1 Supplementary data

2

3 **Supplemental Figure S1** Photochemical efficiency of photosystem II (Φ_2) and γ (the lumped

parameter in Eqn 2) in response to the incident irradiance (I_{inc}) for wheat (T. aestivum) and 4 sunflower (H. annuus). Plants were measured at gaseous conditions of 410 (blue circles) or 5

820 ppm (red squares) CO₂ in the leaf chamber. Data are averaged over treatments of growth 6

7 CO₂, and were shown as means \pm SE (*n*=12). The numbers represent the relative changes in Φ_2 and γ with the increase of I_{inc} from 40 to 100 μ mol m⁻² s⁻¹. 8

11 lumped parameter in Eqn 2) in response to the incident irradiance (I_{inc}) . The tests were

12 performed using the data of a leaf of wheat (*T. aestivum*) under ambient CO₂ concentration

13 by varying the ratio of stomatal conductance for CO₂ to mesophyll conductance (g_{sc}/g_m) in a

14 range of ± 0.4 or assuming a constant mesophyll conductance (g_m) value of 0.2 mol m⁻² s⁻¹.

16 Supplemental Figure S3 Sensitivity test on respiration in the light estimated by the Kok-C_c

17 method ($R_{L \text{ Kok-Cc}}$) of growth CO₂ treatments (aCO₂ and eCO₂) and measurement conditions

18 (410 and 820 ppm) for wheat (*T. aestivum*) and sunflower (*H. annuus*) by varying the ratio of

19 stomatal conductance for CO₂ to mesophyll conductance (g_{sc}/g_m). A and D, $R_{L \text{ Kok-Cc}}$ using the

estimated g_{sc}/g_m . B and E, $R_{L \text{ Kok-Cc}}$ using g_{sc}/g_m +0.4. C and F, $R_{L \text{ Kok-Cc}}$ using g_{sc}/g_m -0.4. Data

21 are means \pm SE (*n*=5-6)

23 Supplemental Figure S4 Sensitivity test on ratio of respiration in light to respiration in the

24 dark ($R_{L \text{ Kok-Cc}}/R_{Dk}$) of growth CO₂ treatments (aCO₂ and eCO₂) and measurement conditions

25 (410 and 820 ppm) for wheat (*T. aestivum*) and sunflower (*H. annuus*) by varying the ratio of

stomatal conductance for CO₂ to mesophyll conductance (g_{sc}/g_m). A and D, $R_{L \text{ Kok-Cc}}/R_{Dk}$

27 using the estimated g_{sc}/g_m . B and E, $R_{L \text{ Kok-Cc}}/R_{Dk}$ using g_{sc}/g_m +0.4. C and F, $R_{L \text{ Kok-Cc}}/R_{Dk}$

28 using g_{sc}/g_m -0.4. Data are means \pm SE (n=5-6)

29

31 Supplemental Figure S5 Effects of growth CO₂ treatments (aCO₂ and eCO₂) on the cuvette

- 32 leak coefficient for $CO_2(K_{CO2})$ of intact leaves of wheat (*T. aestivum*) and sunflower (*H.*
- *annuus*). Data are mean \pm SE (*n*=6). Asterisks indicate significant differences of ANOVA
- 34 tests (*, *P*<0.05).

Supplemental Figure S6 Net CO₂ assimilation rate (*A*) in response to the incident irradiance (I_{inc}) for wheat (*T. aestivum*) and sunflower (*H. annuus*). Solid lines are the linear regressions of *A* vs I_{inc} observed in an I_{inc} range of 40 to 100 μ mol m⁻² s⁻¹; dashed lines are those observed in an I_{inc} range of 0 to 40 μ mol m⁻² s⁻¹. Meaning of symbols of different CO₂ treatments and

42 measurement conditions are shown in Fig. 2.