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Derivation of the LE/CT couplings

In this derivation we approximate the full interaction Hamiltonian by the fixed Kohn-Sham

Hamiltonian matrix representation obtained in a supermolecular calculation. This Hamil-

tonian is diagonal in its eigenbasis of supermolecular orbitals {ψ} and can be expressed in

second quantization as:

Ĥel ≈ ĤKS =
∑
p

εpa
†
pap (1)

We define the supermolecular ground state determinant Φ0 as the reference vacuum and

apply normal ordering:

ĤN = ĤKS − 〈Φ0|HKS|Φ0〉

=
∑
p

εp{a†pap}

=
∑
a

εa{a†aaa}+
∑
i

εi{a†iai}

=
∑
a

εaa
†
aaa −

∑
i

εiaia
†
i (2)

The curly braces indicate normal ordering with respect to Φ0, while indices i and a label

occupied and unoccupied (virtual) supermolecular orbitals, respectively. With this definition

the energy of singly excited supermolecular states like Φb
j = a†baj|0〉 is simply given by the

orbital energy difference εb − εj.

Before introducing the non-orthogonal fragment orbitals it is convenient to redefine the

original creation and annihilation operators in terms of hole/particle operators as bi = a†i ,

b†i = ai, ba = aa and b†a = a†a. We also redefine the orbital energies accordingly: εi = −εi,

εa = εa. The double summation defined above then reduces again to a single summation
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over all supermolecular orbitals. We then consider building locally excited states and charge

transfer states that are each defined as single excitations on the original (supermolecular)

vacuum. For this we use a set of fragment orbitals that spans the same space as the su-

permolecular basis (and is typically, but not necessarily, expressed in the same underlying

atomic orbital basis) but is partly non-orthogonal. We assume that the formation of the

interacting supermolecule from the non-interacting fragments does not lead to strong mixing

of the occupied and virtual spaces of the fragments so that their combined occupied space

spans the supermolecular occupied space and their combined virtual space spans the super-

molecular virtual space. We will label these fragment orbitals with the Greek indices κA, λA

and αA, βA for occupied and virtual orbitals on fragment A, respectively, and by πA, ρA when

relating to all orbitals of fragment A. In this basis we have

[b†πA , b
†
ρB

]+ = 0 (3)

[bπA , bρB ]+ = 0 (4)

[b†πA , bρB ]+ = SρB ,πA (5)

with the overlap matrix elements defined as

SρB ,πA =

∫
φ∗ρB(x)φπA(x)dx (6)

We have partial orthogonality between either orbitals on the same fragment: SρA,πA = δρ,π

as well as between occupied and virtual orbitals in general: SκAαB
= 0. The fragment orbitals

are non-orthogonal to supermolecular orbitals of the same kind (occupied or virtual), i.e.

S ′i,κA 6= 0 and S ′a,αA
6= 0 with

S ′p,πA =

∫
ψ∗p(x)φπA(x)dx, (7)
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so that the anticommutation relations of their operators become

[b†πA , b
†
p]+ = 0 (8)

[bπA , bp]+ = 0 (9)

[b†πA , bp]+ = S ′p,πA . (10)

In the following we will temporarily suppress the label for the subsystem for ease of

notation, keeping otherwise the same conventions. We are interested in the LE/CT couplings

that can be expressed in the following general way

〈Φα
κ |ĤN |Φβ

λ〉 =
∑
p

εp〈0|bκbαb†pbpb
†
βb
†
λ|0〉

=
∑
p

εp(SκλS
′
pαS

′
pβ − SκβS ′pλS ′pα − SαλS ′pκS ′pβ + SαβS

′
pκS

′
pλ)

=
∑
p

εp(SκλS
′
pαS

′
pβ + SαβS

′
pκS

′
pλ), (11)

where we have used the fact that we work with real orbitals in the second line and the

general orthogonality of the occupied and virtual orbitals in the third line. The desired

LE/CT coupling elements are thus

V LEA,CTA→B = 〈ΦαA
κA
|ĤN |ΦβB

λA
〉 =

∑
a

εaδκλS
′
aαA

S ′aβB +
∑
i

εiSαA,βBS
′
i,κA

S ′i,λA (12)

V LEA,CTB→A = 〈ΦαA
κA
|ĤN |ΦβA

λB
〉 =

∑
i

εiδαβS
′
iκA
S ′iλB +

∑
a

εaSκA,λBS
′
a,αA

S ′a,βA . (13)

Since we consider charge-transfer to occur from the highest occupied molecular orbital

of one fragment to the lowest unoccupied orbital of another fragment, these equations can

be further simplified to:

S4



V QA
y ,CTA→B =

∑
a

εaS
′
a,LA

S ′a,LB
−
∑
i

εiSLA,LB
S ′

2
i,HA

(14)

V QA
y ,CTB→A = −

∑
i

εiS
′
i,HA

S ′i,HB
+
∑
a

εaSHA,HB
S ′

2
a,LA

(15)

V QA
x ,CTA→B = −

∑
i

εiSLA,LB
S ′i,H′

A
S ′i,HA

(16)

V QA
x ,CTB→A = −

∑
i

εiS
′
i,H′

A
S ′i,HB

+
∑
a

εaSH′
A,HB

S ′
2
a,LA

(17)

in which the HOMO-1 of a fragment A that is responsible for the Qx LE states is labeled

as H ′A. We switched back to the original orbital energies in the above equations. In these four

unique coupling elements we recognize the contributions of hole as well as electron transfer,

which are respectively governed by the overlap between the occupied and the virtual orbitals

of the individual fragments.

The overlaps between the different states are given as

〈Φα
κ |Φ

β
λ〉 = 〈0|bκbαb†βb

†
λ|0〉

= (SαβSκλ − SαλSκβ)

= SαβSκλ (18)

with the third line following from the assumption of orthogonality between the occupied and

virtual spaces. Therefore the necessary overlaps between the considered states are,

SQ
A
y ,CTA→B = SLA,LB

(19)

SQ
A
y ,CTB→A = SHA,HB

(20)

SQ
A
x ,CTA→B = SLA,LB

SH′
A,HA

= 0 (21)

SQ
A
x ,CTB→A = SH′

A,HB
(22)

Equations 21 results from the orthogonality of the occupied space for each fragment.
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Effect of environment on the Energies and Couplings

Table S1: The averaged LE and CT energies in vacuum (EV AC) and in a DRF environment
(EDRF ) from the first and the last set of frames of the trajectory. All energies are given in
eV.

First50 Last50

〈EV AC〉 〈EDRF 〉 〈EV AC〉 〈EDRF 〉
Qy1 2.03 2.02 2.04 2.03
Qy2 2.01 2.01 2.01 1.99
Qx1 2.30 2.27 2.31 2.28
Qx2 2.26 2.26 2.27 2.21
CT1 2.81 2.77 2.59 2.59
CT2 3.20 3.28 2.51 2.52

Table S2: The average absolute LE/LE and LE/CT couplings (eV) in vacuum (|V@V AC |) and
in DRF environment (|V@DRF |) from the first and the last set of frames of the trajectory.
See main text for the definition of these couplings.

First50 Last50

〈|V@V AC |〉 〈|V@DRF |〉 〈|V@V AC |〉 〈|V@DRF |〉
VQy 0.018 0.021 0.020 0.029
VQx 0.007 0.009 0.011 0.017

VQyA/CT1 0.009 0.009 0.014 0.014
VQyA/CT2 0.017 0.019 0.066 0.054
VQxA/CT2 0.017 0.017 0.059 0.062
VQyB/CT1 0.017 0.019 0.067 0.055
VQyB/CT2 0.008 0.009 0.014 0.014
VQxB/CT1 0.017 0.015 0.121 0.128
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Effect of environment on Transition Dipoles

Figure S1: Absolute values of transition dipole moments for Qy1 and Qy2 in vacuum (denoted
by dotted lines) and in DRF environment (denoted by bold lines) from the beginning towards
the end (left and right of the split on x-axis) of the trajectory are shown. Dipole moments
are in a.u.
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