SUPPLEMENTAL INFORMATION

Stabilization of E-cadherin adhesions by COX-2/GSK3β signaling is a targetable pathway in metastatic breast cancer

Kuppusamy Balamurugan¹*, Dipak K. Poria¹, Saadiya W. Sehareen¹, Savitri Krishnamurthy², Wei Tang³, Lois McKennett⁴, Veena Padmanaban^{5,6}, Kelli Czarra⁴, Andrew J. Ewald⁵, Naoto T. Ueno², Stefan Ambs³, Shikha Sharan¹, and Esta Sterneck¹*

¹ Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, MD, USA
² Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
³ Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, MD, USA
⁴ Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
⁵ Departments of Cell Biology and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
⁶ Present Address: Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA

Corresponding authors:

Esta Sterneck, <u>sternecg@mail.nih.gov</u>, tel.301-846-1471

Kuppusamy Balamurugan, kuppusamyb@mail.nih.gov, tel.301-846-5257

National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702-120, USA

CONTENT:

- Supplemental Tables S1
- Supplemental Figures S1-S6

Supplemental Table S1. Primers used for qPCR analysis

GENE	FORWARD	REVERSE
CDH1	5'-AGCAGAACTAACACACGGGGG-3'	5'-ATACCGGGGGGACACTCATGA-3'
CDKN1A	5'-ACCATGTGGACCTGTCACTGT-3'	5'-TTAGGGCTTCCTCTTGGAGAA-3
CEBPD	5'-GCCATGTACGACGACGAGA-3'	5'-TTGCTGTTGAAGAGGTCGG-3'
CTNNA1	5'-GGCAGCCAAAAGACAACAGG-3'	5'-TTACGTCCAGCATTGCCCAT-3'
CTNNB1	5'-TTGAAGGTTGTACCGGAGCC-3'	5'-GCCACCCATCTCATGTTCCA-3'
CTNND1	5'-TTGAGTGGGAATCGGTGCTC-3'	5'-AGGAGGTCAGCTATGGCAGA-3'
GAPDH	5'-AAGGTCGGAGTCAACGGATTTG-3'	5'-CCATGGGTGGAATCATATTGGAA-3'
IL6	5'-ACAAATTCGGTACATCCTC-3'	5'-GCAGAATGAGATGAGTTGT-3'
PTGS2	5'-GCTGTGGGGGCAGGAAGTC-3'	5'-TTGGAATAGTTGCTCATCACC-3'
RPLP0	5'-GCAATGTTGCCAGTGTCTGTC-3'	5'-GCCTTGACCTTTTCAGCAAGT-3'

Supplemental Figure S1. C/EBPô promotes malignant phenotypes in IBC cells. (A) Western analysis of C/EBPô expression in SUM149, IBC-3 and KPL-4 cells 72 h after transfection with siControl (-) or siCEBPD oligos (+). (B) Quantification of the number of cells invaded through transwell Matrigel by SUM149, IBC-3 and KPL-4 cells transfected with siControl (-) or siCEBPD (+) oligos (n=3, mean±SEM; *P<0.05, **P<0.01, ***P<0.001 compared to siControl). (C) Quantification of the number of cells invaded through transwell Matrigel by SUM149 cells transfected with siControl (-) or two independent siCEBPD (+) oligos (n=3, mean ±SEM, **P<0.01***P<0.001 compared to siControl). Western analysis of C/EBPô expression is shown below. (D) Western analysis of the indicated proteins from SUM149 cells transfected with control (-) or two independent siCEBPD (+) oligos. (E) Flow cytometric quantification of cells with CD44+:CD24- cell surface markers among SUM149 and IBC-3 cells transfected with control (-) or siCEBPD (+) oligos followed by culture in 2D for 3 days (n=3; mean ±SEM, *P <0.05, **P<0.01). (F) Quantification of bioluminescence (total Flux) in the lungs of mice with experimental metastases from SUM149 cells with doxycycline (Dox)-inducible shRNAs before (-) and 4 weeks after (+) treatment with Dox (n=4 and 6, **P<0.01 by two-sided paired t-test; n.s., not significant). (G) Light microscope images (left) of Hematoxylin and Eosin stained sections of lungs from mice as in panel F (M, metastasis) and quantification (right) of the number of tumor cell colonies, Mets (n=4 and 6, P=0.03 by unpaired two-sided Wilcoxon test). (H) qPCR analysis of CEBPD mRNA in SUM149 and IBC-3 cell lines that were cultured on plastic (2D) or as emboli (3D) for 4 days as in Figure 1C (n=3, mean ±SEM, **P<0.01, ***P<0.001 compared to 2D). (I) Images of representative emboli from IBC-3 cells that had been transfected with control or siCEBPD oligos taken before and after treatment of the same embolus with EDTA for 8 h. (J) Quantification of the number of cells in 3 day-old emboli as in Figure 11 before treatment (n=3; n.s., not significant).

Balamurugan et al "Stabilization of E-cadherin adhesions by COX-2/GSK3ß signaling is a targetable pathway in metastatic breast cancer"

Supplemental Figure S2. C/EBP δ promotes E-cadherin protein stability through GSK3 β inhibition and COX-2 gene transcription. (A) Quantification of E-Cadherin protein signal from Western analyses as in Figure 2A normalized to GAPDH loading control (n=3, mean \pm SEM, **P*<0.05; n.s., not significant). (B) Western analysis of the indicated proteins in emboli from SUM149 and IBC-3 cells that were transfected with control or two independent si*CEBPD* oligos. (C) Western analysis of the indicated proteins in emboli from SUM149 cells transfected with control (-) or si*CEBPD* oligos and treated with LiCl (10 mM) or CHIR (5 μ M) for 6 h. (D) Western analysis of the indicated proteins in emboli from SUM149 cells transfected with control (-) or si*CEBPD* along with si*BTRC* (β -TrCP) oligos. (E-F) Western (left) and mRNA analyses by qPCR (right) of COX-2 (*PTGS2*) expression in (E) SUM149 and (F) IBC-3 cells 72 h after transfection with si*Control* or two independent si*CEBPD* oligos (n=3, mean±SEM, **P*<0.01, ****P*<0.001 compared to si*Control*). (G) Western analysis of the indicated proteins in SUM149 cells with stable expression of sh*Control* (-) or sh*CEBPD* (+) shRNA 72 h after transfection with vector (-) or C/EBP δ expression plasmid (+). (H) qPCR analysis of the indicated mRNA's in cells as in panel G (n=3, mean±SEM; **P*<0.01, ****P*<0.001 compared to transfected with empty vectors).

Balamurugan et al "Stabilization of E-cadherin adhesions by COX-2/GSK3ß signaling is a targetable pathway in metastatic breast cancer"

Supplemental Figure S3 continued

Supplemental Figure S3. Expression analysis of breast cancer xenograft primary tumors and lung metastases. (A) Antibody control samples showing immunostaining of E-Cadherin, pGSK3β^{S9} and human-specific NUMA1 on serial sections of normal human tissues as indicated and the respective isotype controls. NUMA1 staining of a SUM159 xenograft tumor denotes its specificity to human cells (h) while mouse stroma with lymph node (LN), demarcated by the dotted line, does not stain. A representative image of BCM-5471 tumor tissue shows lack of staining with isotype control antibodies. (B) Immunostaining of E-Cadherin and pGSK3 β^{s9} on serial sections of primary tumors from the indicated PDX models, representing TNBC (BCM-3204, -4013, 5471), ER+/HER2+ (BCM-4888), and ER+ (BCM-5097) subtypes. (C) PTGS2 mRNA data of BC PDX models as reported by the Patient-Derived Xenograft and Advanced In Vivo Models (PDX-AIM) Core at Baylor College of Medicine (https://pdxportal.research.bcm.edu). (D) Immunostaining of E-Cadherin, pGSK3β^{S9} and NUMA1 on primary tumor sections of PDX BCM-5471 and the indicated cell lines. (E) BCM-5471 and SUM149 lung metastases (M) with immunostaining of $pGSK3\beta^{S9}$ (p/d, proximal/distal; black arrows indicate bronchial epithelium).

Supplemental Figure S4. Effect of celecoxib on established emboli in vitro and tumors in vivo. (A) Images of representative SUM149 cell emboli after 3 days of culture (0 h) and following another 72 h of treatment with celecoxib, as indicated, and stained with propidium iodide (PI, fluorescence imaging; BF, bright field). (B) Representative images of IBC-3 cells cultured in 3D \pm celecoxib for 72 h and stained with PI (BF, bright field). (C) Quantification of E-Cadherin and pGSK3 β^{S9} signals shown in Figure 4F of SUM149 tumors treated \pm Celecoxib (n=7, mean \pm SEM; ***P*<0.01, ****P*<0.001 by unpaired two-sided Wilcoxon rank-sum test). (D) Quantification by qPCR analysis of *CDH1* mRNA in SUM149 tumors as in Figure 4F (n=14-15, ***P*<0.01 by unpaired Wilcoxon rank-sum test). (E) Concentration of PGE2 in plasma of mice bearing SUM149 tumors as shown in Figure 4F (n=10). Tumor-free mice (n=5) were used as control (mean \pm SEM; n.s., not significant, *P* values by unpaired two-sided Wilcoxon rank-sum test). (F) Quantification of PGE2 in SUM149 tumor tissue extracts from mice as in Figure 4F (n=10, mean \pm SEM; n.s., not significant; ***P*<0.01 by unpaired two-sided Wilcoxon rank-sum test). (G) Quantification of Western analysis shown in Figure 4I of BCM-5471 PDX tumors treated \pm Celecoxib (n=6-8, mean \pm SEM; **P*<0.05, ***P*<0.01, ****P*<0.001 by unpaired two-sided Wilcoxon rank-sum test).

Balamurugan et al "Stabilization of E-cadherin adhesions by COX-2/GSK3ß signaling is a targetable pathway in metastatic breast cancer"

Supplemental Figure S5. Effect of *Cdh1* deletion in seeded metastases and assessment of celecoxib and paclitaxel drug sensitivity in vitro and in vivo. (A) Quantification of macrometastases in lungs of mice injected with E-cadfl/fl or E-cadfl/fl; CreER expressing cells, followed 1 week later by tamoxifen injection to delete the E-cadherin gene, and harvested 3 weeks thereafter (n=4, *P* value by two-tailed non-parametric t-test, Mann Whitney). (B) Quantification of propidium iodide (PI) positive cells in emboli treated after 3 days of 3D culture for additional 3 days with individual drugs (50 μ M celecoxib, 500 nM doxorubicin, 50 nM paclitaxel, 10 μ M carboplatin) and/or combinations as indicated (n=3, mean±S.E.M.; **P*<0.05, ***P*<0.01, ****P*<0.001 compared to DMSO control). (C) Quantification of PI positive cells from cells cultured in 2D or 3D and treated as in panel B (n=3, mean±S.E.M.; **P*<0.01 compared to DMSO control or as indicated by bracket). (D) Quantification of tumor cell colonies (mets) in lungs of mice injected with SUM149 cells and treated with celecoxib (1000 mg/kg chow) and/or paclitaxel (10 mg/kg i.v.), n=4, P as indicated by two-sided unpaired Wilcoxon test compared to untreated. (E) Tumor volume measurements of BCM-5471 PDX's in mice treated with celecoxib (1000 mg/kg chow) and/or paclitaxel (10 mg/kg i.v.), n=6-10, *P* values were determined by a linear model of treatment by day interaction relative to control baseline.

NM_005195.3 CEBPD mRNA

AGGTGACAGCCTCGCTTGGACGCAGAGCCCGGCCCGACGCCGCCCATGAGCGCCGCGCCCTCTCAGCCTGGA	70
CGGCCCGGCGCGCGCGCGCCCTGGCCTGCGGAGCCTGCGCCCTTCTACGAACCGGGCCGGGCGAGCAAC	140
CCGGGCCGCGGGGCCGAGCCAGGGGCCCTAGGCGAGCCAGGCGCCGCCGCCCCCGCCATGTACGACGACG	210
AGAGCGCCATCGACTTCAGCGCCTACATCGACTCCATGGCCGCCGTGCCCACCTGGAGCTGTGCCACGA	280
CGAGCTCTTCGCCGACCTCTTCAACAGCAATCACAAGGCGGGCG	350
TCGCCGACCTCTTCAACAG=siBNA#1	
GGCGGCCCCGCGCGCCCTTGGGCCCGGGCCCTGCCGCCTGCTCAAGCGCGAGCCCGACTGGG	420
GCGACGGCGACGCCCCGGCTCGCTGTTGCCCGCGCAGGTGGCCGCGCGCACAGACCGTGGTGAGCTT	490
GGCGGCCGCAGGGCAGCCCACCCCCCCCCCCCGCGCGCG	560
GCGCCCGGCCCCGGGAGAAGAGCGCCGGCAAGAGGGGCCCGGACCGCGGCAGCCCCGAGTACCGGC	630
AGCGGCGCGAGCGCAACAACATCGCCGTGCGCAAGAGCCGCGACAAGGCCCAAGCGGCGCAACCAGGAGAT	700
DEST SIGMA=AACCAGGAGAT	
GCAGCAGAAGTTGGTGGAGCTGTCGGCTGAGAACGAGAAGCTGCACCAGCGCGTGGAGCAGCTCACGCGC	770
GCAGCAGAAGT	
GACCTGGCCGGCCTCCGGCAGTTCTTCAAGCAGCTGCCCAGCCCGCCC	840
CAGACTGCCGGTTAACGCGCGGCCGGGGGGGGGGGGGGG	910
CGGAGCGGAGCGCGCCCTGCCCTGGCGCAGCCAGAGCCGCCGGGTGCCCGCTGCAGTTTCTTGGGACATA	980
GGAGCGCAAAGAAGCTACAGCCTGGACTTACCACCACTAAACTGCGAGAGAAGCTAAACGTGTTTATTTT	1050
siBNA#2=CCACTAAACTGCGAGAGAA	
CCCTTAAATTATTTTTGTAATGGTAGCTTTTTCTACATCTTACTCCTGTTGATGCAGCTAAGGTACATTT	1120
GTAAAAAGAAAAAAAACCAGACTTTTCAGACAAACCCTTTGTATTGTAGATAAGAGGAAAAGACTGAGCA	1190

Supplemental Figure S6. *CEBPD* targeting sequences. The human *CEBPD* sequence (NM_005195.3) is shown along with the aligned sequences of each siRNA and shRNA (pDEST_SIGMA) used in this study. The translation start and stop codons are indicated by shaded boxes.