing the manuscript and to the data analysis and collation. JJ participated in the data analysis and collation. WJ helped write the manuscript. XF, BT, DH, HL, BW, CW, SZ, XL, WR, WW, XW, and YS conceived the study design and drafted the protocol. HM conceived the study design, drafted the protocol, and revised the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no conflict of interests.

Funding

This study was supported by the Public Science and Technology Research Funds Project (2015) - the Fourth National Oral Health Survey (201502002) and Peking University School and Hospital of Stomatology (PKUSS20180205).

Data sharing statement

This study is based on the data of the Fourth National Oral Health Survey of China (2015-2016), which was provided by the Chinese Stomatological Association.

Ethics approval

The study protocol was approved by the Ethics Committee of the Chinese Stomatological Association (approval no.: 2014-003). Written informed consent was obtained from all participants. This study was performed in accordance with the 2013 revision of the Declaration of Helsinki.

Reference

- Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36 (10): 1953-2041. doi: 10.1097/HJH.000000000001940.
- Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC Practice Guidelines for the Management of Arterial Hypertension. Blood Press 2014; 23 (1): 3-16. doi: 10.3109/08037051.2014.868629.
- Joffres M, Falaschetti E, Gillespie C, Robitaille C, Loustalot F, Poulter N, et al. Hypertension prevalence, awareness, treatment and control in national surveys from England, the USA and Canada, and correlation with stroke and ischaemic heart disease mortality: a cross-sectional study. BMJ Open 2013; 3 (8): e003423. doi: 10.1136/bmjopen-2013-003423.
- Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology. Circulation 2000; 101 (3): 329-335. doi: 10.1161/01.cir.101.3.329.
- 5. Czopek A, Moorhouse R, Guyonnet L, Farrah T, Lenoir O, Owen E, et al. A novel role for myeloid endothelin-B receptors in hypertension. Eur Heart J 2019;

40 (9): 768-784. doi: 10.1093/eurheartj/ehy881.

- Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2019; 19 (8): 517-532. doi: 10.1038/s41577-019-0160-5.
- Chapple IL, Genco R, Working group 2 of joint EFPAAPw. Diabetes and periodontal diseases: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Clin Periodontol 2013; 40 Suppl 14 S106-112. doi: 10.1111/jcpe.12077.
- Lu HX, Tao DY, Lo ECM, Li R, Wang X, Tai BJ, et al. The 4th National Oral Health Survey in the Mainland of China: Background and Methodology. Chin J Dent Res 2018; 21 (3): 161-165. doi: 10.3290/j.cjdr.a41079.
- Sun HY, Jiang H, Du MQ, Wang X, Feng XP, Hu Y, et al. The Prevalence and Associated Factors of Periodontal Disease among 35 to 44-year-old Chinese Adults in the 4th National Oral Health Survey. Chin J Dent Res 2018; 21 (4): 241-247. doi: 10.3290/j.cjdr.a41082.
- Tonetti MS, D'Aiuto F, Nibali L, Donald A, Storry C, Parkar M, et al. Treatment of periodontitis and endothelial function. N Engl J Med 2007; 356 (9): 911-920. doi: 10.1056/NEJMoa063186.
- Munoz Aguilera E, Suvan J, Buti J, Czesnikiewicz-Guzik M, Barbosa Ribeiro A, Orlandi M, et al. Periodontitis is associated with hypertension: a systematic review and meta-analysis. Cardiovasc Res 2020; 116 (1): 28-39. doi: 10.1093/cvr/cvz201.
- 12. Pietropaoli D, Del Pinto R, Ferri C, Wright JT, Jr., Giannoni M, Ortu E, et al. Poor Oral Health and Blood Pressure Control Among US Hypertensive Adults. Hypertension 2018; 72 (6): 1365-1373. doi: 10.1161/HYPERTENSIONAHA.118.11528.
- Boos CJ, Lip GY. Is hypertension an inflammatory process? Curr Pharm Des 2006; 12 (13): 1623-1635. doi: 10.2174/138161206776843313.
- 14. Li JJ. Inflammation in hypertension: primary evidence. Chin Med J (Engl) 2006;119 (14): 1215-1221.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11 12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
∠ ı วว	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58	
59	
60	

- 15. Li JJ, Fang CH, Hui RT. Is hypertension an inflammatory disease? Med Hypotheses 2005; 64 (2): 236-240. doi: 10.1016/j.mehy.2004.06.017.
- Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol Hypertens 2006; 15 (2): 152-158. doi: 10.1097/01.mnh.0000203189.57513.76.
- Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Periodontol 2018 Jun;89 Suppl 1:S159-S172. doi: 10.1002/JPER.18-0006.
- Kumins NH, King AH, Ambani RN, Thomas JP, Bose S, Shishehbor MH, Li J, Wong VL, Harth KC, Cho JS, Kashyap VS. Paclitaxel-coated peripheral artery devices are not associated with increased mortality. J Vasc Surg 2020 Sep;72(3):968-976. doi: 10.1016/j.jvs.2019.10.100. Epub 2020 Jan 6. PMID: 31917036.
- Jiao J, Zhang L, Meng HX, Shi D, Lu RF, Xu L, Feng XH, Cao ZQ. Clinical performance of non-surgical periodontal therapy in a large Chinese population with generalized aggressive periodontitis. J Clin Periodontol 2018 Oct;45(10):1184-1197. doi: 10.1111/jcpe.12981. Epub 2018 Aug 21. PMID: 29974483.
- Martin-Cabezas R, Seelam N, Petit C, Agossa K, Gaertner S, Tenenbaum H, et al. Association between periodontitis and arterial hypertension: A systematic review and meta-analysis. Am Heart J 2016; 180 98-112. doi: 10.1016/j.ahj.2016.07.018.
- Muñoz Aguilera E, Suvan J, Buti J, Czesnikiewicz-Guzik M, Barbosa Ribeiro A, Orlandi M, Guzik TJ, Hingorani AD, Nart J, D'Aiuto F. Periodontitis is associated with hypertension: a systematic review and meta-analysis. Cardiovasc Res. 2020 Jan 1;116(1):28-39. doi: 10.1093/cvr/cvz201. PMID: 31549149.
- 22. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42 (6): 1206-1252. doi: 10.1161/01.HYP.0000107251.49515.c2.

23.	Leong XF, Ng CY, Badiah B, Das S. Association between hypertension and
	periodontitis: possible mechanisms. ScientificWorldJournal 2014; 8:768237.
	doi: 10.1155/2014/768237.
24.	Vidal F, Cordovil I, Figueredo CM, Fischer RG. Non-surgical periodontal
	treatment reduces cardiovascular risk in refractory hypertensive patients: a pilot
	study. J Clin Periodontol 2013; 40 (7): 681-687. doi: 10.1111/jcpe.12110.
25.	Elter JR, Hinderliter AL, Offenbacher S, Beck JD, Caughey M, Brodala N, et al.
	The effects of periodontal therapy on vascular endothelial function: a pilot trial.
	Am Heart J 2006; 151 (1): 47. doi: 10.1016/j.ahj.2005.10.002.
26.	Scannapieco FA. Periodontal inflammation: from gingivitis to systemic disease?
	Compend Contin Educ Dent 2004; 25(7 Suppl 1):16-25.
27.	Akalin FA, Baltacioglu E, Alver A, Karabulut E. Lipid peroxidation levels and
	total oxidant status in serum, saliva and gingival crevicular fluid in patients with
	chronic periodontitis. J Clin Periodontol 2007; 34 (7): 558-565. doi:
	10.1111/j.1600-051X.2007.01091.x.
28.	Chapple IL, Brock GR, Milward MR, Ling N, Matthews JB. Compromised
	GCF total antioxidant capacity in periodontitis: cause or effect? J Clin
	Periodontol 2007; 34 (2): 103-110. doi: 10.1111/j.1600-051X.2006.01029.x.
29.	Chapple IL, Matthews JB. The role of reactive oxygen and antioxidant species
	in periodontal tissue destruction. Periodontol 2000 2007; 43 160-232. doi:
	10.1111/j.1600-0757.2006.00178.x.
30.	Tomofuji T, Ekuni D, Yamanaka R, Kusano H, Azuma T, Sanbe T, et al. Chronic
	administration of lipopolysaccharide and proteases induces periodontal
	inflammation and hepatic steatosis in rats. J Periodontol 2007; 78 (10): 1999-
	2006. doi: 10.1902/jop.2007.070056.
31.	Kashyap MK, Yadav V, Sherawat BS, Jain S, Kumari S, Khullar M, et al.
	Different antioxidants status, total antioxidant power and free radicals in
	essential hypertension. Mol Cell Biochem 2005; 277 (1-2): 89-99. doi:
	10.1007/s11010-005-5424-7.
32.	Patil SB, Kodliwadmath MV, Kodliwadmath SM. Correlation between lipid
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4	
2 3 4 5 6 7	
8 9 10 11 12	33
13 14 15 16 17 18 19	34
20 21 22 23 24 25 26	35
27 28 29 30 31 32	36
33 34 35 36 37	
38 39 40 41 42	37
43 44 45 46 47 48	38
49 50 51 52 53 54	39
55 56 57 58 59	

60

peroxidation and non-enzymatic antioxidants in pregnancy induced hypertension. Indian J Clin Biochem 2008; 23 (1): 45-48. doi: 10.1007/s12291-008-0011-9.

- Beck JD, Offenbacher S. Relationships among clinical measures of periodontal disease and their associations with systemic markers. Ann Periodontol 2002; 7 (1): 79-89. doi: 10.1902/annals.2002.7.1.79.
- 34. Demmer RT, Kocher T, Schwahn C, Volzke H, Jacobs DR, Jr., Desvarieux M. Refining exposure definitions for studies of periodontal disease and systemic disease associations. Community Dent Oral Epidemiol 2008; 36 (6): 493-502. doi: 10.1111/j.1600-0528.2008.00435.x.
- Macedo Paizan ML, Vilela-Martin JF. Is there an association between periodontitis and hypertension? Curr Cardiol Rev 2014; 10 (4): 355-361. doi: 10.2174/1573403x10666140416094901.
- 36. Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, Nosalski R, Pelka P, Nowakowski D, et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur Heart J 2019; 40 (42): 3459-3470. doi: 10.1093/eurheartj/ehz646.
- 37. Pietropaoli D, Del Pinto R, Ferri C, Ortu E, Monaco A. Definition of hypertension-associated oral pathogens in NHANES. J Periodontol 2019; 90 (8): 866-876. doi: 10.1002/JPER.19-0046.
- Taguchi A, Sanada M, Suei Y, Ohtsuka M, Lee K, Tanimoto K, et al. Tooth loss is associated with an increased risk of hypertension in postmenopausal women. Hypertension 2004; 43 (6): 1297-1300. doi: 10.1161/01.HYP.0000128335.45571.ce.
- D'Aiuto F, Parkar M, Nibali L, Suvan J, Lessem J, Tonetti MS. Periodontal infections cause changes in traditional and novel cardiovascular risk factors: results from a randomized controlled clinical trial. Am Heart J 2006; 151 (5): 977-984. doi: 10.1016/j.ahj.2005.06.018.
- 40. D'Aiuto F, Sabbah W, Netuveli G, Donos N, Hingorani AD, Deanfield J, et al.

Association of the metabolic syndrome with severe periodontitis in a large U.S. population-based survey. J Clin Endocrinol Metab 2008; 93 (10): 3989-3994. doi: 10.1210/jc.2007-2522.

- Holmlund A, Holm G, Lind L. Severity of periodontal disease and number of remaining teeth are related to the prevalence of myocardial infarction and hypertension in a study based on 4,254 subjects. J Periodontol 2006; 77 (7): 1173-1178. doi: 10.1902/jop.2006.050233.
- Morita T, Yamazaki Y, Mita A, Takada K, Seto M, Nishinoue N, et al. A cohort study on the association between periodontal disease and the development of metabolic syndrome. J Periodontol 2010; 81 (4): 512-519. doi: 10.1902/jop.2010.090594.
- 43. Rivas-Tumanyan S, Spiegelman D, Curhan GC, Forman JP, Joshipura KJ. Periodontal disease and incidence of hypertension in the health professionals follow-up study. Am J Hypertens 2012; 25 (7): 770-776. doi: 10.1038/ajh.2012.32.
- 44. Dye BA, Barker LK, Selwitz RH, Lewis BG, Wu T, Fryar CD, et al. Overview and quality assurance for the National Health and Nutrition Examination Survey (NHANES) oral health component, 1999-2002. Community Dent Oral Epidemiol 2007; 35 (2): 140-151. doi: 10.1111/j.1600-0528.2007.00310.x.
- Paquette DW. Pocket depth reduction as an outcome measure of inflammation and soft tissue changes in periodontitis trials. J Int Acad Periodontol 2005; 7 (4 Suppl): 147-156.
- 46. Page RC. The pathobiology of periodontal diseases may affect systemic diseases: inversion of a paradigm. Ann Periodontol 1998; 3 (1): 108-120. doi: 10.1902/annals.1998.3.1.108.
- Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, et al. Status of Hypertension in China: Results From the China Hypertension Survey, 2012-2015. Circulation 2018; 137 (22): 2344-2356. doi: 10.1161/CIRCULATIONAHA.117.032380.

participants.

BMJ Open

Table S1. Comparison of distribution of periodontal status according to the 2017 classification by age/gender/smoking group between hypertensive and normotensive

	Periodonta		NT			ΗΊ			
Group	l status	Ν	%	95% CI	Ν	%	95% CI	pl*	p2#
Male	Health	598	11.9	11.1~12.9	159	10.2	8.7~11.7		
	Gingivitis	1051	21.0	19.9~22.1	246	15.7	14.0~17.6		<
	Stage I	844	16.8	15.8~17.9	171	10.9	9.5~12.6	0.057	0.
	Stage II	883	17.6	16.6~18.7	266	17.0	15.2~18.9	0.037	00
	Stage III	906	18.1	17.0~19.2	357	22.8	20.8~25.0		1
	Stage IV	730	14.6	13.6~15.6	364	23.3	21.2~25.4		
Female	Health	755	15.0	14.1~16.0	179	11.2	9.8~12.9		
	Gingivitis	1461	29.1	27.8~30.3	355	22.3	20.3~24.4		
	Stage I	867	17.2	16.2~18.3	199	12.5	10.9~14.2	<	<
	Stage II	770	15.3	14.3~16.3	277	17.4	15.6~19.3	0.001	0.001
	Stage III	588	11.7	10.8~12.6	260	16.3	14.6~18.2		
	Stage IV	586	11.7	10.8~12.6	323	20.3	18.4~22.3		
35-44	Health	658	15.9	14.8~17.1	40	14.4	10.7~18.9		
years	Gingivitis	1312	31.8	30.3~33.2	73	26.4	21.4~31.8		
	Stage I	1133	27.4	26.1~28.8	70	25.3	20.4~30.6	0.030	<
	Stage II	612	14.8	13.8~15.9	44	15.9	11.9~20.5	0.030	0.001
	Stage III	360	8.7	7.9~9.6	40	14.4	10.7~18.9		
	Stage IV	57	1.4	1.1~1.8	10	3.6	1.9~6.3		
55-64	Health	347	10.6	9.6~11.7	116	9.0	7.5~10.6		
years	Gingivitis	661	20.2	18.9~21.6	239	18.4	16.4~20.6		
	Stage I	403	12.3	11.2~13.5	174	13.4	11.7~15.4	0.023	0.035
	Stage II	658	20.1	18.8~21.5	247	19.1	17.0~21.3	0.025	0.033
	Stage III	659	20.1	18.8~21.5	273	21.1	18.9~23.3		
	Stage IV	544	16.6	15.4~17.9	247	19.1	17.0~21.3		
65-74	Health	348	13.2	12.0~14.5	182	11.5	10.0~13.1		
years	Gingivitis	539	20.5	18.9~22.0	289	18.3	16.4~20.2		
	Stage I	175	6.6	5.7~7.6	126	8.0	6.7~9.4	0.000	0 420
	Stage II	383	14.5	13.2~15.9	252	15.9	14.2~17.8	0.009	0.429
	Stage III	475	18.0	16.6~19.5	304	19.2	17.3~21.2		
	Stage IV	715	27.1	25.5~28.8	430	27.2	25.0~29.4		
Curren	Health	346	12.8	11.6~14.2	75	9.7	7.7~11.9		
t	Gingivitis	512	19.0	17.6~20.5	110	14.2	11.8~16.7		,
smoker	Stage I	423	15.7	14.4~17.1	82	10.6	8.5~12.9	0.016	<
	Stage II	478	17.7	16.3~19.2	134	17.2	14.7~20.0		0.001
	Stage III	491	18.2	16.8~19.7	198	25.5	22.5~28.6		

	Stage IV	443	16.5	15.1~17.9	178	22.9	20.1~26.0		
Non-	Health	909	14.2	13.3~15.0	221	11.1	9.8~12.6		
smoker	Gingivitis	1825	28.4	27.3~29.5	430	21.6	19.9~23.5		
	Stage I	1167	18.2	17.3~19.1	249	12.5	11.1~14.0	<	<
	Stage II	994	15.5	14.6~16.4	356	17.9	16.3~19.6	0.001	0.001
	Stage III	803	12.5	11.7~13.3	337	17.0	15.4~18.6		
	Stage IV	721	11.2	10.5~12.0	395	19.9	18.2~21.7		
Former	Health	98	10.6	8.7~12.7	42	10.7	8.0~14.1		
smoker	Gingivitis	175	18.9	16.5~21.5	61	15.6	12.3~19.4		
	Stage I	121	13.1	11.0~15.3	39	10.0	7.3~13.2	0.972	<
	Stage II	181	19.5	17.1~22.2	53	13.6	10.4~17.2	0.972	0.001
	Stage III	200	21.6	19.0~24.3	82	21.0	17.2~25.2		
	Stage IV	98	10.6	8.7~12.7	42	10.7	8.0~14.1		
Total	Health	1353	13.5	12.8~14.2	338	10.7	9.7~11.8		
	Gingivitis	2512	25.0	24.2~25.9	601	19.0	17.7~20.4		
	Stage I	1711	17.0	16.3~17.8	370	11.7	10.6~12.9	<	<
	Stage II	1653	16.5	15.8~17.2	543	17.2	15.9~18.6	0.001	0.001
	Stage III	1494	14.9	14.2~15.6	617	19.6	18.2~21.0		
	Stage IV	1316	13.1	12.5~13.8	687	21.8	20.4~23.2		

HT, hypertension; NT, normotension.

* Significance differences in the proportions of periodontitis (stages I-IV) and nonperiodontitis (health and gingivitis) between hypertensive and normotensive participants according to the Chi-square test;

[#]Significance differences in the proportions of severe periodontitis (stages III and IV) and non-severe-periodontitis (health, gingivitis, stages I and II) between hypertensive and normotensive participants according to the Chi-square test.

and smoking status.

BMJ Open

Table S2. Comparison of the percentage of teeth with each periodontal parameter between hypertensive and normotensive participants according to gender, age group,

	Periodontal		NT	I	TT	
Group	parameter	Mean	95% CI	Mean	95% CI	p^*
Male	BOP+	50.9	49.9~51.9	52.2	50.4~54.0	0.232
	PD ≥ 4 mm	17.9	17.2~18.6	22.6	21.3~24.0	< 0.001
	PD ≥ 6 mm	1.5	1.3~1.6	2.3	1.9~2.7	< 0.001
	AL≥4 mm	20.9	20.2~21.7	27.5	26.0~28.9	< 0.001
	AL ≥ 6 mm	5.7	5.3~6.1	8.3	7.5~9.1	< 0.001
Female	BOP+	47.4	46.5~48.4	52.1	50.4~53.8	< 0.001
	PD ≥ 4 mm 🧹	11.5	11.0~12.0	16.5	15.4~17.6	< 0.001
	PD ≥ 6 mm	0.7	0.6~0.8	1.3	1.0~1.6	< 0.001
	$AL \ge 4 \text{ mm}$	13.5	12.9~14.0	19.8	18.6~20.9	< 0.001
	$AL \ge 6 mm$	3.2	2.9~3.4	4.8	4.2~5.4	< 0.001
35-44	BOP+	46.5	45.4~47.5	50.5	46.1~54.9	0.096
years	PD ≥ 4 mm	10.5	9.9~11.1	15.8	12.8~18.8	0.001
	PD ≥ 6 mm	0.5	0.4~0.6	1.1	0.6~1.6	0.031
	$AL \ge 4 \text{ mm}$	6	5.6~6.4	10.1	7.8~12.4	0.001
	$AL \ge 6 mm$	0.8	0.7~0.9	1.6	0.8~2.4	0.053
55-64	BOP+	52.5	51.3~53.7	54.0	52.1~56.0	0.188
years	PD≥4 mm	17.9	17.1~18.8	20.3	18.9~21.7	0.004
	PD ≥ 6 mm	1.4	1.2~1.6	1.9	1.6~2.2	0.024
	$AL \ge 4 \text{ mm}$	22.1	21.2~22.9	21.5	20.1~22.9	0.543
	$AL \ge 6 mm$	5.3	4.9~5.8	5.5	4.8~6.2	0.722
65-74	BOP+	49.2	47.9~50.6	50.8	49.1~52.6	0.144
years	PD≥4 mm	17.4	16.5~18.3	19.6	18.4~20.8	0.004
	PD ≥ 6 mm	1.5	1.3~1.8	1.8	1.5~2.2	0.188
	$AL \ge 4 \text{ mm}$	28.7	27.6~29.8	27.6	26.3~29.0	0.239
	$AL \ge 6 mm$	8.9	8.3~9.6	8.3	7.5~9.1	0.220
Current	BOP+	49.7	48.3~51.1	51.3	48.8~53.9	0.286
smoker	PD ≥ 4 mm	19.9	18.9~20.9	24.1	22.2~26.0	< 0.001
	PD ≥ 6 mm	1.6	1.4~1.9	2.4	1.9~3.0	0.007
	$AL \ge 4 \text{ mm}$	22.5	21.4~23.6	28.8	26.7~30.9	< 0.001
	$AL \ge 6 mm$	6.6	6.0~7.2	8.8	7.6~10.0	0.001
Non-	BOP+	48.5	47.7~49.4	52.3	50.7~53.8	< 0.001
smoker	PD ≥ 4 mm	12.1	11.6~12.6	17.0	16.0~18.0	< 0.001
	$PD \ge 6 mm$	0.7	0.6~0.8	1.4	1.1~1.6	< 0.001
	$AL \ge 4 \text{ mm}$	14.0	13.4~14.5	20.4	19.3~21.4	< 0.001
	$AL \ge 6 mm$	3.3	3.0~3.5	5.1	4.6~5.7	< 0.001

Former	BOP+	51.7	49.4~54.0	53.0	49.4~56.6	0.548
smoker	PD≥4 mm	17.8	16.3~19.4	23.7	20.9~26.5	< 0.001
	$PD \ge 6 mm$	1.9	1.4~2.4	2.6	1.8~3.4	0.129
	$AL \ge 4 \text{ mm}$	23.8	27.8~33.6	32.8	28.6~36.9	0.001
	$AL \ge 6 mm$	6.2	5.3~7.1	9.4	7.6~11.1	0.002
Total	BOP+	49.2	48.5~49.9	52.1	50.9~53.4	< 0.001
	$PD \ge 4 mm$	14.7	14.3~15.2	19.6	18.7~20.4	< 0.001
	$PD \ge 6 mm$	1.1	1.0~1.2	1.8	1.6~2.0	< 0.001
	$AL \ge 4 \text{ mm}$	17.2	16.7~17.7	23.6	22.7~24.5	< 0.001
	$AL \ge 6 mm$	4.4	4.2~4.7	6.6	6.0~7.1	< 0.001

AL, attachment loss; BOP, bleeding on probing; HT, hypertension; NT, normotension;

PD, probing depth

* Significant difference according to Student's t-test.

BMJ Open

Table S3. Comparison of the number of teeth with each periodontal parameter between hypertensive and normotensive participants according to gender, age group, and smoking status.

	Denie dentel		NT		HT	
Group	Periodontal parameter	Mean	95% CI	Mean	95% CI	p
Male	BOP+	12.7	12.5~13.0	12.3	11.8~12.8	0.11
	PD ≥ 4 mm	4.2	4.0~4.4	5.1	4.8~5.4	< 0.00
	PD ≥ 6 mm	0.3	0.3~0.3	0.5	0.4~0.6	< 0.00
	AL ≥ 4 mm	4.6	4.5~4.8	5.7	5.4~6.0	< 0.00
	AL ≥ 6 mm	1.1	1.0~1.1	1.5	1.3~1.6	< 0.00
Female	BOP+	11.9	11.7~12.1	12.6	12.1~13.0	0.01
	PD ≥ 4 mm	2.7	2.6~2.9	3.8	3.6~4.1	< 0.00
	PD ≥ 6 mm	0.1	0.1~0.2	0.3	0.2~0.3	< 0.00
	$AL \ge 4 \text{ mm}$	2.9	2.8~3.1	4.3	4.0~4.5	< 0.00
	AL ≥ 6 mm	0.6	0.5~0.6	0.9	0.8~1.0	< 0.00
35-44	BOP+	12.7	12.4~13.0	13.6	12.4~14.8	0.14
years	PD ≥ 4 mm	2.8	2.7~3.0	4.2	3.4~5.0	0.00
-	PD ≥ 6 mm	0.1	0.1~0.2	0.3	0.1~0.4	0.03
	$AL \ge 4 \text{ mm}$	1.6	1.5~1.7	2.6	2.0~3.2	0.00
	AL ≥ 6 mm	0.2	0.2~0.2	0.4	0.2~0.6	0.04
55-64	BOP+	13.0	12.7~13.3	13.4	12.9~13.9	0.24
years	PD≥4 mm	4.2	4.0~4.4	4.8	4.4~5.1	0.00
•	PD ≥ 6 mm	0.3	0.2~0.3	0.4	0.3~0.5	0.00
	$AL \ge 4 \text{ mm}$	5.0	4.8~5.2	4.8	4.5~5.1	0.22
	AL ≥ 6 mm	1.1	1.0~1.2	1.1	1.0~1.2	0.91
65-74	BOP+	10.9	10.6~11.3	11.5	11.0~11.9	0.05
years	PD ≥ 4 mm	3.5	3.3~3.7	4.3	4.0~4.5	< 0.00
-	PD ≥ 6 mm	0.3	0.2~0.3	0.4	0.3~0.4	0.04
	AL≥4 mm	5.7	5.4~5.9	5.6	5.3~5.9	0.75
	AL ≥ 6 mm	1.5	1.4~1.6	1.4	1.3~1.5	0.50
Current	BOP+	12.3	11.9~12.7	12.1	11.4~12.8	0.58
smoker	PD ≥ 4 mm	4.6	4.4~4.8	5.5	5.0~6.0	0.00
	PD ≥ 6 mm	0.3	0.3~0.4	0.5	0.4~0.6	0.00
	$AL \ge 4 \text{ mm}$	4.9	4.6~5.1	6.1	5.7~6.6	< 0.00
	$AL \ge 6 mm$	1.2	1.1~1.3	1.6	1.4~1.8	0.00
Non-	BOP+	12.3	12.1~12.5	12.6	12.2~13.0	0.15
smoker	PD ≥ 4 mm	2.9	2.8~3.0	3.9	3.7~4.2	< 0.00
	PD ≥ 6 mm	0.2	0.1~0.2	0.3	0.2~0.3	< 0.00
	$AL \ge 4 \text{ mm}$	3.1	3.0~3.2	4.4	4.2~4.6	< 0.00
	$AL \ge 6 mm$	0.6	0.6~0.6	0.9	0.8~1.0	< 0.00

Former	BOP+	12.7	12.1~13.3	12.2	11.3~13.1	0.359
smoker	PD ≥ 4 mm	4.1	3.8~4.5	5.1	4.5~5.8	0.006
	PD ≥ 6 mm	0.4	0.3~0.4	0.5	0.4~0.7	0.069
	$AL \ge 4 \text{ mm}$	5.3	4.9~5.7	5.9	5.3~6.6	0.081
	$AL \ge 6 mm$	1.2	1.0~1.3	1.7	1.4~2.0	0.005
Total	BOP+	12.3	12.2~12.5	12.4	12.1~14.8	0.574
	PD ≥ 4 mm	3.5	3.4~3.6	4.5	4.2~4.7	< 0.001
	PD ≥ 6 mm	0.2	0.2~0.2	0.4	0.3~0.4	< 0.001
	$AL \ge 4 \text{ mm}$	3.8	3.7~3.9	5.0	4.8~5.2	< 0.001
	$AL \ge 6 mm$	0.8	0.8~0.9	1.2	1.1~1.3	< 0.001

AL, attachment loss; BOP, bleeding on probing; HT, hypertension; NT, normotension;

PD, probing depth

* Significant difference according to Student's t-test.

	or missing t	eeth of genaei,	uge 510u		5 status	
Creare	N	NT		HT		
Group	Mean	95% CI	Mean	95% CI	p^*	
Male	3.0	2.9~3.2	4.5	4.2~4.8	< 0.001	
Female	2.8	2.7~3.0	4.2	4.0~4.5	< 0.001	
35-44 years	0.7	0.7~0.7	1.0	0.7~1.3	0.024	
55-64 years	3.3	3.1~3.4	3.4	3.2~3.7	0.305	
65-74 years	6.0	5.8~6.3	5.7	5.4~6.0	0.104	
Current smoker	2.7	2.6~2.8	4.2	3.9~4.4	< 0.001	
Non-smoker	3.3	3.1~3.5	4.3	3.9~4.7	< 0.001	
Former smoker	3.5	3.2~3.9	5.3	4.7~6.0	< 0.001	
Total	2.9	2.8~3.0	4.4	4.2~4.6	< 0.001	

Table S4. Number of missing teeth by gender, age group and smoking status

HT, hypertension; NT, normotension

* Significant difference by Student's t-test.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies	
	.

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
		Suite specific objectives, meruding any prespectifica hypotheses	
Methods Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6-8
Setting	3	recruitment, exposure, follow-up, and data collection	0-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	5
Tarticipants	0	of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-8
v arrables	,	and effect modifiers. Give diagnostic criteria, if applicable	0-0
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7
measurement	0	of assessment (measurement). Describe comparability of assessment	/
measurement		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	10	Explain how due study size was arrived at Explain how quantitative variables were handled in the analyses. If	7
Quantitative variables	11	applicable, describe which groupings were chosen and why	/
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8-9
		confounding	8-9
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	8-9
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling	NA
		strategy	
		(e) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	9
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	9-10
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	10-
			13

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	12-
		estimates and their precision (eg, 95% confidence interval). Make clear	13
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	NA
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	NA
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	NA
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	13-
			14
Limitations	19	Discuss limitations of the study, taking into account sources of potential	18
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	14
		limitations, multiplicity of analyses, results from similar studies, and other	17
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	19
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.