

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Dynamic risk prediction in patients following acute myocardial infarction

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069505
Article Type:	Original research
Date Submitted by the Author:	23-Oct-2022
Complete List of Authors:	Lv, Junxing; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Cardiology Wang, Chuang-Shi; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Medical Research and Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102300, China. Gao, Xiaojin; Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Cardiology Yang, Jingang; Chinese Academy of Medical Sciences & Peking Union Medical College, Fuwai Hospital, Cardiology Zhang, Xuan; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Schinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, Department of Cardiology Ye, Yunqing; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Department of Cardiology Dong, Qiuting; Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Department of Cardiology Fu, Rui; Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Cardiology Sun, hui; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Cardiology Yan, Xinxin; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Department of Cardiology Zhao, Yanyan; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Medical Research & Biometrics Center Yang, Wang; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Department of Cardiology Xuan; Yanyan; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Department of Cardiology Yang, Yuejin
Keywords:	Myocardial infarction < CARDIOLOGY, Coronary heart disease < CARDIOLOGY, Coronary intervention < CARDIOLOGY

SCHOLARONE"
Manuscripts
Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Page 3 of 70

BMJ Open

1		
2 3	1	Dynamic risk prediction in patients following acute myocardial infarction
4 5		v i i o v
6 7 8	2	Running title: Dynamic risk prediction after AMI
9 10 11	3	
12 13	4	Junxing Lv, MD ^{1,*} , Chuangshi Wang, PhD ^{2,*} , Xiaojin Gao, MD, PhD ¹ , Jingang Yang, MD,
14 15 16	5	PhD ¹ , Xuan Zhang, MD ¹ , Yunqing Ye, MD ¹ , Qiuting Dong, MD, PhD ¹ , Rui Fu, MD ¹ , Hui
17 18	6	Sun, MD ¹ , Xinxin Yan, MD, PhD ¹ , Yanyan Zhao, PhD ² , Yang Wang, PhD ² , Haiyan Xu, MD,
19 20	7	PhD ^{1,†} , and Yuejin Yang, MD, PhD ^{1,†} ; on behalf of the China Acute Myocardial Infarction
21 22 23	8	Registry study group
24 25 26	9	
27 28 29	10	¹ Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases,
30 31	11	Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
32 33	12	² Medical Research & Biometrics Center, Fuwai Hospital, National Center for Cardiovascular
34 35 36	13	Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,
37 38	14	China
39 40 41	15	
42 43 44	16	* Junxing Lv and Chuangshi Wang contributed equally to this work as joint first authors.
45 46 47	17	[†] Haiyan Xu and Yuejin Yang contributed equally to this work as joint corresponding authors.
48 49 50	18	
51 52 53	19	Correspondence:
54 55 56	20	Haiyan Xu
57 58 59 60	21	Address: No. 167 Beilishi Road, Xicheng District, 100037, Beijing, China.
00		1

1					
2					
3 4	1	Tel: +86-10-88396082 Fax: +86-10-88396237			
5					
6	2	E-mail: xuhaiyan@fuwaihospital.org			
7	_				
8					
9 10	3	Yuejin Yang			
11					
12	4	Address: No. 167 Beilishi Road, Xicheng District, 100037, Beijing, China.			
13		areas. 1.0. 107 Benishi Roud, Meneng District, 100057, Beljing, China.			
14	_				
15	5	E-man. yangyjiw@120.com			
17					
18	6				
19					
20 21	7	Word count			
22	/	word count			
23					
24	8	Abstract: 296Main text (not including references, tables, and figure legends): 3246			
25					
20 27	9				
28)				
29					
30	10				
31					
33	11				
34					
35					
36					
38					
39					
40					
41					
42 43					
44					
45					
46					
47 48					
49					
50					
51 52					
52 53					
54					
55					
56 57					
57 58					
59					
60					

י ר		
2 3 4 5	1	Abstract
5 6 7	2	Objectives: The risk of adverse events and prognostic factors are changing in different time
8 9	3	phases after acute myocardial infarction (AMI). The incidence of adverse events is
10 11 12	4	considerable in the early period after AMI hospitalization. Therefore, dynamic risk prediction
12 13 14	5	is needed to guide post-discharge management of AMI. This study aimed to develop an
15 16	6	dynamic prognostic instrument for patients following AMI.
17 18 19 20	7	Design: Prospective cohort.
20 21 22 23	8	Setting: 108 hospitals in China.
24 25	9	Participants: A total of 23887 patients after AMI in the China Acute Myocardial Infarction
26 27 28	10	registry were included in this analysis.
28 29 30 31	11	Primary outcome measures: All-cause mortality.
32 33	12	Results: In multivariable analyses, age, prior stroke, heart rate, Killip class, left ventricular
34 35 26	13	ejection fraction (LVEF), in-hospital percutaneous coronary intervention (PCI), recurrent
36 37 38	14	myocardial ischemia, recurrent myocardial infarction, heart failure (HF) during
39 40	15	hospitalization, antiplatelet therapy, and statins at discharge were independently associated
41 42 43	16	with 30-day mortality. Variables related to mortality between 30 days and 2 years included
44 45	17	age, prior renal dysfunction, history of HF, AMI classification, heart rate, Killip class,
46 47	18	hemoglobin, LVEF, in-hospital PCI, HF during hospitalization, HF worsening within 30 days
48 49 50	19	after discharge, antiplatelet therapy, β blocker, and statins use within 30 days after discharge.
50 51 52	20	The inclusion of adverse events and medications significantly improved the predictive
53 54	21	performance of models without these indexes (likelihood ratio test P<0.0001). These two sets
55 56 57	22	of predictors were used to establish dynamic prognostic nomograms for predicting survival in
58	23	patients with AMI. The C indexes of 30-day and 2-year prognostic nomograms were 0.85
59 60	24	(95% confidence interval [CI]: 0.83-0.88) and 0.83 (95% CI: 0.81-0.84) in derivation cohort,

2 3 4	1	and 0.79 (95% CI: 0.71-0.86) and 0.81 (95% CI: 0.79-0.84) in validation cohort, with
5 6 7	2	satisfying calibration.
8 9	3	Conclusions: We established dynamic prognostic models incorporating adverse event and
10 11 12	4	medications. The nomograms may be useful instruments to help prospective risk assessment
13 14	5	and management of AMI.
15 16 17	6	Trial registration number: NCT01874691.
18 19 20	7	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	8	Keywords: Myocardial infarction, risk prediction, model, prognosis
49 50 51 52 53		
53 54 55 56 57 58 59 60		
00		

1 2 3 4 5	1	Strengths and limitations of this study
6 7 8	2	• We developed and validated dynamic prognostic nomograms, which might help
9 10 11	3	prospective risk evaluation and management of patients after acute myocardial infarction
12 13 14	4	(AMI) hospitalization.
15 16 17	5	• The study demonstrated that both in-hospital and post-discharge adverse events as well as
18 19 20	6	medications were independently associated with mortality, and provided incremental
21 22 23	7	prognostic value over traditional predictors.
24 25 26	8	• The predictive performance of dynamic prognostic nomograms would be further
27 28 29 30	9	improved if included more follow-up variables.
30 31 32 33	10	• The dynamic prognostic models should be further validated in independent cohorts.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 45 56 57 58 59 60	11	

Introduction

 Although in-hospital mortality of acute myocardial infarction (AMI) has been decreased in many countries,^{1,2} risk of adverse events remains considerable in survivors after AMI hospitalization.³ Previous studies have indicated unsatisfying and imbalanced quality of secondary prevention medications in clinical practice,^{4,5} which could cause negative impact on prognosis of AMI patients. Individualized risk assessment may aid in decision making of long-term therapeutic strategies for patients after AMI. However, the existing risk prediction tools, which are mainly based on data collected at admission, fail to consider the changing nature of adverse events and medications after AMI hospitalization,^{6,7} and therefore may not be appropriate to guide long-term management. Dynamic risk assessment may help improve the quality of long-term management for patients following AMI.

Although several studies sought to forecast mortality dynamically in patients with acute coronary syndromes,⁸⁻¹¹ prognostic components of these models were obtained during hospitalization, without taking follow-up adverse events and medications into consideration. Dynamic prognostic instruments designed to help risk reassessment should include post-discharge information which is associated with outcomes. In this study, we aimed to establish and validate dynamic risk prediction models, visualized by nomograms, which included in-hospital and post-discharge adverse events and medications, to assist in prognostic evaluation and decision-making of secondary prevention strategies in patients following AMI.

22 Methods

Study population

Page 9 of 70

BMJ Open

The data for the present study were from the China Acute Myocardial Infarction (CAMI) registry. The design of the CAMI registry has been described and published elsewhere.¹² Briefly, 108 hospitals from 31 provinces and municipalitis throughout Mainland China were included in this prospective, nationwide, multicenter registry. Consecutive patients with AMI were enrolled in the registry and the final diagnosis of patients must meet the third Universal Definition for Myocardial Infarction (2012).¹³ All types of AMI were eligible for the CAMI registry, except type 4a and type 5. Presenting characteristics, medical history, laboratory results, medications, and clinical outcomes were collected according to the ACC/AHA Task Force on clinical data standards and NCDR-ACTION-GWTG element dictionary.

Patients registered in the CAMI registry from January 2013 to September 2014 were included in this study. Those with invalid diagnosis (n=1312), who were transferred out (n=1181) or died during hospitalization (n=1690) were excluded. The remaining population (n=23887) was divided randomly according to 2:1 ratio into derivation (n=15925) and validation (n=7962) cohorts for developing and validating a 30-day risk prediction model. After further excluding patients who died within 30 days after discharge (n=293) and those with missing data on 30-day medication use (n=5391), the remaining derivation (n=12136) and validation (n=6067) cohorts were used for establishing and testing a 2-year risk prediction model (online supplemental figure 1).

Definitions

Standard definitions of adverse events have been described elsewhere in detail.¹⁴ Taking a medication within 30 days means using the medication during this period after discharge without discontinuation.

Follow-up and endpoints

Patients were followed by clinical visits or telephone call at 30 days, 6 months, 12 months, 18 months, and 24 months. Adverse events (such as death, recurrent myocardial infarction, and heart failure worsening) and medications at follow-up time points were collected by trained cardiologists or cardiovascular fellows. The primary endpoints of this analysis were all-cause mortality within 30 days after AMI hospitalization (for establishing 30-day risk prediction model) and mortality between 30 days and 2 years (for establishing 2-year risk prediction model).

Statistical analysis

Categorical variables were summarized as frequencies and percentages, and compared by chi-square or Fisher exact test, as appropriate. Continuous variables were expressed as mean \pm standard deviation or medians (interquartile range) according to data distributions, and compared by student t or nonparametric test. Kaplan-Meier curve and density plots were used to depict the changing nature of risk after AMI hospitalization.

The derivation cohort was used to screen predictors of 30-day mortality and mortality between 30 days and 2 years. The associations between variables, including age, sex, body mass index (BMI), diabetes, hypertension, hyperlipidemia, smoking, prior angina pectoris, prior myocardial infarction, prior heart failure, prior stroke, prior peripheral artery disease, prior percutaneous coronary intervention (PCI), prior coronary artery bypass graft (CABG), prior renal dysfunction, chronic obstructive pulmonary disease, symptom onset to admission time, heart rate, systolic blood pressure, Killip class, cardiac arrest at admission, diagnosis, anterior wall involvement, creatinine clearance, hemoglobin, leukocyte count, left ventricular ejection fraction (LVEF), in-hospital PCI, in-hospital CABG, heart failure, recurrent

Page 11 of 70

BMJ Open

myocardial ischemia, recurrent myocardial infarction, stroke, other bleeding events (bleeding events not including cerebral heamorrhage) during hospitalization, antiplatelet therapy at discharge, stating at discharge, β blockers at discharge, and angiotensin converting enzyme inhibitor (ACEI) or angiotensin II receptor blocker (ARB) at discharge, and 30-day mortality were first assessed in univariable Cox regression models. For obtaining prognostic factors of mortality between 30 days and 2 years, the associations of adverse events within 30 days (recurrent myocardial infarction and heart failure worsening) and 30-day medications (antiplatelet therapy, statins, β blockers, and ACEI/ARB) with mortality were also assessed in univariable Cox models besides variables mentioned previously. Subsequently, the least absolute shrinkage and selection operator (LASSO) method was adopted to select predictors of short-term and long-term mortality respectively from variables with $P \le 0.1$ in univariable analysis. The selected predictors were used to establish dynamic risk prediction models by multivariable Cox regression model. The relative importance of these variables was ranked according to the proportion of explainable log-likelihood ratio χ^2 statistics.

To analyze the incremental prognostic value of adverse events and medications over traditional predictive indexes, we compared the predictive performance between models with or without adverse events and medications using C index, net reclassification index (NRI), integrated discrimination improvement index (IDI), likelihood ratio test, and Bayesian information criteria (BIC). The clinical utilities of models were compared by decision curve analysis. Predictive performance was also compared between 30-day risk model or 2-year risk model and the Global Registry of Acute Coronary Events (GRACE) risk score to further analyze the additional value of the dynamic models beyond existing prognostic tool.

Two prognostic nomograms, which could make complex predictive formulas friendly to use in clinical practice, were constructed based on the regression coefficients of predictors for mortality using the "rms" package of R software. Discrimination and calibration of the

BMJ Open

nomograms were assessed by C index and calibration curves presenting the relationship
 between observed and predicted survival probabilities in both derivation and validation
 cohorts. Predictive performance of models was also evaluated in subgroups of patients
 according to age, sex, diabetes, AMI classification, and in-hospital PCI.

Before multivariable analysis, we calculated variance inflation factor to examine multicollinearity issue. Multiple imputation was used to generate 5 datasets without missing values. The LASSO method was performed in each dataset. Only variables selected by LASSO method in all 5 datasets were included in final dynamic prognostic models. Results of Cox regression models were reported as hazard ratios (HR) with 95% confidence intervals (CI). A two-tailed P<0.05 was considered statistically significant. Statistical analyses were performed using R version 4.0.5 (R Foundation for Statistical Computing, Vienna, Austria) and SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

Patient and public involvement

Patients or the public were not involved directly in the design, conduct, reporting or dissemination plans of our research.

Results

 Baseline characteristics, medications, and outcomes of derivation and validation cohorts were summarized in table 1 and online supplemental table 1. Variables were comparable between derivation and validation cohorts except β blockers at discharge. Rates of 30-day mortality among hospital survivors in derivation and validation cohorts were 1.2% (190/15925 patients) and 1.3% (103/7962 patients), respectively. Rates of mortality between 30 days and 2 years

BMJ Open

were 6.1% (740/12136 patients) and 5.7% (345/6067 patients). The Kaplan-Meier curve and density plots showed the changing risk of death and recurrent myocardial infarction within 2 years after AMI hospitalization (online supplemental figure 2 and 3).

Predictors of 30-day mortality in patients after AMI

Univariable analysis of the associations between variables and 30-day mortality was presented in online supplemental table 2. In the LASSO-based Cox regression model, age, prior stroke, heart rate, Killip class, LVEF, in-hospital PCI, in-hospital recurrent myocardial ischemia, in-hospital recurrent myocardial infarction, in-hospital heart failure, antiplatelet therapy, and statins at discharge were independently associated with 30-day mortality (online supplemental figure 4 to 8; table 2). The relative importance of these predictors was ranked and shown in online supplemental figure 9.

Predictors of 2-year mortality for 30-day survivors after AMI hospitalization

Univariable analysis of mortality between 30 days and 2 years after AMI hospitalization was shown in online supplemental table 3. In the LASSO-based Cox regression model, age, prior renal dysfunction, history of heart failure, AMI classification, heart rate, Killip class, hemoglobin, LVEF, in-hospital PCI, in-hospital heart failure, heart failure worsening within 30 days, antiplatelet therapy, β blocker, and statins within 30 days were identified as predictors of mortality (online supplemental figure 10 to 14; table 3). The relative importance of these predictors was ranked and presented in online supplemental figure 15.

Incremental prognostic value of adverse events and medications

BMJ Open

The inclusion of in-hospital recurrent myocardial ischemia, in-hospital recurrent myocardial infarction, in-hospital heart failure, antiplatelet therapy, and statins at discharge significantly improved the predictive power of 30-day risk prediction model (table 4; 30-day model 1 vs 30-day model 0, C index, 0.855 [0.830-0.879] vs 0.822 [0.796-0.848]; NRI [95%CI], 0.445 [0.339-0.523], P<0.0001; IDI [95%CI], 0.040 [0.025-0.074], P<0.0001; likelihood ratio test P<0.0001; BIC, 3434.091 vs 3350.882). In the 2-year risk prediction model, heart failure worsening within 30 days, antiplatelet, β blocker, and statins within 30 days also provided additional prognostic value over predictive indexes obtained during hospitalization (table 5). The decision curve analysis further demonstrated better clinical utilities after adding adverse events and medications into 30-day and 2-year risk models (online supplemental figure 16).

Comparisons of prognostic models and GRACE risk score

For predicting 30-day mortality, the 30-day risk prediction model showed significantly better predictive performance than the GRACE risk score (30-day risk model vs GRACE score, C index, 0.855 [0.830-0.879] vs 0.771 [0.740-0.802]; NRI [95%CI], 0.412 [0.307-0.485], P<0.0001; IDI [95%CI], 0.048 [0.032-0.090], P<0.0001; BIC, 3267.271 vs 3402.578). Similarly, when predicting 2-year mortality, the 2-year risk prediction model also performed better than the GRACE risk score (2-year risk model vs GRACE score, C index, 0.825 [0.811-0.839] vs 0.798 [0.783-0.813]; NRI [95%CI], 0.191 [0.147-0.257], P<0.0001; IDI [95%CI], 0.041 [0.031-0.057], P<0.0001; BIC, 12540.559 vs 12697.527). The decision curve analysis further demonstrated better clinical utilities of both 30-day and 2-year risk models than CRACE score (online supplemental figure 17).

Nomograms for dynamic risk prediction

Page 15 of 70

60

1

BMJ Open

2	
3	1
4	
5	2
6	2
/	3
8 0	5
9 10	1
11	4
12	-
13	3
14	
15	6
16	Ū
17	7
18	/
19 20	0
20 21	0
22	0
23	9
24	
25	10
26	
27	11
28	
29	12
50 31	
32	12
33	13
34	1.4
35	14
36	
37	15
38	
39	16
40 41	
41 47	17
43	
44	10
45	10
46	
47	19
48	
49 50	
50 E 1	20
57 52	
53	21
54	
55	22
56	
57	23
58	
59	24

Two nomograms were created by assigning a weighted score based on regression coefficients of each prognostic index for calculating 30-day and 2-year survival probabilities respectively. All observed values of a prognostic index corresponded vertically to points on the top scale. The sum of points for each index was plotted on the "Total points" scale, and corresponded to survival probability at the bottom (figure 1 and 2).

The 30-day prognostic nomogram achieved high discrimination in both derivation and validation cohorts, with C indexes of 0.85 (95% CI: 0.83-0.88) and 0.79 (95% CI: 0.71-0.86) respectively. The calibration curves presenting the concordance between observed and predicted 30-day survival probability in two cohorts also showed satisfying calibration of the model (online supplemental figure 18). In addition, the 30-day prognostic nomogram achieved moderate to high discrimination (C indexes: 0.74 to 0.83) in subsets according to age, sex, diabetes, AMI classification, and PCI (online supplemental table 4).

The C indexes of 2-year prognostic nomogram were 0.83 (95% CI: 0.81-0.84) and 0.81 (95% CI: 0.79-0.84) in derivation and validation cohorts, respectively. The calibration curves demonstrated excellent calibration of the nomogram in both derivation and validation cohorts (online supplemental figure 19). In aforementioned subgroups of patients, the model discrimination was acceptable (C index: 0.66 to 0.83, online supplemental table 5).

Discussion 19

Using data from a large, prospective, multicenter registry, we screened eleven predictors of 30-day mortality, and fourteen variables, including heart failure worsening and medications within 30 days, related to mortality between 30 days and 2 years in patients after AMI hospitalization. These two sets of predictors were used to develop prognostic nomograms which could predict post-discharge mortality for AMI patients in different time phases. The

BMJ Open

nomograms showed satisfying discrimination and calibration in both derivation and validation cohorts. This is a novel dynamic prognostic tool which can serve for prospective risk assessment and guide long-term management of patients after AMI.

A series of risk models have been developed to predict mortality in patients with acute coronary syndromes.^{6,7,15} These models mainly included prognostic factors obtained at admission, and provided a fixed estimate of survival probability for a given patient. This working mode of prognostic models was helpful for screening high-risk patients and determining therapeutic strategies after admission. However, the incidence of adverse cardiovascular events remained considerable after in-hospital management of AMI. Accumulating evidence has implied that a larger proportion of adverse events occurred in the early phase after AMI hospitalization,¹⁶ which reflected the changing risk following AMI and highlighted the importance of risk reassessment during follow-up. Although some prognostic models, such as the Global Registry of Acute Coronary Events (GRACE) risk score and dynamic Thrombolysis In Myocardial Infarction (TIMI) risk score, could be used to assess survival at discharge,^{6,9} none of them could improve survival estimates during follow-up. Considering the higher risk of adverse events in the early period than that at the late stage after AMI hospitalization (online supplemental figure 2 and 3), we chose 30 days, which was also one of routine follow-up points after AMI hospitalization in clinical practice, as the time point of risk reassessment to establish dynamic risk prediction models.

The first model, which was developed to assess 30-day survival at discharge in patients after AMI, included variables related to patients' demographics, hemodynamics, left ventricular systolic function, treatment, in-hospital adverse events, and medications at discharge. Previous studies have established several prognostic models, such as Platelet glycoprotein IIb/IIIa in Unstable agina: Receptor Suppression Using Integrilin (eptifibatide) Therapy (PURSUIT) and Zwolle risk scores,^{17,18} to predict 30-day mortality in patients with

Page 17 of 70

BMJ Open

acute coronary syndromes. However, these models mainly used patient characteristics, clinical presentations at admission as well as angiographic features as prognostic indexes. The present study showed that recurrent myocardial ischemia, recurrent myocardial infarction, heart failure during AMI hospitalization, antiplatelet therapy, and statins use at discharge were independently associated with short-term mortality after discharge, and provided significantly incremental prognostic information over traditional predictive indexes. Therefore, these adverse events and medications were included in the novel 30-day prognostic model, which might assist in decision-making of post-discharge management.

For the second model assessing 2-year survival in 30-day survivors, we screened new predictors including heart failure worsening within 30 days, antiplatelet therapy, β blocker, and statins use within 30 days after discharge. A prior study showed that mortality rate of patients with an early recurrent myocardial infarction (recurrent myocardial infarcction within 90 days of discharge) was nearly 50% within 5 years.¹⁹ In the present study, we observed that the recurrent myocardial infarction and heart failure worsening within 30 days after discharge were associated with >3-fold and >4.5-fold increase of 2-year mortality risk respectively in univariable analysis, and heart failure worsening, which was included in 2-year prognostic nomogram, was a statistically significant prognostic index in multivariable analysis. To our best knowledge, this is the first prognostic instrument taking follow-up adverse event after AMI into consideration. In addition, although some studies analyzed the prognostic impact of secondary prevention implementation in patients after AMI,^{20,21} follow-up medications have not been considered as predictive indexes in risk models for AMI so far. For some patients, not taking optimal medical care within 30 days after discharge could be explained by poor medication adherence after AMI, which was a problem for both developed and developing countries.²¹⁻²³ A study found that about 30% of patients with myocardial infarction who underwent PCI in the United States reported suboptimal adherence to prescribed medications

BMJ Open

in six weeks after hospitalization.²³ Data from the China PEACE Prospective AMI study also showed a similar percentage of AMI patients did not take medications as prescribed in the first month after discharge.²¹ Patients with early medication nonadherence not only suffered a higher risk of early adverse events, but might not comply with long-term secondary prevention measures, and therefore had poorer long-term prognosis. Another situation was that patients were not prescribed with some medications by physicians, due to contraindications or high risk of side effects. However, lack of secondary prevention medications after AMI still meant a higher risk of cardiovascular adverse events in these patients. Indeed, our analysis showed that insufficient use of antiplatelet therapy, β blocker, and statins within 30 days after AMI hospitalization had significant negative impact on 2-year survival. The inclusion of follow-up medications and adverse events improved risk prediction of 2-year prognostic model.

The present study showed that the dynamic prognostic nomograms achieved satisfying discrimination and calibration, and performed well in subgroups of patients according to age, sex, diabetes, AMI classification, and PCI. The clinical usefulness of nomograms was confirmed by decision curve analysis. Prognostic nomograms have been used for risk prediction of cancer and cardiovascular diseases.²⁴⁻²⁸ The nomograms in this study could assist in dynamic prognostic evaluation in routine clinical practice. Using the nomogram for prediction of 30-day survival, physicians can identify high-risk patients at discharge. Then, the second nomogram can be used to reassess survival probabilities of 30-day survivors, and may guide decision-making of long-term follow-up intensity and strategies of medical care.

Limitations

Page 19 of 70

BMJ Open

Several important limitations in this study should be mentioned. First, besides variables during hospitalization, heart failure worsening and medications within 30 days after discharge were included in the model for prediction of 2-year mortality. However, laboratory or echocardiographic indexes, such as biomarkers of inflammation, N-terminal pro-B-type natriuretic peptide, or LVEF, were not obtained during follow-up. These variables may further improve the predictive performance of dynamic models. Second, although the present study showed the feasibility of assessing 2-year prognosis at 30 days after discharge, risk reassessment was a serial process and should be done repeatedly beyond early phase after AMI hospitalization. Finally, our dynamic models were only validated in the CAMI registry. Further tests for generalizability in external cohorts are needed.

12 Conclusions

The dynamic risk prediction tool consisted of a short-term prognostic model and a long-term prognostic model for patients following AMI. Taking the changing nature of adverse events and medications into consideration, the models can serve prospective risk stratification and guide post-discharge management of AMI. Dynamic risk prediction may play an important role in therapeutic decision-making and quality improvement of secondary prevention after AMI hospitalization.

Acknowledgments

We appreciate all staff and investigators for their contributions to the CAMI registry.

23 Contributors

BMJ Open

HX and YYang contributed significantly to the conception, design, and conduction of this study. JL and CW wrote the initial manuscript. CW, YZ, and YW provided strong support in statistical analysis. JL, CW, XG, JY, XZ, YYe, QD, RF, HS, XY, YZ, YW, HX, and YYang contributed significantly to revisions of manuscript, analysis, and interpretation of data. All authors contributed substantially to this study and approved its submission. Funding This work was supported by the Twelfth Five-Year Planning Project of the Scientific and Technological Department of China [grant number 2011BAI11B02] and Beijing Nova Program [grant number Z211100002121063]. **Competing Interests** None declared. Patient consent for publication Not required. **Ethics** approval The CAMI registry conformed to the ethical guidelines of the Declaration of Helsinki, and was approved by the institutional review board central committee at Fuwai Hospital, National

Center for Cardiovascular Diseases of China. Written informed consents were given by

eligible patients before registration.

1		
2		
3	1	
4 5		
6	2	Data Availahility Statement
7	2	Data Avanability Statement
8		
9	3	Data are available on reasonable request from the corresponding authors.
10		
17		
13		
14		
15		
16		
17		
10		
20		
21		
22		
23		
24		
25 26		
20		
28		
29		
30		
31		
32 33		
34		
35		
36		
37		
38		
39		
40 41		
42		
43		
44		
45		
46 ⊿7		
48		
49		
50		
51		
52		
53 54		
55		
56		
57		
58		
59 60		
00		
		10

1 References

- Peterson ED, Shah BR, Parsons L, et al. Trends in quality of care for patients with acute
 myocardial infarction in the National Registry of Myocardial Infarction from 1990 to
 2006. *Am Heart J* 2008;156:1045-55.
- Yamamoto T, Yoshida N, Takayama M; Tokyo CCU Network. Temporal trends in acute
 Myocardial infarction incidence and mortality between 2006 and 2016 in Tokyo Report
 from the Tokyo CCU Network. *Circ J* 2019;83:1405-9.
- 8 3. Chaudhry SI, Khan RF, Chen J, et al. National trends in recurrent AMI hospitalizations 1
 9 year after acute myocardial infarction in Medicare beneficiaries: 1999-2010. *J Am Heart*Assoc 2014;3:e001197.
- 4. Ergatoudes C, Thunström E, Rosengren A, et al. Long-term secondary prevention of acute myocardial infarction (SEPAT) guidelines adherence and outcome. *BMC Cardiovasc Disord* 2016;16:226.
- 5. Zhao Q, Xu H, Zhang X, et al. Current status and hospital-level differences in care and outcomes of patients with acute non-ST-segment elevation myocardial infarction in China: insights from China Acute Myocardial Infarction Registry. Front Cardiovasc Med 2022;8:800222.
- Eagle KA, Lim MJ, Dabbous OH, et al. A validated prediction model for all forms of acute coronary syndrome: estimating the risk of 6-month postdischarge death in an international registry. *JAMA* 2004;291:2727-33.
- 7. Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk score for unstable
 angina/non-ST elevation MI: A method for prognostication and therapeutic decision
 making. *JAMA* 2000;284:835-42.

Page 23 of 70

BMJ Open

1 ว			
2 3 4	1	8.	Chang WC, Boersma E, Granger CB, et al. Dynamic prognostication in non-ST-elevation
5 6	2		acute coronary syndromes: insights from GUSTO-IIb and PURSUIT. Am Heart J
7 8 9	3		2004;148:62-71.
10 11 12	4	9.	Amin ST, Morrow DA, Braunwald E, et al. Dynamic TIMI risk score for STEMI. J Am
13 14	5		Heart Assoc 2013;2:e003269.
15 16 17	6	10.	Chang WC, Kaul P, Fu Y, et al. Forecasting mortality: dynamic assessment of risk in
18 19 20	7		ST-segment elevation acute myocardial infarction. <i>Eur Heart J</i> 2006;27:419-26.
20 21 22	8	11.	Westerhout CM, Pieper KS, James SK, et al. Dynamic modeling of 90-day mortality in
23 24	9		ST-elevation myocardial infarction patients undergoing primary percutaneous coronary
25 26 27	10		intervention. Am Heart J 2013;165:354-62.e2.
28 29 30	11	12.	Xu H, Li W, Yang J, et al. Tal Infarction (CAMI) Registry: a national long-term
31 32	12		registry-research-education integrated platform for exploring acute myocardial infarction
33 34 35	13		in China. Am Heart J 2016;175:193-201.e3.
36 37	14	13.	Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial
38 39 40 41 42	15		infarction. Circulation 2012;126:2020-35.
	16	14.	Xu H, Yang Y, Wang C, et al. Association of hospital-level differences in care with
43 44 45	17		outcomes among patients with acute ST-segment elevation myocardial infarction in
45 46 47	18		China. JAMA Netw Open 2020;3:e2021677.
48 49 50	19	15.	McNamara RL, Kennedy KF, Cohen DJ, et al. Predicting in-hospital mortality in
51 52 53	20		patients with acute myocardial infarction. J Am Coll Cardiol 2016;68:626-35.
54 55	21	16.	Song J, Murugiah K, Hu S, et al. Incidence, predictors, and prognostic impact of recurrent
50 57 58 59 60	22		acute myocardial infarction in China. <i>Heart</i> 2020;107:313-8.

- 17. Boersma E, Pieper KS, Steyerberg EW, et al. Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation. Results from an international trial of 9461 patients. The PURSUIT Investigators. Circulation 2020;101:2557-67.
 - De Luca G, Suryapranata H, van 't Hof AW, et al. Prognostic assessment of patients with 18. acute myocardial infarction treated with primary angioplasty: implications for early discharge. Circulation 2004;109:2737-43.
 - 19. Nair R, Johnson M, Kravitz K, et al. Characteristics and outcomes of early recurrent myocardial infarction after acute myocardial infarction. J Am Heart Assoc 2021;10:e019270.
- 20. Chow CK, Brieger D, Ryan M, et al. Secondary prevention therapies in acute coronary syndrome and relation to outcomes: observational study. *Heart Asia* 2019;11:e011122.
- Shang P, Liu GG, Zheng X, et al. Association between medication adherence and 1-year 21. major cardiovascular adverse events after acute myocardial infarction in China. J Am Heart Assoc 2019;8:e011793.
 - Rymer J, McCoy LA, Thomas L, et al. Persistence of evidence-based medication use 22. after discharge from academic versus nonacademic hospitals among patients with non-ST-segment elevation myocardial infarction. Am J Cardiol 2014;114:1479-84.
- 23. Mathews R, Peterson ED, Honeycutt E, et al. Early medication nonadherence after acute myocardial infarction: insights into actionable opportunities from the TReatment with ADP receptor iNhibitorS: Longitudinal Assessment of Treatment Patterns and Events after Acute Coronary Syndrome (TRANSLATE-ACS) Study. Circ Cardiovasc Qual Outcomes 2015;8:347-56.

Page 25 of 70

BMJ Open

1 2			
2 3 4	1	24.	Yan B, Su BB, Bai DS, et al. A practical nomogram and risk stratification system
5 6 7	2		predicting the cancer-specific survival for patients with early hepatocellular carcinoma.
7 8 9	3		<i>Cancer Med</i> 2021;10:496-506.
10 11 12	4	25.	Liu H, Lv L, Qu Y, et al. Prediction of cancer-specific survival and overall survival in
13 14	5		middle-aged and older patients with rectal adenocarcinoma using a nomogram model.
15 16 17	6		<i>Transl Oncol</i> 2021;14:100938.
18 19	7	26.	Ó Hartaigh B, Gransar H, Callister T, et al. Development and validation of a
20 21	8		simple-to-use nomogram for predicting 5-, 10-, and 15-year survival in asymptomatic
22 23 24	9		adults undergoing coronary artery calcium scoring. JACC Cardiovasc Imaging
25 26	10		2018;11:450-8.
27 28 29	11	27.	Guo Q, Wu M, Li H, et al. Development and validation of a prognostic nomogram for
30 31	12		myocardial infarction patients in intensive care units: a retrospective cohort study. BMJ
32 33 34	13		<i>Open</i> 2020;10:e040291.
35 36 37	14	28.	Wang H, Liu D, Liang H, et al. A nomogram for predicting survival in patients with
38 39	15		colorectal cancer incorporating cardiovascular comorbidities. Front Cardiovasc Med
40 41 42	16		2022;9:875560.
43 44	17		
45 46			
47 48 40			
49 50			
51 52			
53 54			
55			
56 57			
58			
60			
			23

Table 1. Baseline characteristics, medications, and outcomes of cohorts for developing

and validating 30-day prognostic model

Variables	Derivation cohort	Validation cohort	P value
	(n=15925)	(n=7962)	
Demographics			
Age, yrs	62.27±12.36	62.54±12.29	0.1122
Female	3878 (24.4)	1940 (24.4)	0.9809
BMI, kg/m ²	24.13±3.05	24.08±3.04	0.2475
Medical history			
Diabetes	2943 (19.6)	1505 (20.0)	0.4491
Hypertension	7873 (51.2)	3897 (50.8)	0.4970
Hyperlipidemia	1154 (8.5)	569 (8.3)	0.6198
Current smoker	7083 (45.7)	3483 (44.8)	0.2257
Prior angina pectoris	4044 (27.8)	1994 (27.4)	0.4987
Prior myocardial infarction	1083 (7.4)	553 (7.5)	0.7122
Prior heart failure	329 (2.2)	169 (2.3)	0.7723
Prior stroke	1330 (8.8)	711 (9.4)	0.1367
Prior peripheral artery disease	96 (0.6)	46 (0.6)	0.8073
Prior PCI	753 (5.0)	381 (5.1)	0.8669
Prior CABG	56 (0.4)	36 (0.5)	0.2450

Prior renal dysfunction	197 (1.3)	94 (1.3)	0.69
COPD	279 (1.9)	142 (1.9)	0.87
Presenting characteristics			
Symptom onset to admission time			0.15
0-6h	7398 (47.0)	3625 (46.0)	
>6h	8330 (53.0)	4247 (54.0)	
Heart rate, beats/min	77.45±18.07	77.84±18.03	0.11
Systolic blood pressure	129.48±25.01	129.94±25.26	0.18
Killip class			0.50
Ι	11836 (76.2)	5903 (75.8)	
II-IV	3694 (23.8)	1883 (24.2)	
Cardiac arrest at admission	128 (0.8)	77 (1.0)	0.20
AMI classification			0.46
STEMI	12051 (75.7)	5991 (75.2)	
NSTEMI	3874 (24.3)	1971 (24.8)	
Anterior wall involvement	7406 (47.7)	3696 (47.5)	0.83
Laboratory results			
Creatinine, µmol/L	74.90 (62.00, 90.00)	74.60 (62.00, 90.40)	0.91
Creatinine clearance, ml/min	83.83 (61.61, 109.00)	83.70 (61.52, 108.71)	0.34

Hemoglobin, g/L	136.23±21.09	136.07±20.94	0.5897
Leukocyte count, $\times 10^{9}/L$	10.09±3.69	10.04±3.60	0.4052
LVEF, %	53.84±10.07	53.81±10.08	0.8202
n-hospital treatment			
PCI	8951 (57.9)	4432 (57.2)	0.3550
CABG	127 (0.8)	76 (1.0)	0.2190
Adverse events during hospitalization			
New-onset heart failure	2082 (13.5)	1035 (13.4)	0.8803
Recurrent myocardial ischemia	384 (2.5)	166 (2.2)	0.1124
Recurrent myocardial infarction	61 (0.4)	22 (0.3)	0.178
Stroke	90 (0.6)	40 (0.5)	0.534
Other bleeding events	236 (1.5)	121 (1.6)	0.8112
Aedications at discharge			
Antiplatelet therapy			0.4017
Dual antiplatelet therapy	13212 (87.6)	6571 (87.1)	
Single antiplatelet therapy	1261 (8.4)	648 (8.6)	
None	603 (4.0)	327 (4.3)	
Statins	13846 (91.8)	6976 (92.4)	0.111:
	10241 ((0, ())	500((((2))	0.000

A	ACEI/ARB	8642 (57.3)	4326 (57.3)	0.993
1	Values are shown as me	ean ± standard deviation, median (interqu	uartile range), or numbe	er (%)
2	without imputation of	missing data. BMI, body mass index;	PCI, percutaneous con	ronary
3	intervention; CABG, c	oronary artery bypass graft; COPD, ch	ronic obstructive pulm	ionary
4	disease; AMI, acute	myocardial infarction; STEMI, ST-seg	gment elevation myoc	cardial
5	infarction; NSTEMI, no	n-ST-segment elevation myocardial infa	rction; LVEF, left vent	ricular
6	ejection fraction; ACE	I, angiotensin converting enzyme inh	ibitor; ARB, angioten	sin II
7	receptor blocker.			
8				
0				
		27		

	All-cause death	1	
	Adjusted HR (95% CI)	P valu	
Age (per 1 year increase)	1.035 (1.021, 1.049)	<0.000	
Prior stroke (vs no)	1.560 (1.091-2.231)	0.0148	
Heart rate (per 1beat/min increase)	1.006 (1.000-1.012)	0.0497	
Killip class II - IV (vs I)	1.528 (1.115-2.094)	0.0083	
LVEF (per 1% increase)	0.969 (0.955, 0.982)	<0.000	
In-hospital PCI (vs no)	0.441 (0.307, 0.634)	<0.000	
In-hospital recurrent myocardial ischemia (vs no)	1.711 (1.019-2.871)	0.0421	
In-hospital recurrent myocardial infarction (vs no)	4.572 (2.121-9.859)	0.000	
In-hospital heart failure (vs no)	2.869 (2.065-3.986)	<0.000	
Antiplatelet therapy at discharge (vs dual antiplatelet therapy)			
Single antiplatelet therapy	0.791 (0.491-1.275)	0.3358	
None	2.363 (1.395-4.003)	0.0014	
Statins at discharge (vs no)	2.009 (1.258-3.208)	0.0035	
LVEF, left ventricular ejection fraction; PCI, percutaneou	s coronary intervention; HR,	hazard	
ratio; CI, confidence interval.			

Table 2. Multivariable analysis of 30-day mortality in the derivation cohort

	All-cause death	l	
	Adjusted HR (95% CI)	P valu	
Age (per 1 year increase)	1.052 (1.045-1.060)	<0.000	
Prior renal dysfunction (vs no)	1.539 (1.076-2.201)	0.018	
History of heart failure (vs no)	1.501 (1.160-1.943)	0.002	
STEMI (vs NSTEMI)	0.747 (0.639-0.873)	0.000	
Heart rate (per 1 beat/min increase)	1.008 (1.005-1.011)	<0.00	
Killip class II -IV(vs I)	1.330 (1.129-1.566)	0.000	
Hemoglobin (per 1g/L increase)	0.993 (0.990-0.996)	<0.00	
LVEF (per 1% increase)	0.971 (0.964-0.978)	<0.00	
In-hospital PCI (vs no)	0.423 (0.351-0.510)	<0.00	
In-hospital heart failure(vs no)	1.287 (1.085-1.525)	0.003	
Heart failure worsening within 30 days (vs no)	1.675 (1.258-2.229)	0.000	
Antiplatelet therapy within 30 days (vs dual antiplatelet therapy)			
Single antiplatelet therapy	1.107 (0.911-1.345)	0.308	
None	1.430 (1.055-1.937)	0.021	
3 blocker within 30 days (vs yes)	1.271 (1.085-1.491)	0.003	
Statins within 30 days (vs yes)	1.191 (0.908-1.561)	0.207	

2		
3	1	STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation
4		
5	2	myocardial infarction; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary
6 7		J
7 8	3	intervention: HR, hazard ratio: CI, confidence interval.
9	-	
10		
11	4	
12		
13		
14		
15		
16		
17		
10		
20		
21		
22		
23		
24		
25		
20		
27		
20		
30		
31		
32		
33		
34		
35		
30 27		
38		
39		
40		
41		
42		
43		
44		
45 46		
47		
48		
49		
50		
51		
52		
53 51		
54		
56		
57		
58		
59		
60		

		20 day madal 0	20 day model 1
		50-day model 0	So-day model 1
	C index	0.822 (0.796-0.848)	0.855 (0.830-0.879)
	NRI (95%CI)	0.445 (0.339-0.523)	
	P value	< 0.0001	
	IDI (95%CI)	0.040 (0.025-0.074)	
	P value	<0.0001	
	Likelihood ratio test (P value)	e) <0.0001	
	BIC	3434.091	3350.882
2	30-days Model 0: age prior stroke	heart rate Killin class I V	EF and in hospital PCL

recurrent myocardial ischemia, in-hospital recurrent myocardial infarction, in-hospital heart failure, antiplatelet therapy, and statins at discharge. LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; NRI, net reclassification index; CI, confidence interval; IDI, integrated discrimination improvement index; BIC, Bayesian information criteria.

	2-year model 0	2-year model 1
C index	0.822 (0.807-0.836)	0.825 (0.811-0.839)
NRI (95%CI)	0.119 (-0.045-0.176)	
P value		0.126
IDI (95%CI)	0.008 (0.004-0.017)	
P value		0.007
Likelihood ratio test (P value)	<	<0.0001
BIC	12792.602	12785.706

Table 5. Comparison of 2-year prognostic models with or without adverse events and

2-year Model 0: age, prior renal dysfunction, prior heart failure, AMI classification, heart rate, Killip class, hemoglobin, LVEF, in-hospital PCI, and in-hospital heart failure. 2-year Model 1: age, prior renal dysfunction, prior heart failure, AMI classification, heart rate, Killip class, hemoglobin, LVEF, in-hospital PCI, in-hospital heart failure, heart failure worsening within 30 days, antiplatelet therapy, β blockers, and statins within 30 days. AMI, acute myocardial infarction; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; NRI, net reclassification index; CI, confidence interval; IDI, integrated discrimination improvement index; BIC, Bayesian information criteria.
FIGURE LEGENDS

Figure 1. Nomogram for predicting 30-day survival probability. The observed value of a prognostic index was assigned a point by drawing a perpendicular line towards the top scale. The sum of points for each index was plotted on the "Total points" scale, and corresponded to the probability of 30-day survival at the bottom with a vertical line. LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention.

Figure 2. Nomogram for predicting 2-year survival probability. The observed value of a prognostic index was assigned a point by drawing a perpendicular line towards the top scale. The sum of points for each index was plotted on the "Total points" scale, and corresponded to the probability of 2-year survival at the bottom with a vertical line. AMI, acute myocardial infarction; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention.

BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplemental Materials

Junxing Lv et al. Dynamic risk prediction in patients following acute myocardial infarction.

I. Supplemental Tables.

Supplemental Table 1. Baseline characteristics, medications, and outcomes of cohorts for developing and validating 2-year prognostic model.

Supplemental Table 2. Univariable analysis of 30-day mortality.

Supplemental Table 3. Univariable analysis of mortality after 30 days.

Supplemental Table 4. Discrimination of 30-day prognostic nomogram in subgroups of patients.

Supplemental Table 5. Discrimination of 2-year prognostic nomogram in subgroups of patients.

II. Supplemental Figures.

Supplemental Figure 1. Flowchart of this study. AMI, acute myocardial infarction.

Supplemental Figure 2. Kaplan-Meier curve for patients after AMI hospitalization. AMI, acute myocardial infarction.

Supplemental Figure 3. Density plots for all-cause death and recurrent myocardial infarction during follow-up. (A) Density plot for all-cause death. (B) Density plot for recurrent myocardial infarction.

Supplemental Figure 4. Variable selection by LASSO method for 30-day prognostic model in imputation dataset 1. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute

shrinkage and selection operator; SE, standard error.

Supplemental Figure 5. Variable selection by LASSO method for 30-day prognostic model in imputation dataset 2. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 6. Variable selection by LASSO method for 30-day prognostic model in imputation dataset 3. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 7. Variable selection by LASSO method for 30-day prognostic model in imputation dataset 4. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 8. Variable selection by LASSO method for 30-day prognostic model in imputation dataset 5. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 9. Relative importance of selected predictors for 30-day mortality. Relative importance of variables selected by LASSO method was ranked according to the proportion of explainable log-likelihood ratio χ^2 statistics. LASSO, least absolute shrinkage and selection operator; Mi, myocardial ischemia; MI, myocardial infarction; PCI, percutaneous coronary intervention; LVEF, left ventricular ejection fraction; HF, heart failure.

Supplemental Figure 10. Variable selection by LASSO method for 2-year prognostic model in imputation dataset 1. (A) The plot showing partial likelihood deviance values

versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 11. Variable selection by LASSO method for 2-year prognostic model in imputation dataset 2. (A) The plot showing partial likelihood deviance values versus $\log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $\log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 12. Variable selection by LASSO method for 2-year prognostic model in imputation dataset 3. (A) The plot showing partial likelihood deviance values versus $\log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $\log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 13. Variable selection by LASSO method for 2-year prognostic model in imputation dataset 4. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 14. Variable selection by LASSO method for 2-year prognostic model in imputation dataset 5. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 15. Relative importance of selected predictors for 2-year mortality. Relative importance of variables selected by LASSO method was ranked according to the proportion of explainable log-likelihood ratio χ^2 statistics. LASSO, least absolute shrinkage and selection operator; HF, heart failure; AMI, acute myocardial infarction; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention.

Supplemental Figure 16. Comparisons of clinical utilities between models with or without adverse events and medications. The red and green lines represent the assumption that all or none patients at high risk with different thresholds. The lines in the upper right represent the risk prediction models. (A) Comparison of clinical utilities between 30-day model with or without adverse events and medications. (B) Comparison of clinical utilities between 2-year model with or without adverse events and medications.

Supplemental Figure 17. Comparisons of clinical utilities between models and GRACE risk score. The red and green lines represent the assumption that all or none patients at high risk with different thresholds. The lines in the upper right represent the risk prediction models. (A) Comparison of clinical utilities between 30-day model and GRACE risk score. (B) Comparison of clinical utilities between 2-year model and GRACE risk score. GRACE, Global Registry of Acute Coronary Events.

Supplemental Figure 18. Calibration curves of 30-day prognostic nomogram. Calibration curves present the relationship between observed and predicted survival probabilities by 30-day prognostic nomogram in both derivation and validation cohorts. (A) Calibration curve of 30-day prognostic nomogram in derivation cohort. (B) Calibration curve of 30-day prognostic nomogram in validation cohort.

Supplemental Figure 19. Calibration curves of 2-year prognostic nomogram. Calibration curves present the relationship between observed and predicted survival probabilities by 2-year prognostic nomogram in both derivation and validation cohorts. (A) Calibration curve of 2-year prognostic nomogram in derivation cohort. (B) Calibration curve of 2-year prognostic nomogram in validation cohort.

I. Supplemental Tables.

Supplemental Table 1. Baseline characteristics, medications, and outcomes of cohorts for developing and validating 2-year prognostic model

⁸ ₉ Variables	Derivation cohort (n=12136)	Validation cohort (n=6067)	P value
¹⁰ Demographics			
¹² Age, yrs	62.08±12.28	62.26±12.20	0.3634
14 Female	2967 (24.4)	1459 (24.0)	0.5531
16 BMI, kg/m^2	24.12±3.02	24.11±3.01	0.8755
¹⁷ 1 Medical history			
¹⁹ ₂₀ Diabetes	2213 (19.0)	1146 (19.6)	0.2974
²¹ ₂₂ Hypertension	6021 (50.6)	3011 (50.7)	0.8935
²³ Hyperlipidemia	760 (7.2)	382 (7.2)	0.9871
25 Current smoker	5565 (46.3)	2737 (45.5)	0.3511
27 Prior angina pectoris	3173 (28.0)	1571 (27.8)	0.7999
Prior myocardial infarction	821 (7.2)	420 (7.3)	0.6981
³⁰ ₃₁ Prior heart failure	243 (2.1)	120 (2.1)	0.9227
³² Prior stroke	1038 (8.8)	572 (9.7)	0.0503
³⁴ Prior peripheral artery disease	72 (0.6)	30 (0.5)	0.3967
36 Prior PCI	562 (4.8)	293 (5.0)	0.5356
³⁷₃₈ Prior CABG	38 (0.3)	25 (0.4)	0.2883
³⁹ ₄₀ Prior renal dysfunction	130 (1.1)	56 (1.0)	0.3474
⁴¹ COPD	221 (1.9)	114 (2.0)	0.7794
⁴ Presenting characteristics			
45Symptom onset to admission time			0.1659
46 47 0-6h	5725 (47.6)	2798 (46.5)	
$\frac{48}{49}$ >6h	6298 (52.4)	3216 (53.5)	
⁵⁰ ₅₁ Heart rate, beats/min	77.37±18.06	77.63±18.04	0.3710
⁵² Systolic blood pressure	129.61±25.30	130.00±25.52	0.3250
55 54Killip class			0.8824
55 56 I	9163 (76.2)	4589 (76.3)	
57 58 II-IV	2859 (23.8)	1424 (23.7)	
⁵⁹ ₆₀ Cardiac arrest at admission	95 (0.8)	62 (1.0)	0.1055

2			
³ AMI classification			0.2540
5 STEMI	9215 (75.9)	4560 (75.2)	
6 7 NSTEMI	2921 (24.1)	1507 (24.8)	
⁸ ₉ Anterior wall involvement	5743 (47.7)	2843 (47.2)	0.5888
¹⁰ Laboratory results			
¹² Creatinine, μ mol/L	74.00 (61.80, 89.10)	73.90 (61.40, 89.60)	0.7455
¹⁴ Creatinine clearance, ml/min	84.53 (62.60, 109.58)	84.92 (63.22, 110.16)	0.9369
16Hemoglobin, g/L	136.37±20.82	136.39±20.79	0.9582
17 18Leukocyte count, ×10 ⁹ /L	10.09±3.65	10.02±3.52	0.1737
¹⁹ ₂₀ LVEF, %	54.08±10.00	54.01±9.94	0.7200
²¹ In-hospital treatment			
²³ In-hospital PCI	6998 (58.4)	3468 (57.7)	0.4281
25 In-hospital CABG	87 (0.7)	50 (0.8)	0.4388
26 2Adverse events during hospitalization			
28 29New-onset heart failure	1616 (13.5)	805 (13.5)	0.9477
³⁰ ₃₁ Recurrent myocardial ischemia	281 (2.3)	125 (2.1)	0.2736
³² Recurrent myocardial infarction	37 (0.3)	18 (0.3)	0.9259
³⁴ Stroke	65 (0.5)	29 (0.5)	0.6109
35 36Other bleeding events	183 (1.5)	94 (1.6)	0.8199
37 3 Medications within 30 days			
³⁹ ₄₀ Antiplatelet therapy			0.4345
⁴¹ Dual antiplatelet therapy	10518 (86.7)	5287 (87.1)	
⁴³ Single antiplatelet therapy	1292 (10.6)	610 (10.1)	
44 45 None	326 (2.7)	170 (2.8)	
46 47Statins	11486 (94.6)	5736 (94.5)	0.7789
⁴⁸ 49β blockers	8751 (72.1)	4347 (71.6)	0.5171
⁵⁰ ACEI/ARB	7221 (59.5)	3591 (59.2)	0.6866
52 Values are shown as mean ±	standard deviation, median (int	erquartile range), or number (%	(0)

Values are shown as mean ± standard deviation, median (interquartile range), or number (%) without imputation of missing data. BMI, body mass index; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; AMI, acute myocardial infarction; STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; LVEF, left ventricular ejection fraction; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin II

receptor blocker.

to beet terien only

	Unadjusted HR (95% CI)	P value
Age (per 1 year increase)	1.066 (1.052, 1.080)	< 0.0001
Women (vs men)	1.662 (1.233, 2.241)	0.0009
BMI (per 1kg/m ² increase)	0.893 (0.850, 0.939)	< 0.0001
Diabetes (vs no)	1.545 (1.123, 2.126)	0.0075
Hypertension (vs no)	1.289 (0.958, 1.734)	0.0930
Hyperlipidemia (vs no)	0.749 (0.406, 1.384)	0.3547
Current smoking (vs no)	0.406 (0.293, 0.563)	< 0.0001
Prior angina pectoris (vs no)	1.324 (0.972, 1.803)	0.0754
Prior myocardial infarction (vs no)	1.177 (0.709, 1.954)	0.5284
Prior heart failure (vs no)	5.078 (3.166, 8.144)	< 0.000
Prior stroke (vs no)	2.627 (1.842, 3.747)	< 0.000
Prior PCI (vs no)	0.814 (0.400, 1.659)	0.5717
Prior CABG (vs no)	_	—
Prior renal dysfunction (vs no)	1.596 (0.587, 4.338)	0.3591
COPD (vs no)	3.208 (1.744, 5.901)	0.0002
Prior peripheral artery disease (vs no)	-	_
Symptom onset to admission time (vs 0-6h)		
>6h	1.947 (1.431, 2.649)	< 0.000
Heart rate (per 1 beat increase)	1.024 (1.018, 1.029)	< 0.000
Systolic blood pressure (per 1mmHg increase)	0.994 (0.988, 1.000)	0.0358
Killip class (vs I)		
II-IV	3.980 (2.990, 5.298)	< 0.000
Cardiac arrest at admission (vs no)	1.921 (0.614, 6.011)	0.2620
NSTEMI (vs STEMI)	1.230 (0.898, 1.686)	0.1977
Anterior wall involvement (vs no)	1.255 (0.943, 1.671)	0.1185
Creatinine clearance (vs >90 ml/min)		
60-90	1.805 (1.222, 2.666)	0.0030
≤60	4.252 (2.985, 6.058)	< 0.000
Hemoglobin (per 1g/L increase)	0.988 (0.983, 0.993)	< 0.000
Leukocyte count (per 10 ⁹ /L increase)	1.055 (1.023, 1.088)	0.0006

2			
3 ⊿	LVEF (per 1% increase)	0.938 (0.923, 0.952)	< 0.0001
5	In-hospital PCI (vs no)	0.220 (0.157, 0.308)	< 0.0001
6 7	In-hospital CABG (vs no)	1.277 (0.317, 5.145)	0.7308
8 9	New-onset heart failure during hospitalization (vs no)	7.204 (5.414, 9.585)	< 0.0001
10 11 12	Recurrent myocardial ischemia during hospitalization (vs no)	6.028 (3.938, 9.228)	< 0.0001
13 14 15	Recurrent myocardial infarction during hospitalization (vs no)	13.299 (6.752 26.195)	< 0.0001
16 17	Stroke during hospitalization (vs no)	2.908 (0.934, 9.052)	0.0654
18	Other bleeding events during hospitalization (vs no)	4.109 (2.235, 7.558)	< 0.0001
20	Antiplatelet therapy at discharge (vs dual therapy)		
21 22	Single antiplatelet therapy	1.344 (0.762, 2.372)	0.3024
23 24	none	5.158 (3.468, 7.672)	< 0.0001
25	Statins at discharge (vs no)	3.180 (2.246, 4.502)	< 0.0001
20 27 28	β blockers at discharge (vs no)	1.483 (1.105, 1.991)	0.0087
29	ACEI/ARB at discharge (vs no)	1.481 (1.088, 2.017)	0.0128
31	BMI body mass index: PCI percutaneous coronary in	tervention: CABG coronar	v artery

BMI, body mass index; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; NSTEMI, non-ST-segment elevation myocardial infarction; STEMI, ST-segment elevation myocardial infarction; LVEF, left ventricular ejection fraction; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker; HR, hazard ratio; CI, confidence interval.

2 3 4	 Supplemental Table 3. Univariable analysis of mortality after 30 days 			
5		Unadjusted HR (95% CI)	P value	
7	Age (per 1 year increase)	1.084 (1.076, 1.092)	< 0.0001	
8 9	Women (vs men)	1.947 (1.679, 2.259)	< 0.0001	
10 11	BMI (per 1kg/m ² increase)	0.895 (0.872, 0.919)	< 0.0001	
12 13	Diabetes (vs no)	1.571 (1.328, 1.857)	< 0.0001	
14	Hypertension (vs no)	1.533 (1.321, 1.779)	< 0.0001	
16	Hyperlipidemia (vs no)	0.631 (0.443, 0.900)	0.0111	
17 18	Current smoking (vs no)	0.423 (0.359, 0.498)	< 0.0001	
19 20	Prior angina pectoris (vs no)	1.318 (1.131, 1.536)	0.0004	
21 22	Prior myocardial infarction (vs no)	2.064 (1.657, 2.570)	< 0.0001	
23 24	Prior heart failure (vs no)	5.964 (4.685, 7.594)	< 0.0001	
25	Prior stroke (vs no)	2.013 (1.651, 2.455)	< 0.0001	
20	Prior PCI (vs no)	1.122 (0.817, 1.540)	0.4770	
28 29	Prior CABG (vs no)	1.656 (0.618, 4.433)	0.3156	
30 31	Prior renal dysfunction (vs no)	4.383 (2.969 6.470)	< 0.0001	
32 33	COPD (vs no)	2.897 (2.076, 4.044)	< 0.0001	
34 35	Prior peripheral artery disease (vs no)	2.273 (1.197, 4.314)	0.0122	
36	Symptom onset to admission time (vs 0-6h)			
37 38	>6h	1.497 (1.287, 1.742)	< 0.0001	
39 40	Heart rate (per 1 beat increase)	1.021 (1.018, 1.024)	< 0.0001	
41 42	Systolic blood pressure (per 1mmHg increase)	1.005 (1.002, 1.008)	0.0005	
43 44	Killip class (vs I)			
45 46	II-IV	3.225 (2.792, 3.726)	< 0.0001	
47	Cardiac arrest at admission (vs no)	1.068 (0.478, 2.388)	0.8724	
48 49	NSTEMI (vs STEMI)	2.395 (2.070, 2.771)	< 0.0001	
50 51	Anterior wall involvement (vs no)	1.210 (1.047, 1.398)	0.0096	
52 53	Creatinine clearance (vs >90 ml/min)			
54 55	60-90	1.725 (1.405, 2.119)	< 0.0001	
56	≤60	5.193 (4.328, 6.231)	< 0.0001	
58	Hemoglobin (per 1g/L increase)	0.980 (0.978, 0.983)	< 0.0001	
59 60	Leukocyte count (per 10 ⁹ /L increase)	1.010 (0.990, 1.030)	0.3333	

2			
3 4	LVEF (per 1% increase)	0.948 (0.941, 0.955)	< 0.0001
5	In-hospital PCI (vs no)	0.207 (0.175, 0.246)	< 0.0001
6 7	In-hospital CABG (vs no)	0.421 (0.106, 1.674)	0.2184
8 9	New-onset heart failure during hospitalization (vs no)	3.418 (2.932, 3.984)	< 0.0001
10 11	Recurrent myocardial ischemia during hospitalization (vs no)	2.653 (1.949, 3.610)	< 0.0001
12 13	Recurrent myocardial infarction during hospitalization (vs no)	1.773 (0.659, 4.771)	0.2565
14	Stroke during hospitalization (vs no)	3.455 (1.991, 5.996)	< 0.0001
16	Other bleeding events during hospitalization (vs no)	2.233 (1.486, 3.356)	0.0001
17 18	Recurrent myocardial infarction within 30 days (vs no)	3.032 (1.130-8.134)	0.0276
19 20	Heart failure worsening within 30 days (vs no)	4.790 (3.631, 6.319)	< 0.001
21 22	Antiplatelet therapy within 30 days (vs dual antiplatelet therapy)		
23	Single antiplatelet therapy	2.147 (1.779, 2.591)	< 0.0001
24	none	4.371 (3.385, 5.643)	< 0.0001
26 27	Statins within 30 days (vs no)	2.454 (1.960, 3.073)	< 0.0001
28 29	β blockers within 30 days (vs no)	1.594 (1.374, 1.850)	< 0.0001
30 31	ACEI/ARB within 30 days (vs no)	1.153 (0.997, 1.333)	0.0546
32		··· CADC	_

BMI, body mass index; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; NSTEMI, non-ST-segment elevation myocardial infarction; STEMI, ST-segment elevation myocardial infarction; LVEF, left ventricular ejection fraction; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker; HR, hazard ratio; CI, confidence interval.

Subgroup	Sample size	C statistic (95% CI)
Age, yrs		
≤75	4766	0.74 (0.65-0.84)
>75	935	0.83 (0.71-0.94)
Sex		
Male	4359	0.79 (0.69-0.88)
Female	1342	0.75 (0.62-0.88)
Diabetes		
Yes	1106	0.81 (0.62-1.00)
No	4431	0.78 (0.70-0.87)
Diagnosis		
STEMI	4302	0.77 (0.68-0.86)
NSTEMI	1399	0.83 (0.72-0.93)
In-hospital PCI		
Yes	3498	0.76 (0.63-0.88)
No	2203	0.76 (0.66-0.85)

Supplemental Table 4. Discrimination of 30-day prognostic nomogram in subgroups of patients

STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; PCI, percutaneous coronary intervention; CI, confidence interval.

3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
18
10
20
∠∪ 21
21
22
23
24
25
26
27
28
20
20
50 21
31
32
33
34
35
36
37
38
30
10
40 1
41
42
43
44
45
46
47
48
49
50
51
57
52 52
53
54
55
56
57
58
59

1 2

Subgroup	Sample size	C statistic (95% CI)
Age, yrs		
≤75	3766	0.79 (0.75-0.83)
>75	695	0.66 (0.62-0.71)
Sex		
Male	3412	0.83 (0.80-0.86)
Female	1049	0.75 (0.70-0.80)
Diabetes		
Yes	845	0.81 (0.76-0.86)
No	3496	0.81 (0.78-0.84)
AMI classification		
STEMI	3364	0.81 (0.78-0.84)
NSTEMI	1097	0.81 (0.76-0.85)
In-hospital PCI		
Yes	3104	0.82 (0.78-0.87)
No	1357	0.72 (0.68-0.76)

Supplemental Table 5. Discrimination of 2-year prognostic nomogram in subgroups of patients

AMI, acute myocardial infarction; STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; PCI, percutaneous coronary intervention; CI, confidence interval.

Supplemental Figure 2. Kaplan-Meier curve for patients after AMI hospitalization

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplemental Figure 17. Comparisons of clinical utilities between models and GRACE risk score

BMJ Open

Supplemental Figure 18. Calibration curves of 30-day prognostic nomogram

BMJ Open

Supplemental Figure 19. Calibration curves of 2-year prognostic nomogram

TRIPOD Checklist: Prediction Model Development

Section	Item	Checklist description	Reported on Page Number/Line Number	Reported on Section/Paragraph
Title and abstract	·			
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.		
Abstract	2	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.		
Introduction	·		• •	
Background and objectives	3a	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.		
	3b	Specify the objectives, including whether the study describes the development or validation of the model or both.		
Methods			~ 	·
Source of data	4a	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, ifapplicable.		
	4b	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.		
Participants	5a	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.		
	5b	Describe eligibility criteria for participants.		
	5c	Give details of treatments received, if relevant.		
Outcome	6a	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.		
	6b	Report any actions to blind assessment of the outcome to be predicted.		
Predictors	7a	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.		
	7b	Report any actions to blind assessment of predictors for the outcome and other predictors.		
Sample size	8	Explain how the study size was arrived at.		
BMJ Open

Missing data	9	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	
Statistical analysis	10a	Describe how predictors were handled in the analyses.	
methods	10b	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	
	10d	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	
Risk groups	11	Provide details on how risk groups were created, if done.	
Results			
Participants	13a	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	
	13b	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	
Model development	14a	Specify the number of participants and outcome events in each analysis.	
	14b	If done, report the unadjusted association between each candidate predictor and outcome.	
Model specification	15a	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	
	15b	Explain how to the use the prediction model.	
Model performance	16	Report performance measures (with CIs) for the prediction model.	
Discussion			
Limitations	18	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	
Interpretation	19b	Give an overall interpretation of the results, considering objectives, limitations, and results from similar studies, and other relevant evidence.	
Implications	20	Discuss the potential clinical use of the model and implications for future research.	
Other information			
Supplementary information	21	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	
Funding	22	Give the source of funding and the role of the funders for the present study.	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For Deer review only

BMJ Open

Development and validation of dynamic models to predict post-discharge mortality risk in patients with acute myocardial infarction: results from China Acute Myocardial Infarction registry

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069505.R1
Article Type:	Original research
Date Submitted by the Author:	16-Feb-2023
Complete List of Authors:	Lv, Junxing; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Cardiology Wang, Chuang-Shi; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Medical Research and Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102300, China. Gao, Xiaojin; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Cardiology Yang, Jingang; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Cardiology Zhang, Xuan; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Cardiology Zhang, Xuan; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Cardiology Ye, Yunqing; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Department of Cardiology Dong, Qiuting; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Department of Cardiology Dong, Qiuting; Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Department of Cardiology Fu, Rui; Chinese Academy of Medical Sciences and Peking Union Medical College Fuwai Hospital, Cardiology Yan, Xinxin; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Cardiology Yan, Xinxin; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Department of Cardiology Zhao, Yanyan; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Medical Research & Biometrics Center Yang, Wang; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Department of Cardiology Yang, Yuejin; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Department of Cardiology Yang, Yuejin; Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Department of Cardiology Yang, Yuejin;
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Myocardial infarction < CARDIOLOGY, Coronary heart disease <

CARDIOLOGY, Coronary intervention < CARDIOLOGY, Prognosis
SCHOLARONE™ Manuagrinta
Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Page 3 of 85

1 ว		
2 3 4	1	Development and validation of dynamic models to predict post-discharge
5 6 7	2	mortality risk in patients with acute myocardial infarction: results from
8 9 10	3	China Acute Myocardial Infarction registry
11 12 12	4	Running title: Dynamic models in patients with AMI
14 15 16	5	
17 18 19	6	Junxing Lv, MD ^{1,*} , Chuangshi Wang, PhD ^{2,*} , Xiaojin Gao, MD, PhD ¹ , Jingang Yang, MD,
20 21	7	PhD ¹ , Xuan Zhang, MD ¹ , Yunqing Ye, MD ¹ , Qiuting Dong, MD, PhD ¹ , Rui Fu, MD ¹ , Hui Sun,
22 23	8	MD ¹ , Xinxin Yan, MD, PhD ¹ , Yanyan Zhao, PhD ² , Yang Wang, PhD ² , Haiyan Xu, MD, PhD ^{1,†} ,
24 25 26	9	and Yuejin Yang, MD, PhD ^{1,†} ; on behalf of the China Acute Myocardial Infarction Registry
27 28	10	study group
29 30 31 32	11	
33 34	12	¹ Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases,
35 36 37	13	Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
37 38 39	14	² Medical Research & Biometrics Center, Fuwai Hospital, National Center for Cardiovascular
40 41	15	Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,
42 43 44	16	China
45 46 47	17	
48 49 50	18	* Junxing Lv and Chuangshi Wang contributed equally to this work as joint first authors.
51 52 53	19	[†] Haiyan Xu and Yuejin Yang contributed equally to this work as joint corresponding authors.
54 55 56	20	
57 58 59 60	21	Correspondence:
		1

1		
2		
3 4	1	Haiyan Xu
5		
6	2	Address: No. 167 Beilishi Road, Xicheng District, 100037, Beijing, China
7	2	rearess. 100. 107 Demoni Roua, rieneng District, 100057, Deijing, emila.
8		
9	3	Tel: +86-10-88396082 Fax: +86-10-88396237
10		
12	4	E mail what you of the anital are
13	4	E-man. xunaiyan@iuwamospitai.org
14		
15	5	Yuejin Yang
16		
17		
18	6	Address: No. 167 Beilishi Road, Xicheng District, 100037, Beijing, China.
20		
21	7	E-mail: vangvifw@126 com
22	,	
23		
24	8	
25		
26 27	0	Word count
27	9	word count
29		
30	10	Abstract: 299 Main text (not including references, tables, and figure legends): 3775
31		
32		
33	11	
34 35		
36	12	
37		
38		
39	13	
40		
41		
42		
44		
45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55		
50 57		
58		
59		
60		

BMJ Open

Abstract Objectives: The risk of adverse events and prognostic factors are changing in different time phases after acute myocardial infarction (AMI). The incidence of adverse events is considerable in the early period after AMI hospitalization. Therefore, dynamic risk prediction is needed to guide post-discharge management of AMI. This study aimed to develop an dynamic risk prediction instrument for patients following AMI.

Design: A retrospective analysis of a prospective cohort.

Setting: 108 hospitals in China.

Participants: A total of 23887 patients after AMI in the China Acute Myocardial Infarctionregistry were included in this analysis.

Primary outcome measures: All-cause mortality.

12Results: In multivariable analyses, age, prior stroke, heart rate, Killip class, left ventricular13ejection fraction (LVEF), in-hospital percutaneous coronary intervention (PCI), recurrent14myocardial ischemia, recurrent myocardial infarction, heart failure (HF) during hospitalization,15antiplatelet therapy, and statins at discharge were independently associated with 30-day16mortality. Variables related to mortality between 30 days and 2 years included age, prior renal17dysfunction, history of HF, AMI classification, heart rate, Killip class, hemoglobin, LVEF, in-18hospital PCI, HF during hospitalization, HF worsening within 30 days after discharge,19antiplatelet therapy, β blocker, and statins use within 30 days after discharge. The inclusion of20adverse events and medications significantly improved the predictive performance of models21without these indexes (likelihood ratio test P<0.0001). These two sets of predictors were used</td>22to establish dynamic prognostic nomograms for predicting mortality in patients with AMI. The23C indexes of 30-day and 2-year prognostic nomograms were 0.85 (95% confidence interval)

2 3	1	[CI]: 0.82, 0.88) and 0.82 (0.5%, CI: 0.81, 0.84) in derivation apport and 0.70 (0.5%, CI: 0.71
4	1	[C1]. 0.85-0.88) and 0.85 (9576 C1. 0.81-0.84) in derivation conort, and 0.79 (9576 C1. 0.71-
5 6 7	2	0.86) and 0.81 (95% CI: 0.79-0.84) in validation cohort, with satisfying calibration.
8 9 10	3	Conclusions: We established dynamic risk prediction models incorporating adverse event and
10 11 12	4	medications. The nomograms may be useful instruments to help prospective risk assessment
13 14 15	5	and management of AMI.
16 17	6	Trial registration number: NCT01874691.
18 19 20	7	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	8	Keywords: Myocardial infarction, risk prediction, model, prognosis
49 50 51 52 53 54 55 56 57 58 59 60		

BMJ Open

2 3 4 5	1	Strengths and limitations of this study
6 7 8	2	• We developed and validated a dynamic risk prediction tool using data from a large,
9 10 11	3	prospective, multicenter registry.
12 13 14	4	• We analyzed the incremental prognostic value of in-hospital and post-discharge adverse
15 16 17	5	events as well as medications over traditional predictors in patients following acute
18 19 20	6	myocardial infarction.
21 22 23	7	• We compared the predictive performance of our models with existing risk prediction tools,
24 25 26	8	including the Global Registry of Acute Coronary Events 1.0 and 2.0 scores.
27 28 29	9	• The predictive performance of the dynamic risk prediction tool can be further improved if
30 31 32	10	including more follow-up information.
33 34 35 36	11	• The dynamic risk prediction tool should be further validated in external cohorts.
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 	12	

Introduction

Although in-hospital mortality of acute myocardial infarction (AMI) has been decreased in many countries,^[1,2] risk of adverse events remains considerable in survivors after AMI hospitalization.^[3] Previous studies have indicated unsatisfying and imbalanced quality of secondary prevention medications in clinical practice,^[4,5] which can cause negative impact on prognosis of AMI patients. Individualized risk assessment may aid in decision making of long-term therapeutic strategies for patients after AMI. However, the existing risk prediction tools, which are mainly based on predictive indexes collected at admission, fail to consider the changing nature of adverse events and medications after AMI hospitalization,^[6,7] and therefore may not be appropriate to guide long-term management. Dynamic risk assessment may help improve the quality of long-term management for patients following AMI.

Although several studies sought to forecast mortality dynamically in patients with acute coronary syndromes,^[8-11] the prognostic components of these models were obtained during hospitalization, without taking follow-up adverse events and medications into consideration. Dynamic prognostic instruments designed to help risk reassessment should include post-discharge information which is associated with outcomes. In this study, we aimed to develop and validate dynamic risk prediction models, visualized by nomograms, which included inhospital and post-discharge adverse events and medications, to assist in prognostic evaluation and decision-making of secondary prevention strategies in patients following AMI.

Methods

Study population

The data for the present study were from the China Acute Myocardial Infarction (CAMI)
 registry. The design of the CAMI registry has been described and published elsewhere.^[12]

Page 9 of 85

BMJ Open

Briefly, 108 hospitals from 31 provinces and municipalitis throughout Mainland China were included in this prospective, nationwide, multicenter registry. Consecutive patients with AMI were enrolled in the registry and the final diagnosis of patients must meet the third Universal Definition for Myocardial Infarction (2012).^[13] All types of AMI were eligible for the CAMI registry, except type 4a and type 5. Presenting characteristics, medical history, laboratory results, medications, and clinical outcomes were collected according to the American College of Cardiology/American Heart Association Task Force on clinical data standards and NCDR-ACTION-GWTG element dictionary.

Patients registered in the CAMI registry from January 2013 to September 2014 were included in this study. Those with invalid diagnosis (n=1312), who were transferred out (n=1181) or died during hospitalization (n=1690) were excluded. The remaining population (n=23887) was divided randomly according to 2:1 ratio into derivation (n=15925) and validation (n=7962) cohorts for developing and validating a 30-day risk prediction model. After further excluding patients who died within 30 days after discharge (n=293) and those with missing data on 30-day medication use (n=5391), the remaining derivation (n=12136) and validation (n=6067) cohorts were used for establishing and testing a 2-year risk prediction model (online supplemental figure 1).

Definitions

> Standard definitions of adverse events have been described elsewhere in detail.^[14] Taking a medication within 30 days means using the medication during this period after discharge without discontinuation.

Follow-up and endpoints

Patients were followed by clinical visits or telephone call at 30 days, 6 months, 12 months, 18 months, and 24 months. Adverse events (such as death, recurrent myocardial infarction, and heart failure worsening) and medications at follow-up time points were collected by trained cardiologists or cardiovascular fellows. The primary endpoints of this analysis were all-cause mortality within 30 days after AMI hospitalization (for establishing 30-day risk prediction model) and mortality between 30 days and 2 years (for establishing 2-year risk prediction model).

Statistical analysis

Categorical variables were summarized as frequencies and percentages, and compared by chisquare or Fisher exact test, as appropriate. Continuous variables were expressed as mean ± standard deviation or medians (interquartile range) according to data distributions, and compared by student t or nonparametric test. Kaplan-Meier curve and density plots were used to depict the changing nature of risk after AMI hospitalization. In the derivation cohort, 190 deaths occurred within 30 days after discharge, which could ensure at most 19 predictor parameters (greater than 12 predictor parameters finally included) in the 30-day risk prediction model based on the rule of thumb that 10 events per candidate predictor parameters (EPP). Similarly, 740 deaths occurred between 30 days and 2 years, which could ensure at most 74 predictor parameters (greater than 15 predictor parameters finally included) in the 2-year risk prediction model.^[15]

The derivation cohort was used to identify predictors of 30-day mortality and mortality between 30 days and 2 years. The associations between variables, including age, sex, body mass index (BMI), diabetes, hypertension, hyperlipidemia, smoking, prior angina pectoris, prior myocardial infarction, prior heart failure, prior stroke, prior peripheral artery disease, prior Page 11 of 85

BMJ Open

percutaneous coronary intervention (PCI), prior coronary artery bypass graft (CABG), prior renal dysfunction, chronic obstructive pulmonary disease (COPD), symptom onset to admission time, heart rate, systolic blood pressure, Killip class, cardiac arrest at admission, diagnosis, anterior wall involvement, creatinine clearance, hemoglobin, leukocyte count, left ventricular ejection fraction (LVEF), in-hospital PCI, in-hospital CABG, heart failure, recurrent myocardial ischemia, recurrent myocardial infarction, stroke, other bleeding events (bleeding events not including cerebral heamorrhage) during hospitalization, antiplatelet therapy at discharge, stating at discharge, β blockers at discharge, and angiotensin converting enzyme inhibitor (ACEI) or angiotensin II receptor blocker (ARB) at discharge, and 30-day mortality were first assessed in univariable Cox regression models. For obtaining prognostic factors of mortality between 30 days and 2 years, the associations of adverse events within 30 days (recurrent myocardial infarction and heart failure worsening) and 30-day medications (antiplatelet therapy, statins, β blockers, and ACEI/ARB) with mortality were also assessed in univariable Cox models besides variables mentioned previously. Subsequently, the least absolute shrinkage and selection operator (LASSO) method was adopted to select predictors of short-term and long-term mortality respectively from variables with P≤0.1 in univariable analysis. The selected predictors were used to establish dynamic risk prediction models by multivariable Cox regression model. The relative importance of these variables was ranked according to the proportion of explainable log-likelihood ratio χ^2 statistics.

To analyze the incremental prognostic value of adverse events and medications over traditional predictive indexes, we compared the predictive performance between models with or without adverse events and medications using C index, net reclassification index (NRI), integrated discrimination improvement index (IDI), likelihood ratio test, and Bayesian information criteria (BIC). The clinical utility of models were compared by decision curve analysis. Predictive performance was also compared between 30-day risk model or 2-year risk model and the Global Registry of Acute Coronary Events (GRACE) risk scores (version 1.0 and 2.0) to further analyze the additional value of the dynamic models beyond existing prognostic tool.^[6,16]

Two prognostic nomograms, which could make complex predictive formulas friendly to use in clinical practice, were constructed based on the regression coefficients of predictors for mortality using the "rms" package of R software. Discrimination and calibration of the nomograms were assessed by C index and calibration curves presenting the relationship between observed and predicted survival probabilities in both derivation and validation cohorts. Subgroup analyses were performed in patients with complete data on model predictors in the validation cohort according to age, sex, diabetes, AMI classification, in-hospital PCI, and hospital level (province level, prefecture level, and county level).

Before regression analysis, we used Martingale residual plots to check the linearity assumption for continuous variables (online supplemental figure 2 and 3). We also calculated variance inflation factor to examine multicollinearity issue. The proportional hazards assumptions were tested by inspection of Schoenfeld residual plots (online supplemental figure 4 and 5). Multiple imputation was used to generate 5 datasets without missing values. The LASSO method was performed in each dataset. Only variables selected by LASSO method in all 5 datasets were included in final dynamic risk prediction models. Number of missing values for selected predictors were shown in online supplemental table 1. Results of Cox regression models were reported as hazard ratios (HR) with 95% confidence intervals (CI). A two-tailed P<0.05 was considered statistically significant. Statistical analyses were performed using R version 4.0.5 (R Foundation for Statistical Computing, Vienna, Austria) and SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

Patient and public involvement

Patients or the public were not involved directly in the design, conduct, reporting or dissemination plans of our research.

Results

Baseline characteristics, medications, and outcomes of derivation and validation cohorts were summarized in table 1, online supplemental table 2 and online supplemental table 3. Rates of 30-day mortality among hospital survivors in derivation and validation cohorts were 1.2% (190/15925 patients) and 1.3% (103/7962 patients), respectively. Rates of mortality between 30 days and 2 years were 6.1% (740/12136 patients) and 5.7% (345/6067 patients). The Kaplan-Meier curve and density plots showed the changing risk of death and recurrent myocardial infarction within 2 years after AMI hospitalization (online supplemental figure 6 and 7).

Predictors of 30-day mortality in patients after AMI

Univariable analysis of the associations between variables and 30-day mortality was presented in online supplemental table 4. In the LASSO-based Cox regression model, age, prior stroke, heart rate, Killip class, LVEF, in-hospital PCI, in-hospital recurrent myocardial ischemia, inhospital recurrent myocardial infarction, in-hospital heart failure, antiplatelet therapy, and statins at discharge were independently associated with 30-day mortality (online supplemental figure 8 to 12; table 2). The relative importance of these predictors was ranked and shown in online supplemental figure 13.

Predictors of 2-year mortality for 30-day survivors after AMI hospitalization

Univariable analysis of mortality between 30 days and 2 years after AMI hospitalization was shown in online supplemental table 5. In the LASSO-based Cox regression model, age, prior renal dysfunction, history of heart failure, AMI classification, heart rate, Killip class, hemoglobin, LVEF, in-hospital PCI, in-hospital heart failure, heart failure worsening within 30 days, antiplatelet therapy, β blocker, and statins within 30 days were identified as predictors of mortality (online supplemental figure 14 to 18; table 3). The relative importance of these predictors was ranked and presented in online supplemental figure 19.

Incremental prognostic value of adverse events and medications

The inclusion of in-hospital recurrent myocardial ischemia, in-hospital recurrent myocardial infarction, in-hospital heart failure, antiplatelet therapy, and stating at discharge significantly improved the predictive power of 30-day risk prediction model (table 4; 30-day model 1 vs 30day model 0: C index, 0.855 [0.830-0.879] vs 0.822 [0.796-0.848]; NRI [95%CI], 0.445 [0.339-0.523], P<0.0001; IDI [95%CI], 0.040 [0.025-0.074], P<0.0001; likelihood ratio test P<0.0001; BIC, 3434.091 vs 3350.882). In the 2-year risk prediction model, heart failure worsening within 30 days, antiplatelet, β blocker, and stating within 30 days also provided additional prognostic value over predictive indexes obtained during hospitalization (table 5). The decision curve analysis further demonstrated better clinical utility after adding adverse events and medications into 30-day and 2-year risk models (online supplemental figure 20). Notably, the hospital level provided no incremental value to 30-day or 2-year risk models (the inclusion of hospital level to 30-day model, likelihood ratio test P=0.4174; to 2-year model, likelihood ratio test P=0.5621; online supplemental figure 21).

Comparisons of prognostic models and GRACE risk scores

Page 15 of 85

BMJ Open

For predicting 30-day mortality, the 30-day risk prediction model showed significantly better predictive performance than both GRACE 1.0 and 2.0 scores (30-day risk model vs GRACE 1.0 score: C index, 0.855 [0.830-0.879] vs 0.771 [0.740-0.802]; NRI [95%CI], 0.412 [0.307-0.485], P<0.0001; IDI [95%CI], 0.048 [0.032-0.090], P<0.0001; BIC, 3267.271 vs 3402.578; 30-day risk model vs GRACE 2.0 score: C index, 0.855 [0.830-0.879] vs 0.752 [0.720-0.784]; NRI [95%CI], 0.569 [0.500-0.624], P<0.0001; IDI [95%CI], 0.061 [0.044-0.101], P<0.0001; 3247.357 vs 3492.004). Similarly, when predicting 2-year mortality, the 2-year risk BIC. prediction model also performed better than the GRACE risk scores (2-year risk model vs GRACE 1.0 score: C index, 0.825 [0.811-0.839] vs 0.798 [0.783-0.813]; NRI [95%CI], 0.191 [0.147-0.257], P<0.0001; IDI [95%CI], 0.041 [0.031-0.057], P<0.0001; BIC, 12540.559 vs 12697.527; 2-year risk model vs GRACE 2.0 score: C index, 0.825 [0.811-0.839] vs 0.769 [0.752-0.786]; NRI [95%CI], 0.486 [0.456-0.529], P<0.0001; IDI [95%CI], 0.115 [0.098-0.143], P<0.0001; BIC, 12257.375 vs 12934.783). The decision curve analysis further demonstrated better clinical utility of both 30-day and 2-year risk models than GRACE scores (online supplemental figure 22 and 23).

17 Nomograms for dynamic risk prediction

Two nomograms were created by assigning a weighted score based on regression coefficients of each prognostic index for evaluating 30-day and 2-year mortality risk respectively. All observed values of a prognostic index corresponded vertically to points on the top scale. The sum of points for each index was plotted on the "Total points" scale, and corresponded to mortality risk at the bottom (figure 1 and 2).

The 30-day prognostic nomogram achieved high discrimination in both derivation and
validation cohorts, with C indexes of 0.85 (95% CI: 0.83-0.88) and 0.79 (95% CI: 0.71-0.86)

respectively. The calibration curves presenting the concordance between observed and predicted 30-day survival probability in two cohorts also showed satisfying calibration of the model (online supplemental figure 24). In addition, the 30-day prognostic nomogram achieved moderate to high discrimination (C indexes: 0.74 to 0.83) in subsets according to age, sex, diabetes, AMI classification, PCI, and hospital level (online supplemental table 6).

The C indexes of 2-year prognostic nomogram were 0.83 (95% CI: 0.81-0.84) and 0.81 (95% CI: 0.79-0.84) in derivation and validation cohorts, respectively. The calibration curves demonstrated excellent calibration of the nomogram in both derivation and validation cohorts (online supplemental figure 25). In aforementioned subgroups of patients, the model discrimination was acceptable (C index: 0.66 to 0.83, online supplemental table 7).

Discussion

Using data from a large, prospective, multicenter registry, we screened eleven predictors of 30day mortality, and fourteen variables, including heart failure worsening and medications within 30 days, associated with mortality between 30 days and 2 years in patients after AMI hospitalization. These two sets of predictors were used to develop prognostic nomograms which could predict post-discharge mortality for AMI patients in different time phases. The nomograms showed satisfying discrimination and calibration in both derivation and validation cohorts. This is a novel dynamic risk prediction tool which can serve for risk assessment and guide long-term management of patients after AMI.

A series of risk models have been developed to predict mortality in patients with acute coronary syndromes.^[6,7,17] These models mainly included prognostic factors obtained at admission, and provided a fixed estimate of survival probability for a given patient. This working mode of prognostic models was helpful for screening high-risk patients and

Page 17 of 85

BMJ Open

determining therapeutic strategies after admission. However, the incidence of adverse cardiovascular events remained considerable after AMI hospitalization. Accumulating evidence has implied that a larger proportion of adverse events occurred in the early phase after AMI hospitalization,^[18] which reflected the changing risk following AMI and highlighted the importance of risk reassessment during follow-up. Although some risk prediction models, such as the GRACE risk score and dynamic Thrombolysis In Myocardial Infarction (TIMI) risk score, could be used to assess mortality risk at discharge,^[6,9] none of them could improve prognostic evaluation during follow-up. Considering the higher risk of adverse events in the early period than that at the late stage after AMI hospitalization (online supplemental figure 6 and 7), we chose 30 days, which was also one of routine follow-up points after AMI hospitalization in clinical practice, as the time point of risk reassessment to establish dynamic risk prediction models.

The first model, which was developed to assess 30-day mortality risk at discharge in patients after AMI, included variables related to patients' demographics, hemodynamics, left ventricular systolic function, treatment, in-hospital adverse events, and medications at discharge. Previous studies have established several risk prediction models, such as Platelet glycoprotein IIb/IIIa in Unstable agina: Receptor Suppression Using Integrilin (eptifibatide) Therapy (PURSUIT) and Zwolle risk scores,^[19,20] to predict 30-day mortality in patients with acute coronary syndromes. However, these models mainly used patient characteristics, clinical presentations at admission as well as angiographic features as prognostic indexes. The present study showed that recurrent myocardial ischemia, recurrent myocardial infarction, heart failure during AMI hospitalization, antiplatelet therapy, and statins use at discharge were independently associated with short-term mortality after discharge, and provided significantly incremental prognostic information over traditional predictive indexes. Therefore, these

adverse events and medications were included in the novel 30-day risk prediction model, which might assist in decision-making of post-discharge management.

For the second model assessing 2-year mortality risk in 30-day survivors, we screened new predictors including heart failure worsening within 30 days, antiplatelet therapy, ß blocker, and statins use within 30 days after discharge. A prior study showed that mortality rate of patients with an early recurrent myocardial infarction (recurrent myocardial infarcction within 90 days of discharge) was nearly 50% within 5 years.^[21] In the present study, we observed that the recurrent myocardial infarction and heart failure worsening within 30 days after discharge were associated with >3-fold and >4.5-fold increase of 2-year mortality risk respectively in univariable analysis, and heart failure worsening, which was included in 2-year prognostic nomogram, was a statistically significant prognostic index in multivariable analysis. To our best knowledge, this is the first prognostic instrument taking follow-up adverse event after AMI into consideration. In addition, although some studies analyzed the prognostic impact of secondary prevention implementation in patients after AMI,^[22,23] follow-up medications have not been considered as predictive indexes in risk models for AMI so far. For some patients, not taking optimal medical care within 30 days after discharge could be explained by poor medication adherence after AMI, which was a problem for both developed and developing countries.^[23-25] A study found that about 30% of patients with myocardial infarction who underwent PCI in the United States reported suboptimal adherence to prescribed medications in six weeks after hospitalization.^[25] Data from the China PEACE Prospective AMI study also showed that a similar percentage of AMI patients did not take medications as prescribed in the first month after discharge.^[23] Patients with early medication nonadherence not only suffered a higher risk of early adverse events, but might not comply with long-term secondary prevention measures, and therefore had poorer long-term prognosis. Another situation was that patients were not prescribed with some medications by physicians, due to contraindications or high risk of side

Page 19 of 85

BMJ Open

effects. However, lack of secondary prevention medications after AMI still meant a higher risk of cardiovascular adverse events in these patients. Indeed, our analysis showed that insufficient use of antiplatelet therapy, β blocker, and statins within 30 days after AMI hospitalization had significant negative impact on 2-year survival. The inclusion of follow-up medications and adverse events improved risk prediction of 2-year risk prediction model.

Although a previous study from CAMI registry showed that there were significant variations in in-hospital mortality among three levels of hospitals in China,^[14] hospital level was not used as a predictive index in the present risk prediction models, for the improvement of care quality in relatively low-level hospitals was likely to weaken its prognostic value. Besides, the hospital level was showed to provide no additional prognostic information beyond current predictors in the risk prediction models. Socioeconomic factors, which were known as risk factors for survival following myocardial infarction,^[26-29] were not included in the present models because we sought to develop models based on predictors directly reflecting patients' clinical conditions. Notably, these factors were also not included in existing risk prediction tools.^[6,7,9,16] The rates of COPD and prior heart failure in our cohort were lower than the United Kingdom population of AMI.^[30] However, the rates in the present study were similar with data from the Improving Care for Cardiovascular Disease in China-Acute Coronary Syndrome project, which was also a nationwide registry in China.^[31,32] The distinct prevalence of comorbidity in patients with myocardial infarction between countries highlighted the importance of developing risk prediction model for specific population.

The present study showed that the dynamic prognostic nomograms achieved satisfying discrimination and calibration, and performed well in subgroups of patients according to age, sex, diabetes, AMI classification, PCI, and hospital level. The clinical utility of nomograms was further confirmed by decision curve analysis. Prognostic nomogram is a graphical presentation format for complex predictive regression model.^[33] A series of prognostic

nomograms have been established for risk prediction in patients with cancer or cardiovascular diseases.^[34-39] For patients with myocardial infarction, previous prognostic nomograms mainly focused on evaluating short-term risk of mortality or other adverse events.^[37,38] There also existed nomogram developed to predict risk of adverse events beyond 1 year.^[36] However, without consideration of changing nature of event risk or medications, the nomogram might not play roles in post-discharge management of patients. Our prognostic nomograms, which took into account follow-up adverse event as well as medications, could assist in risk reassessment at 30 days after discharge. In detail, using the nomogram for prediction of 30-day mortality, physicians can identify high-risk patients at discharge. At 30-day follow up, the second nomogram can be used to reassess mortality risk of 30-day survivors, and may guide decision-making of long-term follow-up intensity and strategies of medical care.

13 Limitations

Several important limitations in this study should be mentioned. First, as a retrospective analysis of a prospective cohort, this study only used data which had been collected in the CAMI registry. Although the present risk prediction tool has achieved satisfying discrimination and calibration, it may be further improved by including other prognostic factors of AMI, such as details of angiographic characteristics, which were not available in a large proportion of the cohort. Heart failure worsening and medications within 30 days after discharge were included in the 2-year risk prediction model. However, lifestyle interventions and cardiac rehabilitation programmes, which were associated with lower risk of adverse events in patients with coronary artery disease,^[40,41] as well as laboratory and echocardiographic indexes were not collected during follow up. These variables may also improve the predictive performance of the models. Second, although the present study showed the feasibility of assessing 2-year prognosis at 30 days after discharge, risk reassessment is a serial process and ideally performed at more time

Page 21 of 85

BMJ Open

points beyond the early phase after discharge. Models which can ensure more dynamic and accurate risk prediction are still needed. Third, the distribution of AMI types (types 1, 2, 3, 4b, and 4c) was not collected in the CAMI registry. Results of the present study could have biased if a certain type was more represented than another. However, the CAMI registry enrolled patients consecutively from 108 hospitals, which meant that it was representative of AMI population in routine clinical practice. It is plausible that the impact of distribution of AMI types is relatively limited. Fourth, there existed some missing values which needed to be imputed before regression analysis. However, almost all predictors had missing values of <6%. Finally, our dynamic models were only internally validated in Chinese patients. Further validations in external cohorts including patients of other races are needed.

Conclusions

The dynamic risk prediction tool consisted of a short-term prognostic model and a long-term prognostic model for patients after AMI hospitalization. Taking the changing nature of adverse events and medications into consideration, the models can serve prospective risk stratification and guide post-discharge management of AMI. Dynamic risk prediction may play an important role in therapeutic decision-making and quality improvement of secondary prevention after AMI hospitalization.

Acknowledgments

We appreciate all staff and investigators for their contributions to the CAMI registry.

Contributors

2	
- 3 4	1
5 6	2
7 8	3
9 10	4
11 12 13	5
14 15	6
16 17	0
18 19 20	7
20 21 22	8
23 24	9
25 26 27	10
28 29	11
30 31 32	12
33 34 35	13
36 37 38	14
39 40 41	15
42 43 44	16
45 46	
47 48	17
49 50 51	18
52 53	19
54 55	20
56 57	21
ох 59 60	22

HX and YY ang contributed significantly to the conception, design, and conduction of this study. JL and CW wrote the initial manuscript. CW, YZ, and YW provided strong support in statistical analysis. JL, CW, XG, JY, XZ, YYe, QD, RF, HS, XY, YZ, YW, HX, and YYang contributed significantly to revisions of manuscript, analysis, and interpretation of data. All authors contributed substantially to this study and approved its submission.

Funding 7

This work was supported by the Twelfth Five-Year Planning Project of the Scientific and Technological Department of China [grant number 2011BAI11B02] and Beijing Nova Program [grant number Z211100002121063].

Competing Interests

None declared.

Patient consent for publication 15

Not required. 16

Ethics approval 18

19 The CAMI registry conformed to the ethical guidelines of the Declaration of Helsinki, and was approved by the institutional review board central committee at Fuwai Hospital, National 20 Center for Cardiovascular Diseases of China (Approval No. 2012-431). Written informed 21 consent was given by eligible patients before registration. 22

1		
2		
2 1	1	
4		
5		
7	2	Data Availability Statement
8		
9	2	Data are available on reasonable request from the corresponding outhors
10	3	Data are available on reasonable request from the corresponding authors.
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
20		
27		
20		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
4Z 42		
45 44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
50 57		
57 50		
50 50		
60		
50		
		21

References 2 1. Peterson

- Peterson ED, Shah BR, Parsons L, et al. Trends in quality of care for patients with acute myocardial infarction in the National Registry of Myocardial Infarction from 1990 to 2006. *Am Heart J* 2008;156:1045-55.
- Yamamoto T, Yoshida N, Takayama M; Tokyo CCU Network. Temporal trends in acute
 myocardial infarction incidence and mortality between 2006 and 2016 in Tokyo Report
 from the Tokyo CCU Network. *Circ J* 2019;83:1405-9.
- S. Chaudhry SI, Khan RF, Chen J, et al. National trends in recurrent AMI hospitalizations 1
 year after acute myocardial infarction in Medicare beneficiaries: 1999-2010. *J Am Heart Assoc* 2014;3:e001197.
- 4. Ergatoudes C, Thunström E, Rosengren A, et al. Long-term secondary prevention of acute
 myocardial infarction (SEPAT) guidelines adherence and outcome. *BMC Cardiovasc Disord* 2016;16:226.
- 5. Zhao Q, Xu H, Zhang X, et al. Current status and hospital-level differences in care and outcomes of patients with acute non-ST-segment elevation myocardial infarction in China: insights from China Acute Myocardial Infarction Registry. Front Cardiovasc Med 2022;8:800222.
 - Eagle KA, Lim MJ, Dabbous OH, et al. A validated prediction model for all forms of acute
 coronary syndrome: estimating the risk of 6-month postdischarge death in an international
 registry. *JAMA* 2004;291:2727-33.
 - Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk score for unstable angina/non-ST
 elevation MI: A method for prognostication and therapeutic decision making. *JAMA* 2000;284:835-42.

Page 25 of 85

1

BMJ Open

2 3 4	1	8.	Chang WC, Boersma E, Granger CB, et al. Dynamic prognostication in non-ST-elevation
5 6	2		acute coronary syndromes: insights from GUSTO-IIb and PURSUIT. Am Heart J
7 8 9	3		2004;148:62-71.
10 11	4	9.	Amin ST, Morrow DA, Braunwald E, et al. Dynamic TIMI risk score for STEMI. J Am
12 13 14	5		Heart Assoc 2013;2:e003269.
15 16 17	6	10.	Chang WC, Kaul P, Fu Y, et al. Forecasting mortality: dynamic assessment of risk in ST-
18 19	7		segment elevation acute myocardial infarction. Eur Heart J 2006;27:419-26.
20 21 22	8	11.	Westerhout CM, Pieper KS, James SK, et al. Dynamic modeling of 90-day mortality in
23 24	9		ST-elevation myocardial infarction patients undergoing primary percutaneous coronary
25 26 27	10		intervention. Am Heart J 2013;165:354-62.e2.
28 29 30	11	12.	Xu H, Li W, Yang J, et al. Tal Infarction (CAMI) Registry: a national long-term registry-
31 32	12		research-education integrated platform for exploring acute myocardial infarction in China.
33 34 35	13		Am Heart J 2016;175:193-201.e3.
36 37	14	13.	Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction.
38 39 40	15		<i>Circulation</i> 2012;126:2020-35.
41 42	16	14.	Xu H, Yang Y, Wang C, et al. Association of hospital-level differences in care with
43 44 45	17		outcomes among patients with acute ST-segment elevation myocardial infarction in China.
46 47	18		JAMA Netw Open 2020;3:e2021677.
48 49 50	19	15.	Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a
51 52 53	20		clinical prediction model. BMJ 2020;368:m441.
55 54 55	21	16.	Fox KA, Fitzgerald G, Puymirat E, et al. Should patients with acute coronary disease be
56 57	22		stratified for management according to their risk? Derivation, external validation and
58 59 60	23		outcomes using the updated GRACE risk score. BMJ Open 2014;4:e004425.

17. McNamara RL, Kennedy KF, Cohen DJ, et al. Predicting in-hospital mortality in patients with acute myocardial infarction. J Am Coll Cardiol 2016;68:626-35. 18. Song J, Murugiah K, Hu S, et al. Incidence, predictors, and prognostic impact of recurrent acute myocardial infarction in China. Heart 2020;107:313-8. 19. Boersma E, Pieper KS, Steverberg EW, et al. Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation. Results from an international trial of 9461 patients. The PURSUIT Investigators. Circulation 2020;101:2557-67. 20. De Luca G, Suryapranata H, van 't Hof AW, et al. Prognostic assessment of patients with acute myocardial infarction treated with primary angioplasty: implications for early discharge. Circulation 2004;109:2737-43. 21. Nair R, Johnson M, Kravitz K, et al. Characteristics and outcomes of early recurrent myocardial infarction after acute myocardial infarction. J Am Heart Assoc 2021;10:e019270. 22. Chow CK, Brieger D, Ryan M, et al. Secondary prevention therapies in acute coronary syndrome and relation to outcomes: observational study. *Heart Asia* 2019;11:e011122. 23. Shang P, Liu GG, Zheng X, et al. Association between medication adherence and 1-year major cardiovascular adverse events after acute myocardial infarction in China. J Am Heart Assoc 2019;8:e011793. 24. Rymer J, McCoy LA, Thomas L, et al. Persistence of evidence-based medication use after discharge from academic versus nonacademic hospitals among patients with non-ST-segment elevation myocardial infarction. Am J Cardiol 2014;114:1479-84.

Page 27 of 85

1 2

BMJ Open

3 4	1
5 6	2
7 8	3
9 10	4
11 12	5
13 14	
15 16 17	6
17 18 19	7
20 21	8
22 23	9
24 25	10
26 27	11
28 29	11
30 31 22	12
32 33 34	13
35 36	14
37 38	15
39 40	16
41 42	10
43 44	17
45 46	18
47 48 40	19
49 50 51	20
52 53	20
54 55	21
56 57	22
58 59	
60	

- Mathews R, Peterson ED, Honeycutt E, et al. Early medication nonadherence after acute
 myocardial infarction: insights into actionable opportunities from the TReatment with ADP
 receptor iNhibitorS: Longitudinal Assessment of Treatment Patterns and Events after
 Acute Coronary Syndrome (TRANSLATE-ACS) Study. *Circ Cardiovasc Qual Outcomes* 2015;8:347-56.
- 6 26. Machón M, Aldasoro E, Martínez-Camblor P, et al. Socioeconomic differences in
 7 incidence and relative survival after a first acute myocardial infarction in the Basque
 8 Country, Spain. *Gac Sanit* 2012;26:16-23.
- 9 27. Alter DA, Franklin B, Ko DT, et al. Socioeconomic status, functional recovery, and long10 term mortality among patients surviving acute myocardial infarction. *PLoS One*11 2013;8:e65130.
 - 28. Bucholz EM, Ma S, Normand SL, et al. Race, socioeconomic status, and life expectancy
 after acute myocardial infarction. *Circulation* 2015;132:1338-46.
 - Tetzlaff J, Tetzlaff F, Geyer S, et al. Widening or narrowing income inequalities in
 myocardial infarction? Time trends in life years free of myocardial infarction and after
 incidence. *Popul Health Metr* 2021;19:47.
 - 30. Rothnie KJ, Smeeth L, Pearce N, et al. Predicting mortality after acute coronary syndromes
 in people with chronic obstructive pulmonary disease. *Heart* 2016;102:1442-8.
- Cai X, Zhou J, Li W, et al. Potential influential factors of in-hospital myocardial
 reinfarction in ST-segment elevation myocardial infarction (STEMI) patients: finding from
 the Improving Care for Cardiovascular Disease in China- (CCC-) Acute Coronary
 Syndrome (ACS) project. *Oxid Med Cell Longev* 2021;2021:9977312.

3 4	1	32.	Sun H, Li Z, Song X, et al. Revisiting the lipid paradox in ST-elevation myocardial
5 6	2		infarction in the Chinese population: findings from the CCC-ACS project. Eur Heart J
7 8 9	3		Acute Cardiovasc Care 2021;10:978-987.
10 11 12	4	33.	Bonnett LJ, Snell KIE, Collins GS, et al. Guide to presenting clinical prediction models for
13 14 15	5		use in clinical settings. BMJ 2019;365:1737.
16 17	6	34.	Yan B, Su BB, Bai DS, et al. A practical nomogram and risk stratification system predicting
18 19	7		the cancer-specific survival for patients with early hepatocellular carcinoma. Cancer Med
20 21 22	8		2021;10:496-506.
23 24	9	35.	Ó Hartaigh B, Gransar H, Callister T, et al. Development and validation of a simple-to-use
25 26 27	10		nomogram for predicting 5-, 10-, and 15-year survival in asymptomatic adults undergoing
27 28 29	11		coronary artery calcium scoring. JACC Cardiovasc Imaging 2018;11:450-8.
30 31 32	12	36.	Zhao X, Liu C, Zhou P, et al. Estimation of major adverse cardiovascular events in patients
33 34	13		with myocardial infarction undergoing primary percutaneous coronary intervention: A risk
35 36	14		prediction score model from a derivation and validation study. Front Cardiovasc Med
37 38 39	15		2020;7:603621.
40 41 42	16	37.	Guo Q, Wu M, Li H, et al. Development and validation of a prognostic nomogram for
43 44	17		myocardial infarction patients in intensive care units: a retrospective cohort study. BMJ
45 46 47	18		<i>Open</i> 2020;10:e040291.
48 49	19	38.	Zheng X, Huang R, Liu G, et al. Development and verification of a predictive nomogram
50 51 52	20		to evaluate the risk of complicating ventricular tachyarrhythmia after acute myocardial
52 53 54	21		infarction during hospitalization: A retrospective analysis. Am J Emerg Med 2021;46:462-
55 56 57 58 59 60	22		8.
00			

2			
3 4	1	39.	Wang H, Liu D, Liang H, et al. A nomogram for predicting survival in patients with
5 6	2		colorectal cancer incorporating cardiovascular comorbidities. Front Cardiovasc Med
7 8 9	3		2022;9:875560.
10 11	4	40.	Chow CK, Jolly S, Rao-Melacini P, et al. Association of diet, exercise, and smoking
12 13	5		modification with risk of early cardiovascular events after acute coronary syndromes.
14 15 16	6		Circulation 2010;121:750-8.
17 18 19	7	41.	Anderson L, Oldridge N, Thompson DR, et al. Exercise-based cardiac rehabilitation for
20 21	8		coronary heart disease: cochrane systematic review and meta-analysis. J Am Coll Cardiol
22 23 24	9		2016;67:1-12.
25 26 27 28 29 30 31 32 33 45 36 37 38 90 41 42 43 44 50 51 52 53 45 56 7 89 57 58 59	10		
00			
			27

Variables	Derivation cohort	Validation cohort	
	(n=15925)	(n=7962)	
Demographics			
Age, yrs	62.27±12.36	62.54±12.29	
Female	3878 (24.4)	1940 (24.4)	
BMI, kg/m ²	24.13±3.05	24.08±3.04	
Medical history			
Diabetes	2943 (19.6)	1505 (20.0)	
Hypertension	7873 (51.2)	3897 (50.8)	
Hyperlipidemia	1154 (8.5)	569 (8.3)	
Current smoker	7083 (45.7)	3483 (44.8)	
Prior angina pectoris	4044 (27.8)	1994 (27.4)	
Prior myocardial infarction	1083 (7.4)	553 (7.5)	
Prior heart failure	329 (2.2)	169 (2.3)	
Prior PCI	753 (5.0)	381 (5.1)	
Prior CABG	56 (0.4)	36 (0.5)	
Prior renal dysfunction	197 (1.3)	94 (1.3)	
COPD	279 (1.9)	142 (1.9)	

Table 1. Baseline characteristics of cohorts for developing and validating 30-day prognostic model

Presenting characteristics		
Symptom onset to admission time		
0-6h	7398 (47.0)	3625 (46.0)
>6h	8330 (53.0)	4247 (54.0)
Heart rate, beats/min	77±18	78±18
Systolic blood pressure	129.48±25.01	129.94±25.26
Killip class		
Ι	11836 (76.2)	5903 (75.8)
II-IV	3694 (23.8)	1883 (24.2)
Cardiac arrest at admission	128 (0.8)	77 (1.0)
AMI classification		
STEMI	12051 (75.7)	5991 (75.2)
NSTEMI	3874 (24.3)	1971 (24.8)
Anterior wall involvement	7406 (47.7)	3696 (47.5)

Values are shown as mean ± standard deviation, median (interquartile range), or number (%) without imputation of missing data. BMI, body mass index; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; AMI, acute myocardial infarction; STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction.

	All-cause death	1	
	Adjusted HR (95% CI)	P valu	
Age (per 1 year increase)	1.035 (1.021, 1.049)	<0.000	
Prior stroke (vs no)	1.560 (1.091-2.231)	0.0148	
Heart rate (per 1beat/min increase)	1.006 (1.000-1.012)	0.0497	
Killip class II - IV (vs I)	1.528 (1.115-2.094)	0.0083	
LVEF (per 1% increase)	0.969 (0.955, 0.982)	<0.000	
In-hospital PCI (vs no)	0.441 (0.307, 0.634)	<0.000	
In-hospital recurrent myocardial ischemia (vs no)	1.711 (1.019-2.871)	0.0421	
In-hospital recurrent myocardial infarction (vs no)	4.572 (2.121-9.859)	0.0001	
In-hospital heart failure (vs no)	2.869 (2.065-3.986)	<0.000	
Antiplatelet therapy at discharge (vs dual antiplatelet therapy)			
Single antiplatelet therapy	0.791 (0.491-1.275)	0.3358	
None	2.363 (1.395-4.003)	0.0014	
Statins at discharge (vs no)	2.009 (1.258-3.208)	0.0035	
LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; HR, hazard			
ratio; CI, confidence interval.			

Table 2. Multivariable analysis of 30-day mortality in the derivation cohort

	All-cause death	l
	Adjusted HR (95% CI)	P valu
Age (per 1 year increase)	1.052 (1.045-1.060)	<0.000
Prior renal dysfunction (vs no)	1.539 (1.076-2.201)	0.018
History of heart failure (vs no)	1.501 (1.160-1.943)	0.002
STEMI (vs NSTEMI)	0.747 (0.639-0.873)	0.000
Heart rate (per 1 beat/min increase)	1.008 (1.005-1.011)	<0.000
Killip class II -IV(vs I)	1.330 (1.129-1.566)	0.000
Hemoglobin (per 1g/L increase)	0.993 (0.990-0.996)	<0.00
LVEF (per 1% increase)	0.971 (0.964-0.978)	<0.00
(n-hospital PCI (vs no)	0.423 (0.351-0.510)	<0.00
n-hospital heart failure(vs no)	1.287 (1.085-1.525)	0.003
Heart failure worsening within 30 days (vs no)	1.675 (1.258-2.229)	0.000
Antiplatelet therapy within 30 days (vs dual antiplatelet therapy)		
Single antiplatelet therapy	1.107 (0.911-1.345)	0.308
None	1.430 (1.055-1.937)	0.021
3 blocker within 30 days (vs yes)	1.271 (1.085-1.491)	0.003
Statins within 30 days (vs yes)	1.191 (0.908-1.561)	0.207
3 4	1	
----------------	---	
5 6	2	
7 8	3	
9 10		
10 11 12	4	
13		
14		
16 17		
18 19		
20 21		
22 23		
24 25		
25 26		
27 28		
29 30		
31 32		
33 34		
35		
30 37		
38 39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51 52		
53 54		
55 56		
57		
58 59		

STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation
myocardial infarction; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary
intervention; HR, hazard ratio; CI, confidence interval.

2	medications		
		30-day model 0	30-day model 1
	C index	0.822 (0.796-0.848)	0.855 (0.830-0.879)
	NRI (95%CI)	0.445 (0	0.339-0.523)
	P value	<0.0001	
	IDI (95%CI)	0.040 (0	0.025-0.074)
	P value	<	0.0001
	Likelihood ratio test (P value)	<	0.0001
	BIC	3434.091	3350.882
3	30-days Model 0: age, prior stroke,	heart rate, Killip class, LV	EF, and in-hospital PCI.

Model 1: age, prior stroke, heart rate, Killip class, LVEF, in-hospital PCI, in-hospital recurrent myocardial ischemia, in-hospital recurrent myocardial infarction, in-hospital heart failure, antiplatelet therapy, and statins at discharge. LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; NRI, net reclassification index; CI, confidence interval; IDI, integrated discrimination improvement index; BIC, Bayesian information criteria.

	2-year model 0	2-year model 1
C index	0.822 (0.807-0.836)	0.825 (0.811-0.839)
NRI (95%CI)	0.119 (-0.045-0.176)	
P value		0.126
IDI (95%CI)	0.008 (0.004-0.017)	
P value		0.007
Likelihood ratio test (P value)	<	<0.0001
BIC	12792.602	12785.706

1 Table 5. Comparison of 2-year prognostic models with or without adverse events and

2-year Model 0: age, prior renal dysfunction, prior heart failure, AMI classification, heart rate, Killip class, hemoglobin, LVEF, in-hospital PCI, and in-hospital heart failure. 2-year Model 1: age, prior renal dysfunction, prior heart failure, AMI classification, heart rate, Killip class, hemoglobin, LVEF, in-hospital PCI, in-hospital heart failure, heart failure worsening within 30 days, antiplatelet therapy, β blockers, and statins within 30 days. AMI, acute myocardial infarction; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; NRI, net reclassification index; CI, confidence interval; IDI, integrated discrimination improvement index; BIC, Bayesian information criteria.

FIGURE LEGENDS

Figure 1. Nomogram for predicting 30-day mortality risk. The observed value of a prognostic index was assigned a point by drawing a perpendicular line towards the top scale. The sum of points for each index was plotted on the "Total points" scale, and corresponded to the risk of 30-day mortality at the bottom with a vertical line. LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention.

Figure 2. Nomogram for predicting 2-year mortality risk. The observed value of a prognostic index was assigned a point by drawing a perpendicular line towards the top scale. The sum of points for each index was plotted on the "Total points" scale, and corresponded to the risk of 2-year mortality at the bottom with a vertical line. AMI, acute myocardial infarction; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention.

Points
Age
Prior stroke
Heart rate
Killip class
LVEF
In-hospital PCI
In-hospital recurrent myocardial ischemia
In-hospital recurrent myocardial infarction
In-hospital heart failure
Antiplatelet therapy at discharge
Statins at discharge
Total Points

1 2 3	
4 5 6	
7 8 9	
10 11 12	
12 13 14	
15 16 17	
18 19 20	
21 22 23	
24 25 26	
27 28 29	
30 31 32	
33 34 35	
36 37 38	
39 40 41	
42 43 44	
45 46 47	
48 49 50	
51 52 53	
54 55 56	
57 58 59	
60	

Points
Age
Prior renal dysfunction
History of heart failure
AMI classification
Heart rate
Killip class
Hemoglobin
LVEF
In-hospital PCI
In-hospital heart failure
Heart failure worsening within 30 days
Antiplatelet therapy within 30 days
β blocker within 30 days
Statins within 30 days
Total Points
2-year risk

Supplemental Materials

Junxing Lv et al. Development and validation of dynamic models to predict postdischarge mortality risk in patients with acute myocardial infarction: results from China Acute Myocardial Infarction registry.

I. Supplemental Tables.

Supplemental Table 1. Number of missing values for selected predictors in derivation and validation cohorts.

Supplemental Table 2. Baseline characteristics, medications, and outcomes of cohorts for developing and validating 30-day prognostic model.

Supplemental Table 3. Baseline characteristics, medications, and outcomes of cohorts for developing and validating 2-year prognostic model.

Supplemental Table 4. Univariable analysis of 30-day mortality.

Supplemental Table 5. Univariable analysis of mortality after 30 days.

Supplemental Table 6. Discrimination of 30-day prognostic nomogram in subgroups of patients.

Supplemental Table 7. Discrimination of 2-year prognostic nomogram in subgroups of patients.

II. Supplemental Figures.

Supplemental Figure 1. Flowchart of this study. AMI, acute myocardial infarction.

Supplemental Figure 2. Martingale residual plots for testing the linearity assumption before developing the 30-day model. LVEF, left ventricular ejection fraction.

Supplemental Figure 3. Martingale residual plots for testing the linearity assumption before developing the 2-year model. LVEF, left ventricular ejection fraction.

Supplemental Figure 4. Schoenfeld residual plots for testing the proportional hazards assumption before developing the 30-day model. LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; HF, heart failure; reMI, recurrent myocardial infarction.

Supplemental Figure 5. Schoenfeld residual plots for testing the proportional hazards assumption before developing the 2-year model. LVEF, left ventricular ejection fraction; HF, heart failure; AMI, acute myocardial infarction; PCI, percutaneous coronary intervention.

Supplemental Figure 6. Kaplan-Meier curve for patients after AMI hospitalization. AMI, acute myocardial infarction.

Supplemental Figure 7. Density plots for all-cause death and recurrent myocardial infarction during follow-up. (A) Density plot for all-cause death. (B) Density plot for recurrent myocardial infarction.

Supplemental Figure 8. Variable selection by LASSO method for 30-day prognostic model in imputation dataset 1. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 9. Variable selection by LASSO method for 30-day prognostic model in imputation dataset 2. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 10. Variable selection by LASSO method for 30-day prognostic model in imputation dataset 3. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The

lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 11. Variable selection by LASSO method for 30-day prognostic model in imputation dataset 4. (A) The plot showing partial likelihood deviance values versus $\log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $\log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 12. Variable selection by LASSO method for 30-day prognostic model in imputation dataset 5. (A) The plot showing partial likelihood deviance values versus $\log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $\log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 13. Relative importance of selected predictors for 30-day mortality. Relative importance of variables selected by LASSO method was ranked according to the proportion of explainable log-likelihood ratio χ^2 statistics. LASSO, least absolute shrinkage and selection operator; Mi, myocardial ischemia; MI, myocardial infarction; PCI, percutaneous coronary intervention; LVEF, left ventricular ejection fraction; HF, heart failure.

Supplemental Figure 14. Variable selection by LASSO method for 2-year prognostic model in imputation dataset 1. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 15. Variable selection by LASSO method for 2-year prognostic model in imputation dataset 2. (A) The plot showing partial likelihood deviance values versus $\log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $\log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 16. Variable selection by LASSO method for 2-year prognostic model in imputation dataset 3. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 17. Variable selection by LASSO method for 2-year prognostic model in imputation dataset 4. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 18. Variable selection by LASSO method for 2-year prognostic model in imputation dataset 5. (A) The plot showing partial likelihood deviance values versus $log(\lambda)$. Tuning parameter λ selection used 10-fold cross-validation. The vertical lines were drawn at optimal values by the minimum criteria and the 1 SE of minimum criteria. The lambda with 1 SE of minimum deviance was used for variable selection. (B) The coefficient profile plot. The plot was produced against the $log(\lambda)$ sequence. LASSO, least absolute shrinkage and selection operator; SE, standard error.

Supplemental Figure 19. Relative importance of selected predictors for 2-year mortality. Relative importance of variables selected by LASSO method was ranked according to the proportion of explainable log-likelihood ratio χ^2 statistics. LASSO, least absolute shrinkage and selection operator; HF, heart failure; AMI, acute myocardial infarction; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention.

Supplemental Figure 20. Comparisons of clinical utility between models with or without adverse events and medications. The red and green lines represent the assumption that all or none patients at high risk with different thresholds. The lines in the upper right represent the risk prediction models. (A) Comparison of clinical utility between 30-day model with or without adverse events and medications. (B) Comparison of clinical utility between 2-year model with or without adverse events and medications.

Supplemental Figure 21. Comparisons of clinical utility between models with or without hospital level. The red and green lines represent the assumption that all or none patients at high risk with different thresholds. The lines in the upper right represent the risk prediction models. (A) Comparison of clinical utility between 30-day model with or without hospital

level. (B) Comparison of clinical utility between 2-year model with or without hospital level.

Supplemental Figure 22. Comparisons of clinical utility between models and GRACE 1.0 score. The red and green lines represent the assumption that all or none patients at high risk with different thresholds. The lines in the upper right represent the risk prediction models. (A) Comparison of clinical utility between 30-day model and GRACE 1.0 score. (B) Comparison of clinical utility between 2-year model and GRACE 1.0 score. GRACE, Global Registry of Acute Coronary Events.

Supplemental Figure 23. Comparisons of clinical utility between models and GRACE 2.0 score. The red and green lines represent the assumption that all or none patients at high risk with different thresholds. The lines in the upper right represent the risk prediction models. (A) Comparison of clinical utility between 30-day model and GRACE 2.0 score. (B) Comparison of clinical utility between 2-year model and GRACE 2.0 score. GRACE, Global Registry of Acute Coronary Events.

Supplemental Figure 24. Calibration curves of 30-day prognostic nomogram. Calibration curves present the relationship between observed and predicted survival probabilities by 30-day prognostic nomogram in both derivation and validation cohorts. (A) Calibration curve of 30-day prognostic nomogram in derivation cohort. (B) Calibration curve of 30-day prognostic nomogram in validation cohort.

Supplemental Figure 25. Calibration curves of 2-year prognostic nomogram. Calibration curves present the relationship between observed and predicted survival probabilities by 2-year prognostic nomogram in both derivation and validation cohorts. (A) Calibration curve of 2-year prognostic nomogram in derivation cohort. (B) Calibration curve of 2-year prognostic nomogram in validation cohort.

I. Supplemental Tables.

Supplemental Table 1. Number of missing values for selected predictors in derivation and validation cohorts

	Number of missing values (%)
Derivation cohort	
30-day prognostic model	
Age	336 (2.1)
Prior stroke	820 (5.1)
Heart rate	391 (2.5)
Killip class	395 (2.5)
LVEF	3370 (21.2)
In-hospital PCI	435 (2.7)
In-hospital recurrent myocardial ischemia	518 (3.3)
In-hospital recurrent myocardial infarction	518 (3.3)
In-hospital heart failure	502 (3.2)
Antiplatelet therapy at discharge	849 (5.3)
Statins at discharge	849 (5.3)
2-year prognostic model	
Age	242 (2.0)
Prior renal dysfunction	510 (4.2)
History of heart failure	490 (4.0)
AMI classification	0 (0.0)
Heart rate	107 (0.9)
Killip class	114 (0.9)
Hemoglobin	327 (2.7)
LVEF	2307 (19.0)
In-hospital PCI	130 (1.1)
In-hospital heart failure	155 (1.3)
Heart failure worsening within 30 days	8 (0.1)
Antiplatelet therapy within 30 days	0 (0.0)
β blockers within 30 days	0 (0.0)
Statins within 30 days	0 (0.0)

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 25	
30	
30 27	
3/ 20	
20	
59 ∕1∩	
40 ∕/1	
+ı ∕\ว	
<u>ד∠</u> ⊿२	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

Validation c	ohort
--------------	-------

30-day prognostic model	
Age	144 (1.8)
Prior stroke	404 (5.1)
Heart rate	197 (2.5)
Killip class	176 (2.2)
LVEF	1678 (21.1)
In-hospital PCI	216 (2.7)
In-hospital recurrent myocardial ischemia	267 (3.4)
In-hospital recurrent myocardial infarction	261 (3.3)
In-hospital heart failure	254 (3.2)
Antiplatelet therapy at discharge	416 (5.2)
Statins at discharge	416 (5.2)
2-year prognostic model	
Age	106 (1.7)
Prior renal dysfunction	260 (4.3)
History of heart failure	254 (4.2)
AMI classification	0 (0.0)
Heart rate	75 (1.2)
Killip class	54 (0.9)
Hemoglobin	135 (2.2)
LVEF	1161 (19.1)
In-hospital PCI	60 (1.0)
In-hospital heart failure	83 (1.4)
Heart failure worsening within 30 days	9 (0.1)
Antiplatelet therapy within 30 days	0 (0.0)
β blockers within 30 days	0 (0.0)
Statins within 30 days	0 (0.0)

LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; AMI, acute myocardial infarction.

Variables	Derivation cohort (n=15925)	Validation cohort (n=7962)
Demographics		
Age, yrs	62.27±12.36	62.54±12.29
Female	3878 (24.4)	1940 (24.4)
BMI, kg/m^2	24.13±3.05	24.08±3.04
Medical history		
Diabetes	2943 (19.6)	1505 (20.0)
Hypertension	7873 (51.2)	3897 (50.8)
Hyperlipidemia	1154 (8.5)	569 (8.3)
Current smoker	7083 (45.7)	3483 (44.8)
Prior angina pectoris	4044 (27.8)	1994 (27.4)
Prior myocardial infarction	1083 (7.4)	553 (7.5)
Prior heart failure	329 (2.2)	169 (2.3)
Prior stroke	1330 (8.8)	711 (9.4)
Prior peripheral artery disease	96 (0.6)	46 (0.6)
Prior PCI	753 (5.0)	381 (5.1)
Prior CABG	56 (0.4)	36 (0.5)
Prior renal dysfunction	197 (1.3)	94 (1.3)
COPD	279 (1.9)	142 (1.9)
Presenting characteristics		
Symptom onset to admission time		
0-6h	7398 (47.0)	3625 (46.0)
>6h	8330 (53.0)	4247 (54.0)
Heart rate, beats/min	77±18	78±18
Systolic blood pressure	129.48±25.01	129.94±25.26
Killip class		
Ι	11836 (76.2)	5903 (75.8)
II-IV	3694 (23.8)	1883 (24.2)
Cardiac arrest at admission	128 (0.8)	77 (1.0)

Supplemental Table 2. Baseline characteristics, medications, and outcomes of cohorts for

AMI classification		
STEMI	12051 (75.7)	5991 (75.2)
NSTEMI	3874 (24.3)	1971 (24.8)
Anterior wall involvement	7406 (47.7)	3696 (47.5)
Laboratory results		
Creatinine, µmol/L	74.90 (62.00, 90.00)	74.60 (62.00, 90.40)
Creatinine clearance, ml/min	83.83 (61.61, 109.00)	83.70 (61.52, 108.71)
Hemoglobin, g/L	136.23±21.09	136.07±20.94
Leukocyte count, $\times 10^9$ /L	10.09±3.69	10.04 ± 3.60
LVEF, %	53.84±10.07	53.81±10.08
In-hospital treatment		
PCI	8951 (57.9)	4432 (57.2)
CABG	127 (0.8)	76 (1.0)
Adverse events during hospitalization		
New-onset heart failure	2082 (13.5)	1035 (13.4)
Recurrent myocardial ischemia	384 (2.5)	166 (2.2)
Recurrent myocardial infarction	61 (0.4)	22 (0.3)
Stroke	90 (0.6)	40 (0.5)
Other bleeding events	236 (1.5)	121 (1.6)
Medications at discharge		
Antiplatelet therapy		
Dual antiplatelet therapy	13212 (87.6)	6571 (87.1)
Single antiplatelet therapy	1261 (8.4)	648 (8.6)
None	603 (4.0)	327 (4.3)
Statins	13846 (91.8)	6976 (92.4)
β blockers	10341 (68.6)	5006 (66.3)
ACEI/ARB	8642 (57.3)	4326 (57.3)
Hospital level		
Province level	5516 (34.6)	2728 (34.3)
Prefecture level	8740 (54.9)	4371 (54.9)
County level	1668 (10.5)	863 (10.8)

Values are shown as mean ± standard deviation, median (interquartile range), or number (%)

without imputation of missing data. BMI, body mass index; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; AMI, acute myocardial infarction; STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; LVEF, left ventricular ejection fraction; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker.

3 4 5	
6	V
7 8	• •
9	D
10 11	
12	
13 14	
15 16	N
17	10
18 19	
20	
21 22	
23	
24 25	
26	
27 28	
29	
30 31	
32	
33 34	
35 26	
30 37	
38 30	
40	
41 42	Р
43	
44 45	
46	
47 48	
49	J
50 51	
52]
53 54	
55	
50 57	
58 50	(
60	1

Supplemental Table 3. Baseline characteristics, medications, and outcomes	of cohorts
for developing and validating 2-year prognostic model	

Variables	Derivation cohort (n=12136)	Validation cohort (n=6067)
Demographics		
Age, yrs	62.08±12.28	62.26±12.20
Female	2967 (24.4)	1459 (24.0)
BMI, kg/m ²	24.12±3.02	24.11±3.01
Medical history		
Diabetes	2213 (19.0)	1146 (19.6)
Hypertension	6021 (50.6)	3011 (50.7)
Hyperlipidemia	760 (7.2)	382 (7.2)
Current smoker	5565 (46.3)	2737 (45.5)
Prior angina pectoris	3173 (28.0)	1571 (27.8)
Prior myocardial infarction	821 (7.2)	420 (7.3)
Prior heart failure	243 (2.1)	120 (2.1)
Prior stroke	1038 (8.8)	572 (9.7)
Prior peripheral artery disease	72 (0.6)	30 (0.5)
Prior PCI	562 (4.8)	293 (5.0)
Prior CABG	38 (0.3)	25 (0.4)
Prior renal dysfunction	130 (1.1)	56 (1.0)
COPD	221 (1.9)	114 (2.0)
Presenting characteristics		
Symptom onset to admission time		
0-6h	5725 (47.6)	2798 (46.5)
>6h	6298 (52.4)	3216 (53.5)
Heart rate, beats/min	77±18	78±18
Systolic blood pressure	129.61±25.30	130.00±25.52
Killip class		
Ι	9163 (76.2)	4589 (76.3)
II-IV	2859 (23.8)	1424 (23.7)
Cardiac arrest at admission	95 (0.8)	62 (1.0)
AMI classification		

60

STEMI	9215 (75.9)	4560 (75.2)
NSTEMI	2921 (24.1)	1507 (24.8)
Anterior wall involvement	5743 (47.7)	2843 (47.2)
Laboratory results		
Creatinine, µmol/L	74.00 (61.80, 89.10)	73.90 (61.40, 89.60)
Creatinine clearance, ml/min	84.53 (62.60, 109.58)	84.92 (63.22, 110.16)
Hemoglobin, g/L	136.37±20.82	136.39±20.79
Leukocyte count, $\times 10^9$ /L	10.09±3.65	10.02±3.52
LVEF, %	54.08±10.00	54.01±9.94
In-hospital treatment		
In-hospital PCI	6998 (58.4)	3468 (57.7)
In-hospital CABG	87 (0.7)	50 (0.8)
Adverse events during hospitalization		
New-onset heart failure	1616 (13.5)	805 (13.5)
Recurrent myocardial ischemia	281 (2.3)	125 (2.1)
Recurrent myocardial infarction	37 (0.3)	18 (0.3)
Stroke	65 (0.5)	29 (0.5)
Other bleeding events	183 (1.5)	94 (1.6)
Medications within 30 days		
Antiplatelet therapy		
Dual antiplatelet therapy	10518 (86.7)	5287 (87.1)
Single antiplatelet therapy	1292 (10.6)	610 (10.1)
None	326 (2.7)	170 (2.8)
Statins	11486 (94.6)	5736 (94.5)
β blockers	8751 (72.1)	4347 (71.6)
ACEI/ARB	7221 (59.5)	3591 (59.2)
Hospital level		
Province level	3876 (31.9)	1956 (32.2)
Prefecture level	6947 (57.2)	3461 (57.0)
County level	1313 (10.8)	650 (10.7)

without imputation of missing data. BMI, body mass index; PCI, percutaneous coronary

intervention; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; AMI, acute myocardial infarction; STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; LVEF, left ventricular ejection fraction; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker.

	Unadjusted HR (95% CI)	P value
Age (per 1 year increase)	1.066 (1.052, 1.080)	< 0.000
Women (vs men)	1.662 (1.233, 2.241)	0.0009
BMI (per 1kg/m ² increase)	0.893 (0.850, 0.939)	< 0.000
Diabetes (vs no)	1.545 (1.123, 2.126)	0.0075
Hypertension (vs no)	1.289 (0.958, 1.734)	0.0930
Hyperlipidemia (vs no)	0.749 (0.406, 1.384)	0.3547
Current smoking (vs no)	0.406 (0.293, 0.563)	< 0.000
Prior angina pectoris (vs no)	1.324 (0.972, 1.803)	0.0754
Prior myocardial infarction (vs no)	1.177 (0.709, 1.954)	0.5284
Prior heart failure (vs no)	5.078 (3.166, 8.144)	< 0.000
Prior stroke (vs no)	2.627 (1.842, 3.747)	< 0.000
Prior PCI (vs no)	0.814 (0.400, 1.659)	0.5717
Prior CABG (vs no)		
Prior renal dysfunction (vs no)	1.596 (0.587, 4.338)	0.359
COPD (vs no)	3.208 (1.744, 5.901)	0.0002
Prior peripheral artery disease (vs no)	_	
Symptom onset to admission time (vs 0-6h)		
>6h	1.947 (1.431, 2.649)	< 0.000
Heart rate (per 1 beat increase)	1.024 (1.018, 1.029)	< 0.000
Systolic blood pressure (per 1mmHg increase)	0.994 (0.988, 1.000)	0.0358
Killip class (vs I)		
II-IV	3.980 (2.990, 5.298)	< 0.000
Cardiac arrest at admission (vs no)	1.921 (0.614, 6.011)	0.2620
NSTEMI (vs STEMI)	1.230 (0.898, 1.686)	0.1977
Anterior wall involvement (vs no)	1.255 (0.943, 1.671)	0.1185
Creatinine clearance (vs >90 ml/min)		
60-90	1.805 (1.222, 2.666)	0.0030
≤60	4.252 (2.985, 6.058)	< 0.000
Hemoglobin (per 1g/L increase)	0.988 (0.983, 0.993)	< 0.000
Leukocyte count (per 10 ⁹ /L increase)	1.055 (1.023, 1.088)	0.000

	LVEF (per 1% increase)	0.938 (0.923, 0.952)	< 0.0001
	In-hospital PCI (vs no)	0.220 (0.157, 0.308)	< 0.0001
	In-hospital CABG (vs no)	1.277 (0.317, 5.145)	0.7308
	New-onset heart failure during hospitalization (vs no)	7.204 (5.414, 9.585)	< 0.0001
) 2	Recurrent myocardial ischemia during hospitalization (vs no)	6.028 (3.938, 9.228)	<0.0001
3 1 5	Recurrent myocardial infarction during hospitalization (vs no)	13.299 (6.752 26.195)	<0.0001
5 7	Stroke during hospitalization (vs no)	2.908 (0.934, 9.052)	0.0654
3	Other bleeding events during hospitalization (vs no)	4.109 (2.235, 7.558)	< 0.0001
)	Antiplatelet therapy at discharge (vs dual therapy)		
2 2	Single antiplatelet therapy	1.344 (0.762, 2.372)	0.3024
3 1	none	5.158 (3.468, 7.672)	< 0.0001
5	Statins at discharge (vs no)	3.180 (2.246, 4.502)	< 0.0001
7 3	β blockers at discharge (vs no)	1.483 (1.105, 1.991)	0.0087
)	ACEI/ARB at discharge (vs no)	1.481 (1.088, 2.017)	0.0128

BMI, body mass index; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; NSTEMI, non-ST-segment elevation myocardial infarction; STEMI, ST-segment elevation myocardial infarction; LVEF, left ventricular ejection fraction; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker; HR, hazard ratio; CI, confidence interval.

3 4	Supplemental Table 5. Univariable analysis of mortality after 30 days				
5 6		Unadjusted HR (95% CI)	P value		
7	Age (per 1 year increase)	1.084 (1.076, 1.092)	< 0.0001		
8 9	Women (vs men)	1.947 (1.679, 2.259)	< 0.0001		
10 11	BMI (per 1kg/m ² increase)	0.895 (0.872, 0.919)	< 0.0001		
12 13	Diabetes (vs no)	1.571 (1.328, 1.857)	< 0.0001		
14	Hypertension (vs no)	1.533 (1.321, 1.779)	< 0.0001		
16	Hyperlipidemia (vs no)	0.631 (0.443, 0.900)	0.0111		
17 18	Current smoking (vs no)	0.423 (0.359, 0.498)	< 0.0001		
19 20	Prior angina pectoris (vs no)	1.318 (1.131, 1.536)	0.0004		
21 22	Prior myocardial infarction (vs no)	2.064 (1.657, 2.570)	< 0.0001		
23	Prior heart failure (vs no)	5.964 (4.685, 7.594)	< 0.0001		
24	Prior stroke (vs no)	2.013 (1.651, 2.455)	< 0.0001		
26 27	Prior PCI (vs no)	1.122 (0.817, 1.540)	0.4770		
28 29	Prior CABG (vs no)	1.656 (0.618, 4.433)	0.3156		
30 31	Prior renal dysfunction (vs no)	4.383 (2.969 6.470)	< 0.0001		
32	COPD (vs no)	2.897 (2.076, 4.044)	< 0.0001		
33 34	Prior peripheral artery disease (vs no)	2.273 (1.197, 4.314)	0.0122		
35 36	Symptom onset to admission time (vs 0-6h)				
37 38	>6h	1.497 (1.287, 1.742)	< 0.0001		
39 40	Heart rate (per 1 beat increase)	1.021 (1.018, 1.024)	< 0.0001		
41	Systolic blood pressure (per 1mmHg increase)	1.005 (1.002, 1.008)	0.0005		
43	Killip class (vs I)				
44 45	II-IV	3.225 (2.792, 3.726)	< 0.0001		
46 47	Cardiac arrest at admission (vs no)	1.068 (0.478, 2.388)	0.8724		
48 49	NSTEMI (vs STEMI)	2.395 (2.070, 2.771)	< 0.0001		
50 51	Anterior wall involvement (vs no)	1.210 (1.047, 1.398)	0.0096		
52	Creatinine clearance (vs >90 ml/min)				
53 54	60-90	1.725 (1.405, 2.119)	< 0.0001		
55 56	≤60	5.193 (4.328, 6.231)	< 0.0001		
57 58	Hemoglobin (per 1g/L increase)	0.980 (0.978, 0.983)	< 0.0001		
59 60	Leukocyte count (per 10 ⁹ /L increase)	1.010 (0.990, 1.030)	0.3333		
50					

2			
3 4	LVEF (per 1% increase)	0.948 (0.941, 0.955)	< 0.0001
5	In-hospital PCI (vs no)	0.207 (0.175, 0.246)	< 0.0001
6 7	In-hospital CABG (vs no)	0.421 (0.106, 1.674)	0.2184
8 9	New-onset heart failure during hospitalization (vs no)	3.418 (2.932, 3.984)	< 0.0001
10 11	Recurrent myocardial ischemia during hospitalization (vs no)	2.653 (1.949, 3.610)	< 0.0001
12 13	Recurrent myocardial infarction during hospitalization (vs no)	1.773 (0.659, 4.771)	0.2565
14	Stroke during hospitalization (vs no)	3.455 (1.991, 5.996)	< 0.0001
16	Other bleeding events during hospitalization (vs no)	2.233 (1.486, 3.356)	0.0001
17 18	Recurrent myocardial infarction within 30 days (vs no)	3.032 (1.130-8.134)	0.0276
19 20	Heart failure worsening within 30 days (vs no)	4.790 (3.631, 6.319)	< 0.001
21 22	Antiplatelet therapy within 30 days (vs dual antiplatelet therapy)		
23	Single antiplatelet therapy	2.147 (1.779, 2.591)	< 0.0001
25	none	4.371 (3.385, 5.643)	< 0.0001
26 27	Statins within 30 days (vs no)	2.454 (1.960, 3.073)	< 0.0001
28 29	β blockers within 30 days (vs no)	1.594 (1.374, 1.850)	< 0.0001
30 21	ACEI/ARB within 30 days (vs no)	1.153 (0.997, 1.333)	0.0546

BMI, body mass index; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; NSTEMI, non-ST-segment elevation myocardial infarction; STEMI, ST-segment elevation myocardial infarction; LVEF, left ventricular ejection fraction; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker; HR, hazard ratio; CI, confidence interval.

Subgroup	Sample size	C statistic (95% CI)
Age, yrs		
≤75	4766	0.74 (0.65-0.84)
>75	935	0.83 (0.71-0.94)
Sex		
Male	4359	0.79 (0.69-0.88)
Female	1342	0.75 (0.62-0.88)
Diabetes		
Yes	1106	0.81 (0.62-1.00)
No	4431	0.78 (0.70-0.87)
Diagnosis		
STEMI	4302	0.77 (0.68-0.86)
NSTEMI	1399	0.83 (0.72-0.93)
In-hospital PCI		
Yes	3498	0.76 (0.63-0.88)
No	2203	0.76 (0.66-0.85)
Hospital level		
Province level	1984	0.78 (0.66-0.90)
Prefecture level	3168	0.80 (0.70-0.90)
County level	549	0.74 (0.51-0.97)

Supplemental Table 6. Discrimination of 30-day prognostic nomogram in subgroups of patients

3
4
5
6
7
, 0
0
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
23
22
24
25
26
27
28
29
30
21
21
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
53
57
54
55
56
57
58
59

1 2

Supplemental Table 7. Discrimination o	of 2-year	prognostic	nomogram	in subgroup	ps of
patients					

Subgroup	Sample size	C statistic (95% CI)
Age, yrs		
≤75	3766	0.79 (0.75-0.83)
>75	695	0.66 (0.62-0.71)
Sex		
Male	3412	0.83 (0.80-0.86)
Female	1049	0.75 (0.70-0.80)
Diabetes		
Yes	845	0.81 (0.76-0.86)
No	3496	0.81 (0.78-0.84)
AMI classification		
STEMI	3364	0.81 (0.78-0.84)
NSTEMI	1097	0.81 (0.76-0.85)
In-hospital PCI		
Yes	3104	0.82 (0.78-0.87)
No	1357	0.72 (0.68-0.76)
Hospital level		
Province level	1460	0.83 (0.78-0.88)
Prefecture level	2552	0.81 (0.77-0.84)
County level	449	0.78 (0.70-0.85)

AMI, acute myocardial infarction; STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; PCI, percutaneous coronary intervention; CI, confidence interval.

Supplemental Figure 2. Martingale residual plots for testing the linearity assumption before developing the 30-day model

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 63 of 85

Supplemental Figure 5. Schoenfeld residual plots for testing the proportional hazards assumption before developing the 2-year model

Supplemental Figure 7. Density plots for all-cause death and recurrent myocardial infarction during follow-up

Supplemental Figure 13. Relative importance of selected predictors for 30-day mortality

BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplemental Figure 19. Relative importance of selected predictors for 2-year mortality

Supplemental Figure 21. Comparisons of clinical utility between models with or without hospital level

Supplemental Figure 23. Comparisons of clinical utility between models and GRACE 2.0 score

Page 83 of 85

 BMJ Open

Supplemental Figure 24. Calibration curves of 30-day prognostic nomogram

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplemental Figure 25. Calibration curves of 2-year prognostic nomogram

TRIPOD Checklist: Prediction Model Development

Section	Item	Checklist description	Reported on Page Number/Line Number	Reported on Section/Paragraph
Title and abstract				
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.		
Abstract	2	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.		
Introduction				
Background and objectives	За	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.		
	3b	Specify the objectives, including whether the study describes the development or validation of the model or both.		
Methods		R.		
Source of data	4a	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, ifapplicable.		
	4b	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.		
Participants	5a	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.		
	5b	Describe eligibility criteria for participants.		
	5c	Give details of treatments received, if relevant.		
Outcome	6a	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.		
	6b	Report any actions to blind assessment of the outcome to be predicted.		
Predictors	7a	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.		
	7b	Report any actions to blind assessment of predictors for the outcome and other predictors.		
Sample size	8	Explain how the study size was arrived at.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Missing data	9	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	
Statistical analysis methods	10a	Describe how predictors were handled in the analyses.	
	10b	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	
	10d	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	
Risk groups	11	Provide details on how risk groups were created, if done.	
Results			
Participants	13a	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	
	13b	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	
Model development	14a	Specify the number of participants and outcome events in each analysis.	
	14b	If done, report the unadjusted association between each candidate predictor and outcome.	
Model specification	15a	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	
	15b	Explain how to the use the prediction model.	
Model performance	16	Report performance measures (with CIs) for the prediction model.	
Discussion			
Limitations	18	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	
Interpretation	19b	Give an overall interpretation of the results, considering objectives, limitations, and results from similar studies, and other relevant evidence.	
Implications	20	Discuss the potential clinical use of the model and implications for future research.	
Other information			
Supplementary information	21	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	
Funding	22	Give the source of funding and the role of the funders for the present study.	

BMJ Open

1 2 3 4		
5		
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	For peer review only	
37 38 39 40		
41 42	3_3	Undated on June 1, 2020
42 43 44 45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	opunes on suite 1, 2020
46		