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1 Performance of baselines on CellMix, PBMC_3K, Mouse_skin and
AdBrain

We visualize the clustering results of baselines on CellMix, PBMC 3K, Mouse skin and AdBrain in Fig.
S1 ~ Fig. S4. Fig. S5 ~ Fig. S8 provide the visualization and clustering results of different methods on
each raw and imputed scRNA-seq data, while Fig. S9 ~ Fig. S12 show the visualization and clustering
results of each method on raw and imputed scATAC data. According to these results and those in the
main text, we can see that scMCs can obtain clearer visualization results than the baseline methods in most
cases. In addition, the clustering results of scMCs and of other imputed methods against the ground truth
of CellMix, PBMC 3K, Mouse skin and AdBrain indicate the scMCs achieves the best imputation and
clustering results.

2 Downstream analysis on imputed AdBrain

Fig. S13 reports the downstream analysis results on imputed Adbrain. We can find that the clusters obtained
using the imputed data are more compact, and the boundaries between the clusters are clearer. Moreover, we
create the gene activity matrix based on the imputed scATAC data, and accurately identify the differentially
expressed genes of each cell cluster. In addition, we also find the differentially accessible peaks using the
imputed scATAC data, and observe that the peaks are significantly different among clusters, which indicates
the specific accessibility in heterogeneous cell types.
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Figure S1: Cell clustering visualization of each method on CellMix. (a) JSNMF; (b) UnionCom; (c)
scMVAE-PoE; (d) scsMVAE-NN; (e) scMVAE-Direct; (f) DCCA; (g) scMCs.
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Figure S2: Cell clustering visualization of each method on PBMC 3K. (a) JSNMF; (b) UnionCom; (c)

scMVAE-PoE; (d) ssMVAE-NN; (e) scMVAE-Direct; (f) DCCA; (g) scMCs.
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Figure S3: Cell clustering visualization of each method on Mouse_skin. (a) JSNMF; (b) UnionCom; (c)

scMVAE-PoE; (d) ssMVAE-NN; (e) scMVAE-Direct; (f) DCCA; (g) scMCs.
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Figure S4: Cell clustering visualization of each method on AdBrain. (a) JSNMF; (b) UnionCom; (c)

scMVAE-PoE; (d) ssMVAE-NN; (e) scMVAE-Direct; (f) DCCA; (g) scMCs.
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Figure S5: Cell clustering visualization of each method on raw and imputed CellMix scRNA-seq data. (a)

Raw data; (b) scMVAE-PoE; (¢) scsMVAE-NN; (d) scMVAE-Direct; (e) DCCA; (f) scMCs; (g) NMI values;
(h) ARI values.
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Figure S6: Visualization and clustering performance of imputed methods on raw and imputed PBMC 3K
scRNA-seq data. (a) Raw data; (b) scMVAE-PoE; (c) scMVAE-NN; (d) scMVAE-Direct; (¢) DCCA; (f)
scMCs; (g) NMI; (h) ARI.
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Figure S7: Visualization and clustering performance of imputed methods on raw and imputed Mouse_skin
scRNA-seq data. (a) Raw data; (b) scMVAE-PoE; (c) scMVAE-NN; (d) scMVAE-Direct; (¢) DCCA; (f)
scMCs; (g) NMI; (h) ARI.



14 15 30
10
- 10 . R
- 10 ° - o - - 10
5 £ s g s g ’7
£ £ . & . S £
o s
o ]
o - P 10
4 -5 ‘ -20 -
ETE— o 10 20 0 o 0 2 ETET) o 0 20 o a0 o w2
1 umap1 m: umap1
(a) Raw data (b) scMVAE-PoE (€) ScMVAE-NN (d) scMVAE-Direct
15 r .
0s
" " o
< ."- 04
£ ER 20
E H 3 . 2 -
A 02
0 o
"l‘ 01
s o
Lo 0 o 0 20 Y20 10 o 0 20
umap1 umap1
(¢) DCCA () seMCs (2) NMIL

() ARL

Figure S8: Visualization and clustering performance of imputed methods on raw and imputed AdBrain
scRNA-seq data. (a) Raw data; (b) scMVAE-PoE; (c) scMVAE-NN; (d) scMVAE-Direct; (¢) DCCA; (f)

scMCs; (g) NMI; (h) ARI.
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Figure S9: Cell clustering visualization of each method on raw and imputed CellMix scATAC data. (a) Raw
data; (b) scMVAE-PoE; (c) scMVAE-NN; (d) scMVAE-Direct; () DCCA,; (f) scMCs; (g) NMI values; (h)

ARI values.
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Figure S10: Visualization and clustering performance of imputed methods on raw and imputed PBMC 3K
scMVAE-NN; (d) scMVAE-Direct; (¢) DCCA; (f)

scATAC data. (a) Raw data; (b) scMVAE-PoE; (¢)

scMCs; (g) NMI; (h) ARIL.
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Figure S11: Visualization and clustering performance of imputed methods on raw and imputed Mouse_skin
scATAC data. (a) Raw data; (b) scMVAE-PoE; (¢) scMVAE-NN; (d) scMVAE-Direct; (¢) DCCA; (f)

scMCs; (g) NMI; (h) ARI
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Figure S12: Visualization and clustering performance of imputed methods on raw and imputed AdBrain
scATAC data. (a) Raw data; (b) scMVAE-PoE; (¢) scMVAE-NN; (d) scMVAE-Direct; (¢) DCCA; (f)

scMCs; (g) NMI; (h) ARIL.
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Figure S13: Downstream analysis on the imputed AdBrain. (a) Cell type annotation and clustering on raw
and imputed AdBrain; (b) Selected differentially expressed genes on gene activity matrix; (c) Identified
differentially accessible peaks based on peak counts of imputed AdBrain.



3 Downstream analysis of multiple clusterings generated from CellMix

Fig. S14 reports the diversity (1-NMI, 1-JI) of scMCs on CellMix, PBMC 3K and AdBrain. Fig. S15 ~
Fig. S17 report the downstream analysis results of multiple clusterings generated from CellMix, where Fig.
S15 reveals the results based on the ground truth C;, Fig. S16 reveals the results of O, based on Cq, and
Fig. S17 shows the results of O3 based on Cs. Based on these results, we can find that scMCs discovers two
clusterings with diversity and quality, where C; is a clustering about cell types, while C2 divides cells into
two clusters based on whether they are tissue-specific.
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Figure S14: Diversity(1) between C; and Co generated by scMCs.
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Figure S15: Downstream analysis of CellMix and C;. (a) Cell clustering visualization based on C;; (b) and
(c) Identified cell marker genes; (d) Cell type annotation based on the marker genes.
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Figure S16: Downstream analysis of O and C;. (a) Cell clustering visualization based on Cy; (b) and (c)
Identified cell marker genes; (d) Cell type annotation based on the marker genes.
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Figure S17: Downstream analysis of O and Cs. (a) Cell clustering visualization based on Cs; (b) and (c)
Identified cell marker genes; (d) Cell type annotation based on the marker genes.

4 Ablation study

To study the contribution factors of scMCs, we introduce four variants: w/oAtt, w/oDiscriminator, w/oCL
and w/0ZB, which separately disregard the attention layer, omics-label discriminator, contrastive learning,
and ZINB loss and Bernoulli loss. Fig. S18 reveals the average NMI and ARI values of scMCs and its
variants.

From Fig. S18, we observe that scMCs outperforms its variants by a clear margin, which confirms
that attention layer, omics-label, contrastive learning mechanism, and generative decoder indeed contribute
to the quality of cell clustering. Among them, w/0ZB usually has the lowest results, which suggests the
importance of ZINB loss and Bernoulli loss on guiding cell clustering and data imputation. The contribution
of contrastive learning is often larger than the attention layer and omics-label discriminator. This is because
the cross-omics shared features learned via contrastive learning are important for the consistent clustering
with respect to cell types. The individual features of different omics are also important for a high quality
clustering, but only the individual features may lead to a meaningless clustering. In fact, we find that the
individual features are more important for generating alternative clusterings with diversity.
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Figure S18: The performance of scMCs and its variants.

5 Parameter sensitivity analysis

Taking CellMix as an example, we conduct different experiments to evaluate the sensitivity of scMCs to
different parameters combinations. The details are as follows:



5.1 Sensitivity analysis of {a1, as, a3}

We first measure the impact of three parameters, {a1, ag, a3} in Eq. (17) on the clustering performance
of scMCs, which balance the Lp.,, L4;s and L., respectively. As shown in Fig. S19, the performance
of scMCs is relatively stable when «; = 0.0001. With the increase of «, the clustering performance of
scMCs fluctuated significantly. This is because scATAC data has high dimensionality and sparsity, and a
larger £ g, loss will affect the optimization of other modules of scMCs, resulting in suboptimal clustering
performance. In addition, we also find that scMCs is insensitive to different combinations of ay and s,
especially when a; = 0.0001. It can be found that the clustering performance of scMCs is poor when
g < 0.01 and a3 < 0.1. This is because a smaller s and g weaken the constraint of label prediction loss
and cross-omics contrastive learning loss, resulting in insufficient learning of omics-specific and consistent
features.

5.2 Sensitivity analysis of {\,, \,}

Then, we further evaluate the impact of {\;, A\, } in Eq. (8), where {\;, A\, } are the weight parameters
of omics specific features learned from scRNA-seq and scATAC data, respectively. From Fig. S20, it can
be found that the clustering performance of scMCs is better when A\, € [0.1,1] and A, € [0.001,0.01].
This is because the dimensionality and sparsity of scATAC data are much higher than those of scRNA-seq
data, resulting in lower quality of Z,y than Z x, even though we have utilized the Bernoulli distribution to
model the dropout events in scATAC data. Therefore, to ensure learning a more discriminative and accurate
co-embedding matrix Zr, we set A; = 1, and A\, = 0.01.

5.3 Sensitivity analysis of {5, 55}

We also conduct experiments on CellMix to analyze the diversity (1-NMI) and quality (SI) of scMCs with
different combinations of 51 and 2, and report the results in Fig. S21. We can see that the diversity and
quality of scMCs are poor when 3; < 0.1 and 85 < 0.1. This is because the smaller 3; and 35 weaken the
constraint of HSIC and KL divergence on the diversity and quality, causing scMCs to focus on reconstruction
loss but fail to produce significant different clusterings.

To ensure the fairness of the experiment, we set the parameters of each baseline as follows:

Table S1: Parameter settings of each baseline on benchmark datasets.

CellMix PBMC 3K Mouse_skin AdBrain

n=0.5 n=20.5 n=20.5 n=0.5
JSNMF a =10 a=1 a =10 a=1

v =10 ~ =10 ~ =10 v =10
UnionCom | a =0.1 a=0.1 a=0.1 a=0.1

A1 =0.1 A =0.1 A =0.1 A1 = 0.0001
SCMVAE Ao =1 A2 =0.1 A2 = 0.01 A2 =0.1

B =0.5 B8 =0.5 B8 =0.5 B =0.5

A=0.5 A=0.5 A=0.5 A=0.1
DCCA B =01 8 =0.01 8 =0.01 B=01

Ao =1 Az =1 Az = 0.01 Az = 0.1

Ay = 0.01 Ay =001 | A, =0.001 | A, =0.001
scMCs a1 = 0.0001 a; = 0.01 a; = 0.01 a; = 0.01

as = 0.001 az = 0.001 | az =0.0001 | a =0.001

a3z = 0.01 a3z = 0.001 | as =0.001 az = 0.001

B1=1 B1=1 - B1 =0.1

B2 =1 B2 =1 - B2 =1

S -
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Figure S19: The clustering performance of scMCs under different combinations of a1, g and as3.
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Figure S21: Diversity (1) and quality (}) of scMCs under different combinations of {\;, A }.
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