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Cellcano: supervised cell type identification for single cell

ATAC-seq data



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors describe Cellcano as a method for performing celltyping of ATAC datasets using an 

annotated reference ATAC dataset. The method itself is more of an integration approach and not 

necessarily celltyping, as the cell type is determined by label transfer after integration. Overall the 

text is long and needs to be heavily restructured. The comparison to RNA-based methods is not 

appropriate in the way that they are performed where ATAC gene scores are used instead of RNA. 

The presentation of the figures is confusing and needs to be reworked as well. 

The intro is too long, there is too much text summarizing standardized workflows for scATAC 

analysis that are not directly relevant to the method being described. Much of this should be 

trimmed. The description of the methods that use scRNA to annotate cell types in scATAC could 

also be shortened to a single sentence with appropriate references. The intro should be able to be 

tightened up and shortened to less than half the current length. 

Why is it called Cellcano? It does not seem to be based in an acronym and has no reference to 

celltyping or ATAC. 

More detail should be provided on how parameters are determined. E.g. “The anchors are defined 

as the ones with higher confidence in first-round cell type prediction.” Is unclear. Is this the set of 

anchors chosen out of all possible cell-cell links? What determines higher confidence? Entropy is 

alluded to later – is that what is used? The description of the method needs to be restructured to 

be more clear and precise along with specifics on what metrics are used and the assumptions that 

are made. 

What are the requirements for the ‘reference’ dataset? All that is detailed is that the gene activity 

scores of a reference dataset are used. 

The comparison of methods that use RNA as a basis for annotation should be used with RNA 

datasets. Using gene scores from ATAC data is not what those tools are designed for and therefore 

the comparison is not appropriate. 

When one has an ideal reference dataset – ie the same tissue and modality (ATAC) – then the 

standard method for celltyping is to simply integrate the datasets and perform label transfer. This 

would be the appropriate method to compare against, since it is essentially what Cellcano is doing. 

(NOTE the authors address this later – which should be earlier and used in the overall comparisons 

– though again, the main set of comparisons are not appropriate) 

Throughout the authors use very vague qualitative terms with no supporting statistics in the text. 

When saying a method performs “better” provide quantitative information. 

Claiming 50 experiments is misleading – the authors devised 50 means of assessing data from 

four PBMC and two mouse brain datasets. 

The section on detailing why gene scores are used follows the overall performance analysis. This 

should precede the overall performance – same goes for the cellcano anchors section. The text in 

these could also be trimmed substantially. 

I would suggest adding a paragraph each for the gene score choice and anchor properties within 

the cellcano framework section, summarizing the main points along with further detail in the 

methods section. Many details would make more sense there than in the main text. 

Notably these sections have better reporting of quantitative metrics. 

The “motivation for cellcano” section in the methods can be removed – this is just rehashing the 

intro and is not relevant to the methods. 



The authors use tSNE, but often UMAP performs better on many datasets. It would be good to 

show both. 

The Figure 2 panels D, E and F are hard to interpret. Cells are colored by ground truth, so how are 

they showing the prediction? 

In Fig 3 there is a lot of variability in model performance across the four datasets. Why? 

There needs to be a figure diagraming what the experiments are for the comparisons. A schematic 

of datasets used, how they are processed, and the specific tests would help greatly. 

There are no plots showing the visualized brain data. Also the PBMC data shows very poor cluster 

separation… 

Figures need to be provided showing the harmony integration and how that method performs, as it 

is the most relevant. Essentially cellcano is just an integration method and not a celltyping 

method. It integrates then performs label transfer, but the integration is where all of the relevance 

is. 

Reviewer #2 (Remarks to the Author): 

PRESENTATION OF THE PAPER: 

------------------------------- 

In this paper, the authors present a supervised approach to catalog cells when only scATAC-seq 

data is available. The model uses existing pipelines (Archr) to compute gene level statistics (gene 

scores). Then, it selects features through an statistical test and train a MLP. If the target set is big 

enough, cellcano performs a second roung of annotations in which it selects anchors (based on an 

entropy determination of the confidence of the labels) and trains a knowledge-distiller model. To 

assess the confidence and accuracy of the proposed approach, the authors benchmark cellcano 

against 6 competing approaches, used 7 metrics and plenty of data sets. 

One of the weak points of the approach is the calculation of gene scores for cell annotation. The 

authors acknowledge this point, compare against different methods that summarize gene 

information and demonstrate that theirs is a good choice. Additionally, for the second round of 

annotations, cellcano uses anchors selected on confidence of annotation of the training dataset. 

The method is available online and detail documentation on how to install it and how to run is also 

available. 

More generally, the approach is simple and uses a common algorithm, MLP, to perform the 

annotation. Given the results, the method is sound and seems to be a top-performer. However, 

there are many approaches performing the same task already so it lacks novelty, this is also 

evident by the many approaches they compared against. Using a KD model to address the 

distributional-shift is a clever and novel approach to address one of the fundamental problems in 

single-cell genomics, batch and condition correction. Due to this fact, I believe the method merits 

publication. In addition, the paper is well written and does not need major revisions. 

Having said this, it will be great if the authors describe in more detail their intuition (hopefully 

supplemented by any mathematical proof) about the following topics (it can be done in the 

response letter). 

1) Why does Cellcano and sc-joint perform similarly when they are based on completely different 

approaches ? 

2) Why does cellcano needs 2 rounds of predictions? Why is an MLP not enough to perform 

annotations in a first pass? If the intuition is that cells are incorrectly labeled at the decision 

boundary, can you plot the label uncertainty next to the annotations before and after KD? 



3) Can you describe if there could exist incorrect anchors with high confidence that would produce 

incorrect results? Can this happen if the number of cells in target and reference data set have 

completely different cell numbers? 

Minor: This sentence does not make sense. Variational inference is not used as a purpose, it is a 

method to perform approximated posterior inference. 

"ScANVI is a semi-supervised learning method which uses deep generative model for variational 

inference purpose to first integrate scRNA-seq datasets and then transfer annotations"



Introduction 
 
We thank the editor and reviewers for their thorough reviews, thoughtful comments, and 
constructive suggestions for our manuscript. We appreciate the positive comments such as 
“sound”, “top performer”. Based on the editor and reviewers’ comments, we have carefully 
revised the manuscript (modifications in the manuscript are highlighted in red font). In this 
revision, we made following major modifications: 
 

1. We have extensively modified the manuscript according to the comments of reviewer 1:  
a. We significantly shorten the Introduction section.  
b. We modify the structure of the Results section. 
c. We provide more methodological details. In particular, we emphasized that 

Cellcano is not an integration method (as reviewer 1 commented) but a celltyping 
method which only focused on how to better predict cell types in the target 
dataset. We also stressed the underlying method assumption of Cellcano. 

2. We have extensively revisited the benchmarking and added a whole new section on 
comparing Cellcano to other integration methods with label transfer.  

3. We investigated and explained that the reasons for the variability in model performance 
from the same system is due to the differences between reference and target datasets.  

4. We have addressed all comments from the reviewers and extensively revised the 
manuscripts according to reviewers’ comments. We also have added new figures and 
supplementary information to support our findings. 

 
We addressed the individual points raised by the reviewers, as detailed below. The reviewers’ 
comments are in italic blue, and our replies are in regular font. 
 
Response to Reviewer 1’s comments: 
 
The authors describe Cellcano as a method for performing celltyping of ATAC datasets using an 
annotated reference ATAC dataset. The method itself is more of an integration approach and 
not necessarily celltyping, as the cell type is determined by label transfer after integration. 
Overall the text is long and needs to be heavily restructured. The comparison to RNA-based 
methods is not appropriate in the way that they are performed where ATAC gene scores are 
used instead of RNA. The presentation of the figures is confusing and needs to be reworked as 
well. 
 
We thank the reviewer for the comments. We would like to first emphasize that Cellcano is not 
an integration approach. Our method does not try to remove the distribution discrepancies 
between reference and target datasets, and it does not transform either the reference or target 
data. Instead, our main purpose is celltyping and we do it without integrating the data. The 
essence of our method is to directly train a classifier from part of the target data so that the 
classifier can capture target data distribution. Since the target dataset does not have cell type 
information, we first use the classifier trained on the reference data to predict cell types on the 
target datasets. Then we choose cells whose cell types are relatively better predicted (by 
looking at their prediction entropy) as anchors and consider them as the “true” cell type labels 
for the target datasets. We have shown that the accuracies of anchors are usually high and 
reliable. To handle the inaccurately predicted cell labels in the target data, we apply the 
knowledge distiller (KD) model to smooth the label distribution and further guide the 
classification in the non-anchor cells. 
 



For the suggestion on shortening the text: we have extensively restructured and modified the 
manuscript. In particular, we heavily trimmed the Introduction section, the subsection “The 
choice of using gene scores as input” in the Results section, and the subsection “Properties of 
Cellcano anchors” in the Result section. The trimmed version is only about half of the original 
length. 
 
For suggestions on wordings, figures, and benchmarking study construction, we respond in the 
following sections respectively.  
 
(Comment 1) The intro is too long, there is too much text summarizing standardized workflows 
for scATAC analysis that are not directly relevant to the method being described. Much of this 
should be trimmed. The description of the methods that use scRNA to annotate cell types in 
scATAC could also be shortened to a single sentence with appropriate references. The intro 
should be able to be tightened up and shortened to less than half the current length. 
 
Thank you for your suggestions. We have heavily trimmed our introduction part by removing 
nearly half of the content. The modification is based on the following suggestions: 

- Use one or two sentences to introduce experimental methods in scATAC-seq celltyping. 
- Remove the scATAC-seq data analysis pipelines and focus more on introducing related 

methods as well as their limitations. 
 
(Comment 2) Why is it called Cellcano? It does not seem to be based in an acronym and has 
no reference to celltyping or ATAC. 
 
The method name is not an acronym. We designed a logo for our software, shown in the 
software page at https://marvinquiet.github.io/Cellcano/. The logo looks like an erupting volcano, 
where the shape of the volcano mimics the structure of a multiple layer perceptron (MLP, which 
is used as classifier in our work), and the cell types are erupted out of it. Thus, we call the 
method and the software Cellcano.  
 
 
(Comment 3) More detail should be provided on how parameters are determined. E.g. “The 
anchors are defined as the ones with higher confidence in first-round cell type prediction.” Is 
unclear. Is this the set of anchors chosen out of all possible cell-cell links? What determines 
higher confidence? Entropy is alluded to later – is that what is used? The description of the 
method needs to be restructured to be more clear and precise along with specifics on what 
metrics are used and the assumptions that are made. 
 
Yes, the anchors are chosen as the cells with low entropies computed from the first-round 
prediction probabilities. The assumption is that if a cell has low entropy from first-round 
prediction, it is more likely to be accurately predicted. We demonstrated that this assumption is 
true in real data explorations shown in Supplementary Figure S14-15. More in-depth analyses 
can be found in Supplementary Note 3.  
 
We have rephrased the last paragraph in the Introduction section as well as the subsection “The 
Cellcano framework” in the Results section by emphasizing the assumption and the procedure 
for entropy calculation.  
 
 
(Comment 4) What are the requirements for the ‘reference’ dataset? All that is detailed is that 
the gene activity scores of a reference dataset are used. 



 
The requirement for the reference dataset is that it must have cell type labels. We have added a 
new subsection “Input data for Cellcano” under the Methods section to provide more details on 
these requirements for the reference dataset. 
 
As for the reference data format, it can either be raw data or processed gene scores. The raw 
data are either fragment files provided by 10X Genomics or bam files obtained from sequence 
alignment tools. When the raw data is given, Cellcano will first use ArchR to summarize it into 
gene scores. If users already have derived gene scores from the reference data, they can also 
be taken as the input for Cellcano. Note that it is recommended to have the same gene score 
calculation procedures for reference and target datasets to assure the first-round prediction 
performance. Details about the data preprocessing and analysis can be found in the newly 
added subsection “Overall scheme of data processing and analysis” under the Methods section. 
 
 
(Comment 5) The comparison of methods that use RNA as a basis for annotation should be 
used with RNA datasets. Using gene scores from ATAC data is not what those tools are 
designed for and therefore the comparison is not appropriate. 
 
Thanks for the comment. Even though we agree that the scRNA-seq celltyping methods are not 
designed for scATAC-seq, we would argue that some “methods that use RNA as a basis for 
annotation” can also be used in gene scores. Of course, if a scRNA-seq celltyping method 
makes assumptions specific for scRNA-seq data, it cannot be used in other data modalities. 
However, many of the scRNA-seq celltyping methods do not have scRNA-seq specific 
assumptions on the input data, for example, SingleR is based on correlation and ACTINN is 
based on a vanilla MLP. For these methods, the scATAC-seq gene scores (even though they 
have different distributions as gene expression from scRNA-seq) can certainly be used as input 
for celltyping. On the other hand, we found scANVI made a zero-inflated negative binomial 
assumption on the input data, thus it is indeed inappropriate to apply it on the scATAC-seq gene 
scores. We have removed scANVI from the comparison in this revision.  
 
Another reason why we compare to those scRNA-seq methods is that the supervised celltyping 
method for scATAC-seq is limited. As of now, only EpiAnno is developed for supervised 
celltyping in scATAC-seq using scATAC-seq data as reference. Besides EpiAnno, only a few 
methods (Seurat and scJoint) use scRNA-seq data as reference and transfer cell labels to 
scATAC-seq datasets. To make the comparisons more comprehensive, we included some 
scRNA-seq methods. In fact, some of the scRNA-seq methods perform well, such as ACTINN.  
 
We have added some discussion on this point in the subsection “Cellcano outperforms existing 
supervised scATAC-seq celltyping methods” under the Results section. We have also removed 
scANVI in all comparisons.  
 
(Comment 6) When one has an ideal reference dataset – ie the same tissue and modality 
(ATAC) – then the standard method for celltyping is to simply integrate the datasets and perform 
label transfer. This would be the appropriate method to compare against, since it is essentially 
what Cellcano is doing. (NOTE the authors address this later – which should be earlier and 
used in the overall comparisons – though again, the main set of comparisons are not 
appropriate) 
 
We first want to emphasize again that Cellcano does not do data integration. Moreover, some 
other scATAC-seq celltyping methods such as EpiAnno also does not include a data integration 



step. Even though Seurat has a data integration function, it is designed for visualization purpose 
and not required or recommended for celltyping. Thus, we believe data integration is not an 
essential step for celltyping. In fact, our previous benchmark study for scRNA-seq supervised 
celltyping (Ma et al. 2021) demonstrated that data integration does not improve the prediction 
performances.  
 
Intuitively, the data discrepancies between scATAC-seq datasets will be different from scRNA-
seq due to the intrinsic characteristics of scATAC-seq data, therefore, a data integration step 
could potentially improve the celltyping results and that is the reason why we originally included 
the comparison to Harmony+MLP. Overall, we compare Cellcano to existing celltyping methods 
on their default and recommended settings. We do not think having an extra step of data 
integration added on to an existing celltyping method, for example, Harmony+EpiAnno, is 
necessary.  
 
This being said, we have performed additional studies using different data integration methods 
with MLP for celltyping. Overall, these results are worse than Cellcano. Below we provide some 
details on these extra results. The new results have now been included and analyzed in the 
subsection “Cellcano works better than prediction with batch effect removed” under the Results 
section. Figures have also been updated (Figure 3A-C, Supplementary Figure S3-5) and added 
(Supplementary Figure S9-11). An additional subsection “Integration with label transfer 
methods” indicating how we perform the analysis has also been added to the Methods section. 
 
We selected the top-performed integration methods from a benchmarking study (Luecken et al. 
2022) where the authors evaluated 16 single-cell integration methods on scATAC-seq data. 
According to their benchmarking results, the top performers are LIGER (Welch et al. 2019) with 
peaks as input, ComBat (Johnson et al. 2007) with peaks as input, LIGER using genome-wide 
bins as input and ComBat using genome-wide bins as input. Besides LIGER and ComBat, we 
also included a recently published integration named Portal (Zhao et al. 2022), which is 
developed for atlas-level single-cell genomics integration. Based on the integration outputs, we 
performed MLP to do cell type prediction. 
 
We summarized the 29 human PBMCs prediction experiments into a heatmap below where 
each row represents for one prediction experiment and each column represents for one method.  
We ordered the columns of the heatmap to make the leftmost column having the best 
performance gains. As shown in the figures, in general using integration method with MLP do 
not perform better than using the default setting of the celltyping method without data 
integration. Among all integration methods with MLP, Combat with either peaks or genome-wide 
bins as input rank the second. From the heatmap, Harmony+MLP performed the worst. We then 
performed the paired t-test to test the overall accuracy differences between Cellcano and 
Combat with peaks as input, the p-value is 0.0035. Same test has been performed to test the 
differences between Cellcano and Combat with genome-wide bins as input, the p-value is 
0.0044. This indicates that Cellcano steadily outperforms all integration methods with label 
transferred. 



 
Similarly, in 21 mouse brain experiments, ComBat with peaks as input ranks the second. We 
again performed a paired t-test between Cellcano and ComBat with peaks as input and the p-
value is 6.144e-05. 
 

 
We have also shown data integration results in the low-dimensional space (Supplementary 
Figure S11) for a dataset. Even though the reference and target datasets or the individuals 



seem to be well mixed after integration in the tSNE plots, the celltyping results are not 
necessarily better.  
 
 
References: 
Ma, Wenjing, Kenong Su, and Hao Wu. "Evaluation of some aspects in supervised cell type identification 
for single-cell RNA-seq: classifier, feature selection, and reference construction." Genome biology 22.1 
(2021): 1-23. 
Luecken, Malte D., et al. "Benchmarking atlas-level data integration in single-cell genomics." Nature 
methods 19.1 (2022): 41-50. 
Welch, Joshua D., et al. "Single-cell multi-omic integration compares and contrasts features of brain cell 
identity." Cell 177.7 (2019): 1873-1887. 
Johnson, W. Evan, Cheng Li, and Ariel Rabinovic. "Adjusting batch effects in microarray expression data 
using empirical Bayes methods." Biostatistics 8.1 (2007): 118-127. 
Zhao, Jia, et al. "Adversarial domain translation networks for integrating large-scale atlas-level single-cell 
datasets." Nature Computational Science 2.5 (2022): 317-330. 
 
(Comment 7) Throughout the authors use very vague qualitative terms with no supporting 
statistics in the text. When saying a method performs “better” provide quantitative information. 
 
We have added paired t-test results to show that Cellcano outperforms all other competing 
methods. These statistics have been added in the subsection “Cellcano outperforms existing 
supervised scATAC-seq celltyping methods” under the Results section. 
 
(Comment 8) Claiming 50 experiments is misleading – the authors devised 50 means of 
assessing data from four PBMC and two mouse brain datasets. 
 
Yes, your understanding is correct that all experiments are derived from six datasets including 
four human PBMCs datasets and two mouse brain datasets. Here, each experiment refers to a 
specific celltyping prediction task with different reference and target data. For example, we use 
different individuals in the human PBMC or mouse brain as reference and target. Thus, even 
with the handful datasets, we can design a lot of prediction experiments. Overall, we present 
four scenarios where celltyping can be applied: 
 

1. Intra-dataset individual prediction: users have one confidently annotated scATAC-seq 
profile from one individual and want to use it to annotate all other individuals from the 
same study. 

2. Inter-dataset individual prediction: users have one confidently annotated scATAC-seq 
profile from one individual and want to use it to annotate other individuals from different 
studies. In the mouse brain experiments, a special case is that we have experiment 
predicting cell types not only for a different subject but also for a different brain region 
because mouse brain has several brain regions. We count them into this category.  

3. Inter-dataset prediction (combined reference): users have several well annotated 
scATAC-seq datasets and wish to use a large collection of public datasets to increase 
the reference data size and improve the prediction result. This is based on our previous 
research (Ma et al. 2021) where we found that combining individuals or datasets as 
reference could lead to better prediction results.  

4. Inter-dataset prediction (combined target): users have scATAC-seq data from multiple 
batches and want to determine their cell types in one run using a given reference. 

 
These scenarios are introduced in the subsection “Cellcano works better than prediction with 
batch effect removed” in the Results section. In our comparison, to fairly present that Cellcano 



outperforms other methods, we also have another prediction scenario where we use FACS-
sorted datasets as target. This can be regarded as validating prediction performances with 
ground-truth labels (inter-dataset prediction: ground truth).  
 
We design experiments from the above categories and end up with 29 experiments from human 
PBMCs datasets and 21 experiments from mouse brain datasets in our paper. We provided 
details for all experiments in Supplementary Table S2. To make it clearer, we have added the 
designed experiments categories into the Supplementary Note S5. 
 
References: 
Ma, Wenjing, Kenong Su, and Hao Wu. "Evaluation of some aspects in supervised cell type identification 
for single-cell RNA-seq: classifier, feature selection, and reference construction." Genome biology 22.1 
(2021): 1-23. 
 
 
(Comment 9) The section on detailing why gene scores are used follows the overall 
performance analysis. This should precede the overall performance – same goes for the 
cellcano anchors section. The text in these could also be trimmed substantially. 
 
I would suggest adding a paragraph each for the gene score choice and anchor properties 
within the cellcano framework section, summarizing the main points along with further detail in 
the methods section. Many details would make more sense there than in the main text. 
 
Notably these sections have better reporting of quantitative metrics. 
 
We have modified the subsection “The Cellcano framework” under the Results section to 
provide some discussion on the choice of inputs and the anchor cell properties. We also moved 
the two subsections “The choice of using gene score as input” and “Properties of Cellcano 
anchors” in front of the overall performance section. There are a lot of results in those two 
subsections that are important information for our method. Thus, we would like to keep the most 
important information in the Results section and put other parts in the Supplementary Note S2-
4. We modified the language in those two subsections rather extensively to make them more 
concise.  
 
 
(Comment 10) The “motivation for cellcano” section in the methods can be removed – this is 
just rehashing the intro and is not relevant to the methods. 
 
Thank you for your suggestion. We have removed the section.  
 
(Comment 11) The authors use tSNE, but often UMAP performs better on many datasets. It 
would be good to show both. 
 
Thank you for your suggestions. During our explorations, we generated two sets of figures. 
From our observations, even though tSNE and UMAP have different appearances, they do not 
have significant differences in terms of conveying the idea. Below are some tSNE and UMAP 
visualizations from the human PBMC experiments and the mouse brain experiments. They 
show the dataset batch in the left panels and the cell labels in the right panels. The top two 
figures show tSNE visualizations and the bottom two figures show UMAP visualizations. 
 



1. Use individual PBMC_D10T1 from Granja et al. human PBMCs dataset to predict cell types 
in another individual PBMC_Rep1 from Satpathy et al. human PBMCs dataset 

 

 
2. Using 10X human PBMCs dataset to predict cell types in FACS-sorted human PBMCs 

dataset 

 

 
3. Using all mice from Lauren et al. mouse brain dataset to predict cell types in 

PreFrontalCortex_62216 from Cusanovich et al. mouse brain dataset 



 

 
4. Using mice individual WholeBrainA_62816 from Cusanovich et al. mouse brain dataset to 

predict cell types in mouse1 from Lauren et al. mouse brain dataset 

 

 
After comparisons, we selected tSNE visualizations and used them as main figures in our 
manuscript. We now have added UMAP figures into Supplementary Figure S6A-C and 
Supplementary Figure S8D-F showing prediction performances from a human PBMCs 
experiment and a mouse brain experiment respectively. 
 
(Comment 12) The Figure 2 panels D, E and F are hard to interpret. Cells are colored by 
ground truth, so how are they showing the prediction? 
 
After the adjustment of the paper structure, the original Figure 2 has become the Figure 3 in the 
revised manuscript. Only cells in Figure 3D are colored by ground truth. In Figure 3E, cells are 
colored by first-round prediction results; in Figure 3F, cells are colored by the final prediction. 
We use Figure 3D as a ground-truth visualization comparison, and we show that some wrongly 



assigned cells in Figure 3E are corrected after the second-round prediction in Figure 3F. The 
information is detailed in the figure legend for Figure 3 and the manuscript Results section 
“Cellcano outperforms existing supervised scATAC-seq celltyping methods”. 
 
 
(Comment 13) In Fig 3 there is a lot of variability in model performance across the four 
datasets. Why? 
 
This is a good but complicated question. Supervised prediction tasks, regardless of the task 
itself, on different reference and target data will have variabilities in the prediction results. These 
variabilities can be caused by many factors, for example, the signal-to-noise ratio (SNR) in the 
target data, differences in the reference and target data, etc. In our scATAC-seq celltyping 
problem, the differences can be caused by differences in cell-type-specific profiles, differences 
in cell type proportions, the training data size (number of cells in the reference data), number of 
cell types, etc. Overall, the variability can come from all above perspectives.  
 
 
(Comment 14) There needs to be a figure diagraming what the experiments are for the 
comparisons. A schematic of datasets used, how they are processed, and the specific tests 
would help greatly. 
 
Conceptually, the design for the experiment is rather straightforward. For each experiment, we 
just take one reference dataset with cell labels, and predict the cell labels in one target dataset. 
We have added a new subsection “Overall scheme of data processing and analysis” under the 
Methods section to make the whole process more coherent and clearer. This new section 
includes the content of the original subsection “Data Preprocessing by ArchR”, which provided 
details for data processing. We add the following figure to summarize the data preprocessing 
procedure. This schematic figure is now included as the Supplementary Figure S12. The details 
for all experiments are provided in the Supplementary Table S2, which lists reference and target 
datasets in all 50 experiments. Supplementary Note S6 provides details on how we processed 
each dataset.  
 

 

Download scATAC-seq raw data 
(fragment files or bam files)

Genome liftOver
(hg19 for human PBMCs datasets; 
mm10 for mouse brain datasets)

Generate genome-wide bins, peaks 
and gene scores by ArchR 

Curate cell types in human PBMCs 
and mouse brain datasets

Select reference and target dataset

Perform celltyping prediction with 
methods listed in the paper



 
(Comment 15) There are no plots showing the visualized brain data. Also the PBMC data 
shows very poor cluster separation… 
 
We have added visualizations on one mouse brain prediction experiment where we use one 
individual from the Cusanovich et al. mouse brain dataset as reference to predict all cells from 
the Lareau et al. mouse brain dataset. This has been added as Supplementary Figure S8 and 
related analysis is added in the Results section “Cellcano outperforms existing supervised 
scATAC-seq celltyping methods” where we analyze the increased performance by using our 
second-round prediction. 
 
The poor cluster separation of human PBMCs is caused by the nature of the data. In the original 
paper where the FACS-sorted human PBMCs dataset was published (Lareau et al. 2019), the 
Supplementary Figure 8(f) shows the original identified clusters for the FACS-sorted data, which 
is pasted below. Here, the figure (c) represents the clusters identified with biological knowledge 
from a collection of cells and (f) shows the projected FACS-sorted cells. In the original 
representation, the CD4 T cells, CD8 T cells and NK cells are clustered together without clear 
separation boudaries, while B cells and Monocytes are clearly separated. The cluster is done by 
de novo k-mer clustering methods from the ChromVAR paper. The same pattern is observed in 
our updated visualizations in Figure 3D.  

 
Reference 
Lareau, Caleb A., et al. "Droplet-based combinatorial indexing for massive-scale single-cell chromatin 
accessibility." Nature Biotechnology 37.8 (2019): 916-924. 
 
(Comment 16) Figures need to be provided showing the harmony integration and how that 
method performs, as it is the most relevant. Essentially cellcano is just an integration method 
and not a celltyping method. It integrates then performs label transfer, but the integration is 



where all of the relevance is. 
 
As we responded before, Cellcano is not a data integration method. It does not try to remove 
the distribution discrepancies between reference and target datasets, and it does not transform 
either the reference or target data. Instead, our main purpose is celltyping and we do it without 
integrating the data. We showed Harmony integration performance in original Supplementary 
Figure S10-S11, where we use summarized gene activity scores as input. Now we have added 
the batch effect removal visualizations for all integration with label transfer methods into the 
newly added Supplementary Figure S11. Even though certain methods can remove batch 
effect, the cell type prediction is not necessarily better compared to Cellcano. Related 
discussions have been added in the subsection “Cellcano works better than prediction with 
batch effect removed” under the Results section.  
 
Response to Reviewer 2’s comments: 
 
In this paper, the authors present a supervised approach to catalog cells when only scATAC-
seq data is available. The model uses existing pipelines (Archr) to compute gene level statistics 
(gene scores). Then, it selects features through an statistical test and train a MLP. If the target 
set is big enough, cellcano performs a second roung of annotations in which it selects anchors 
(based on an entropy determination of the confidence of the labels) and trains a knowledge-
distiller model. To assess the confidence and accuracy of the proposed approach, the authors 
benchmark cellcano against 6 competing approaches, used 7 metrics and plenty of data sets. 
 
One of the weak points of the approach is the calculation of gene scores for cell annotation. The 
authors acknowledge this point, compare against different methods that summarize gene 
information and demonstrate that theirs is a good choice. Additionally, for the second round of 
annotations, cellcano uses anchors selected on confidence of annotation of the training dataset. 
 
The method is available online and detail documentation on how to install it and how to run is 
also available. 
 
More generally, the approach is simple and uses a common algorithm, MLP, to perform the 
annotation. Given the results, the method is sound and seems to be a top-performer. However, 
there are many approaches performing the same task already so it lacks novelty, this is also 
evident by the many approaches they compared against. Using a KD model to address the 
distributional-shift is a clever and novel approach to address one of the fundamental problems in 
single-cell genomics, batch and condition correction. Due to this fact, I believe the method 
merits publication. In addition, the paper is well written and does not need major revisions. 
 
We greatly appreciate the positive comments. However, we would argue that there are not 
“many approaches performing the same task already” for scATAC-seq data. As of now, only 
EpiAnno is developed for supervised celltyping in scATAC-seq using scATAC-seq data as 
reference. Besides EpiAnno, only two other methods (Seurat and scJoint) use scRNA-seq data 
as reference and transfer cell labels to scATAC-seq datasets. To make the comparisons more 
comprehensive, we even included some scRNA-seq methods such as SingleR and ACTINN in 
the comparison.  
 
Having said this, it will be great if the authors describe in more detail their intuition (hopefully 
supplemented by any mathematical proof) about the following topics (it can be done in the 
response letter). 
 



(Comment 1) Why does Cellcano and sc-joint perform similarly when they are based on 
completely different approaches? 
 
Thanks for the question. Cellcano and scJoint performs similarly when using the FACS-sorted 
data as target (Figure 3A in the updated manuscript), but not that similar in human PBMCs and 
mouse brain datasets (Figure 3B-C in the updated manuscript). Overall, scJoint is the second-
best performer among all methods. We think it is common when two different methods have 
similar results. For example, SVM and random forest would perform similarly in many tasks, 
even though they have intrinsically different algorithms. 
 
Moreover, the boxplots provide the marginal distributions of all accuracies, which represents the 
overall performances. We have performed additional analyses for a pairwise comparison on 
both methods’ prediction performances in each experiment and checked whether they show 
similar trends. Below are the line plots for three metrics in the 29 human PBMCs experiments 
where the solid line represents Cellcano’s performance, and the dotted line represents scJoint’s 
performance. We then perform a paired t-test and the p-values of Accuracy, ARI, and macroF1 
between Cellcano and scJoint are 0.008, 0.050 and 0.040 respectively, indicating that Cellcano 
performs better.  

 

 



 
Similarly, we plotted the lines for three metrics in the 21 mouse brain experiments. The paired t-
test p-values of Accuracy, ARI, and macroF1 between Cellcano and scJoint are 0.012, 0.005 
and 0.042 respectively.  

 

 

 
 
Although for some experiments Cellcano and scJoint have close prediction performances, 
overall, there are still significant differences between the two methods, where Cellcano has 



better performances. We have also added all original prediction performances into heatmaps 
(Supplementary Figure S9-10) categorized by different experimental categories. From the 
heatmaps, it is much easier to see the performance variations. 
 
(Comment 2) Why does cellcano needs 2 rounds of predictions? Why is an MLP not enough to 
perform annotations in a first pass? If the intuition is that cells are incorrectly labeled at the 
decision boundary, can you plot the label uncertainty next to the annotations before and after 
KD? 
 
The reason why we design the two-round prediction strategy is because of the distribution 
discrepancy between the reference and target data. Such discrepancy could cause inaccurate 
prediction in an MLP. Our second-round trains a classifier from the target data so that the 
classifier can best capture target data distribution and provide better prediction results. In our 
comparisons, ACTINN can represent the performance of the first-round prediction using MLP, 
since it is based on a vanilla MLP. As shown in Figure 3A-C (in the updated manuscript), 
Cellcano can achieve better prediction performances than ACTINN. 
 
Yes, you are correct that there can be cells wrongly labeled at the decision boundary. During 
the exploration of the entropy, we noticed that the tSNE coordinates had some randomness and 
thus resulted in tSNE visualizations slightly different from our first submission. But we assure 
that the figures still convey the same message and what have been seen in the original figures 
can still be seen in the newly generated tSNE figures. The randomness is caused by the scanpy 
package and there are many Github issues discussing about it. We now stored all the tSNE 
coordinates for all experiments for future reproducibility.  
 
Here, we attached the newly generated Figure 3D-F (in the updated manuscript) to first show 
cell type information in the target dataset (FACS-sorted human PBMCs dataset).  

 
 
We then showed the comparison of prediction entropy of cells before and after KD. As 
expected, the cells on the boundary are unconfidently predicted before the KD model, while 
after the KD, most of the cells are more confidently predicted with lower entropies.  
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We also plotted the predicted probabilities for CD8 T cells before and after KD. Before KD, CD8 
T cells are predicted with lower probabilities compared to those after KD, especially for the area 
where CD8 T cells are corrected during our second-round prediction.  
 

 
 
These above figures have now been added to the Supplementary Figures as Figure S7 and 
discussions have been added to the subsection “Cellcano outperforms existing supervised 
scATAC-seq celltyping methods” under the Results section.   
 
(Comment 3)  Can you describe if there could exist incorrect anchors with high confidence that 
would produce incorrect results? Can this happen if the number of cells in target and reference 
data set have completely different cell numbers? 
 
This is a very good question. Yes, we do observe that there can be incorrect anchors with high 
confidence. We plot the anchor accuracy in the confusion matrices below. Here, we used the 
same experiment shown in Figure 3D (one FACS-sorted human PBMCs dataset as target, a 
combination of four individuals as reference). As shown in the confusion matrix, there is around 
20% of the NK cells wrongly assigned to CD8 T cells. This is reasonable because there are no 
clear separation boundaries between CD8 T cells and NK cells. The metrics for the anchors are 
0.941, 0.877 and 0.935 for Accuracy, ARI and macroF1 respectively.  



 
However, it is unclear to us what the reviewer is asking in the second sentence “Can this 
happen if the number of cells in target and reference data set have completely different cell 
numbers?” We therefore interpreted it in two ways: 

1. The relationship between anchor accuracy and data sizes of reference and target 
datasets. 

2. The relationship between anchor accuracy and cell type proportion differences between 
reference and target datasets. 
 

Under our first interpretation, we have conducted analysis between anchor accuracy and the 
data sizes (number of cells) of reference and target datasets for both human PBMCs and 
mouse brain experiments. We first correlate the logit transformed anchor accuracy with 
reference data size, target data size and fold change between reference and target datasets. In 
29 human PBMCs experiments, we noticed that there existed a negative correlation (Pearson 
Correlation Coefficients: -0.443, p-value: 0.016) between logit(accuracy) and the fold change 
between reference and target data sizes. While for the reference size and target size, the 
Pearson Correlation Coefficients are 0.168 (p-value: 0.384) and -0.232 (p-value: 0.226), all non-
significant.  

 
We then fit a linear model by robust regression with logit(accuracy) as the response variable 
and the reference data size, target data size and the fold change between reference and target 
data sizes as explanatory variables. The estimated coefficients of reference data size and target 
data size are all 0s and the estimated coefficient of the fold change is -0.122 (p-value: 0.013).  
 
We performed the same analysis in 21 mouse brain experiments but did not observe any 
significant correlations. The Pearson Correlation Coefficients are -0.283 (p-value: 0.214), 0.395 
(p-value: 0.076) and 0.286 (p-value: 0.208) between logit(accuracy) and reference data size, 
target data size and the fold change between reference and target sizes respectively. The 
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robust linear regression has no significant result, even though the estimated coefficient of the 
fold change is still negative: -0.137 (p-value: 0.252).  

   
We also combine the 29 human PBMCs experiments and 21 mouse brains experiments 
together and fit the robust linear regression model with logit(accuracy) as the response variable. 
Since we combine two different systems with each having different baseline performances, we 
add a categorical explanatory variable to represent the systems. The robust linear regression 
result shows that the estimated coefficient of the fold change is -0.153 (p-value: 0.039). Overall, 
these results suggests that the fold changes of cell numbers in reference and target data could 
have mildly negative impact on the anchor accuracies.  
 
Under our second interpretation, we analyzed whether anchor accuracy can be different when 
the cell type proportions of reference and target datasets are the same. We used the same 
experiments and performed the same correlation and robust regression analyses on using 
logit(accuracy) as response variable and cell type proportion differences as explanatory 
variable. We summarized the cell type proportions differences between the reference and target 
datasets with the mean square calculation.  
 
In both human PBMCs (left panel) and mouse brains (right panel) systems, we found negative 
correlation with Pearson Correlation Coefficients as -0.122 (p-value: 0.527) and -0.489 (p-value: 
0.025) respectively. We also performed the robust regression analyses where the results show 
the estimated coefficients are -8.555 (p-value: 0.369) and -467.750 (p-value: 0.021) for human 
PBMCs and mouse brains experiments.  

 
We also combined all experiments together and added biological system indicator as a 
categorical explanatory variable into the robust linear regression model. The results show that 
the cell type proportion differences have an insignificant impact on the anchor accuracies (p-
value: 0.504). 
 
Moreover, we empirically tested whether cell type proportion can affect anchor accuracies. We 
therefore take one experiment (one FACS-sorted human PBMCs dataset as target, a 
combination of four individuals from Satpathy et al. PBMCs dataset as reference) as example. 
We resample the reference dataset to let them have the same cell type proportion as the target 



dataset while remaining the original reference data size. With the adjusted reference dataset, 
we performed Cellcano. The anchors prediction performance is shown below. The metrics of 
anchors are 0.942, 0.876 and 0.938 for Accuracy, ARI and macroF1 respectively, where the 
anchors’ performances are similar to previous performances which are 0.941, 0.877 and 0.935. 
At least in this case, turning the reference and target datasets to have the same cell type 
proportions does not help with anchor accuracy. 
 
In the reference dataset, the proportion of cell types are: 

Monocytes CD4 T cells CD8 T cells B cells NK cells 
0.292 0.287 0.233 0.101 0.086 

 
While in the target dataset, the proportion of cell types are: 

Monocytes CD4 T cells CD8 T cells B cells NK cells 
0.127 0.240 0.223 0.216 0.194 

 
Overall, these results show that the “number of cells in target and reference data” does not have 
significant impact on the anchor accuracy or the final prediction results.  
 
 
(Comment 4) Minor: This sentence does not make sense. Variational inference is not used as a 
purpose, it is a method to perform approximated posterior inference. 
 
"ScANVI is a semi-supervised learning method which uses deep generative model for 
variational inference purpose to first integrate scRNA-seq datasets and then transfer 
annotations" 
 
Thank you for pointing it out. During the revision, we noticed that scANVI had a prior 
assumption on the input data and it would be inappropriate to use in scATAC-seq celltyping. We 
therefore removed our comparison to scANVI. 

1767 17 9 23 3

0 2306 43 0 0

1 17 1587 0 0

0 0 0 1133 0

3 11 312 52 1203

Predicted label

G
ro

un
d−

tru
th

 la
be

l

B cells

CD4 T cells

CD8 T cells

Monocytes

NK cells

B 
ce

lls

C
D

4 
T 

ce
lls

C
D

8 
T 

ce
lls

M
on

oc
yt

es

N
K 

ce
lls

Anchor Performance
(Original scale)

0

500

1000

1500

2000

2500
0.971 0.009 0.005 0.013 0.002

0 0.982 0.018 0 0

0.001 0.011 0.989 0 0

0 0 0 1 0

0.002 0.007 0.197 0.033 0.761

Predicted label

G
ro

un
d−

tru
th

 la
be

l

B cells

CD4 T cells

CD8 T cells

Monocytes

NK cells

B 
ce

lls

C
D

4 
T 

ce
lls

C
D

8 
T 

ce
lls

M
on

oc
yt

es

N
K 

ce
lls

Anchor Performance
(Normalized by row)

0

0.5

1



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have addressed many of my comments; my major component was that I saw it as an 

integration method which the authors have clarified to a degree; however much of it is semantic. 

While Cellcano does not seek to integrate and transform a dataset; it deploys many of the same 

techniques as integration methods where cells from one dataset are anchored to another which 

one could argue is the core of integration. Rarely the data is transformed after this and the cross-

modality cell anchors are what is leveraged (ie cell type matching) and the original data for those 

cell types are used. From that stance I see little difference between a celltyping method that 

anchors between two datasets for cell type assignment vs one that does the same and calls itself 

integration. (ie we use 'integration' between an annotated ATAC dataset and unannotated ATAC 

dataset frequently, where we leverage the anchors from signac or ArchR and label transfer to the 

unannotated dataset) 

On that note - there is still no comparison to taking the approach I mentioned - i.e. 'integration' 

between an annotated and unannotated ATAC dataset using Signac as well as ArchR, both being 

tools anyone analyzing scATAC data will be using, and then label transfer of cell types. This is the 

default to what people are doing now and just because those are 'integration' the purpose of 

application and results are the same. 

The terminology of experiments will be confusing for a majority of reviewers who will think it is 

referring to individual datasets / bench experiments. I strongly suggest changing this terminology 

to be more suitable to the broad readership of the journal. 

As a user of these methods, there is nothing that makes this method jump out to me, which I 

believe is more of a presentation issue. Is there any way to simply show a UMAP/tSNE of an 

unannotated dataset and one of the reference used, then show the cell type transfer labeling plus 

the actual annotations? This would clarify things for potential users and make it more 

approachable and appealing to them versus comparisons with a lot of methods they probably are 

not using. 

Reviewer #2 (Remarks to the Author): 

The authors have addressed my concerns.



Introduction 
 
We thank the reviewers for bringing up further concerns and providing the thoughtful comments 
for us to improve our manuscript.  
 
Based on the reviewers’ comments, we have carefully revised the manuscript (modifications in 
the manuscript are highlighted in red font). In this revision, we made following major 
modifications: 
 

1. We have added Signac’s performances into the benchmarking comparisons. 
2. We have changed the “experiments” term to “celltyping tasks”. 
3. We have provided visualization results on celltyping with reference datasets information. 

 
We addressed the individual points raised by the reviewers, as detailed below. The reviewers’ 
comments are in italic blue, and our replies are in regular font. 
 
Response to Reviewer 1’s comments: 
 
The authors have addressed many of my comments; my major component was that I saw it as 
an integration method which the authors have clarified to a degree; however much of it is 
semantic. While Cellcano does not seek to integrate and transform a dataset; it deploys many of 
the same techniques as integration methods where cells from one dataset are anchored to 
another which one could argue is the core of integration. Rarely the data is transformed after 
this and the cross-modality cell anchors are what is leveraged (ie cell type matching) and the 
original data for those cell types are used. From that stance I see little difference between a 
celltyping method that anchors between two datasets for cell type assignment vs one that does 
the same and calls itself integration. (ie we use 'integration' between an annotated ATAC 
dataset and unannotated ATAC dataset frequently, where we leverage the anchors from signac 
or ArchR and label transfer to the unannotated dataset) 
 
On that note - there is still no comparison to taking the approach I mentioned - i.e. 'integration' 
between an annotated and unannotated ATAC dataset using Signac as well as ArchR, both 
being tools anyone analyzing scATAC data will be using, and then label transfer of cell types. 
This is the default to what people are doing now and just because those are 'integration' the 
purpose of application and results are the same. 
 
We are glad that we have addressed most of the comments. For the major concern, we perhaps 
have different comprehensions on the definition of “data integration”. We understand the 
reviewer’s point that cell type identification is some kind of data integration, since the cell type 
label information are transferred between reference and target datasets. However, we think the 
term “data integration” mostly represents a family of approaches to remove distributional 
discrepancy among datasets from different studies, platforms, or modalities, and then combine 
the information together to perform certain tasks. The goals of the data integration are not 
limited to cell label transfer, they can also be missing data imputation, modality alignment, or 
joint embedding learning. According to a recent atlas-level integration benchmark study 
(Luecken et al. 2022), “data integration” methods are developed to “combine high-throughput 
sequencing datasets or samples to produce a self-consistent version of the data for downstream 
analysis”. Similar to that, another benchmark study on batch-effect correction (Tran et al. 2021) 
use the terms “batch-effect removal” and “data integration” interchangeably. Unlike the reviewer 



mentioned that “rarely the data is transformed”, many data integration methods do some data 
transformation, either in the original or latent space.   
 
Different from “data integration”, "celltyping" purely aims to train a classifier for cell type 
identification and does not necessarily transform data. When distributional discrepancies are 
strong among datasets (i.e., in scATAC-seq datasets), traditional supervised classifiers can be 
greatly affected. Therefore, some methods perform “data integration” before label transfer, but 
the “integration” is just an intermediate step. In our method, the celltyping is performed without 
data integration, or more precisely, without data transformation.  
 
We acknowledge that there are some scATAC-seq pipelines providing both “integration” and 
“celltyping” functions, such as Signac. However, their main purpose is to provide end-to-end 
functionalities such as quality control, data preprocessing, dimension reduction and advanced 
downstream analysis. We have added the “celltyping” results from Signac, following their 
Vignettes (https://stuartlab.org/signac/articles/integrate_atac.html). In human PBMCs celltyping 
tasks, when using FACS-sorted data as target, Cellcano greatly outperforms Signac. When 
using silver-standard data as target, Cellcano ranks first in Accuracy and ARI while ranks the 
second in macroF1 where Signac ranks first. When performing a paired t-test between Cellcano 
and Signac on all tasks, Cellcano significantly outperforms Signac in Acc (p-value: 0.039) and 
ARI (p-value: 0.012). 
 

 
In mouse brain celltyping tasks, we again notice that Cellcano outperforms Signac.  
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Taken altogether, Cellcano outperforms all other methods. We now have added Signac into 
comparison and updated corresponding figures in Figure 3A-C, Figure 4, Figure S3-5, and 
Figure S9-10.  
 
Note that there are several difficulties using Signac to perform “celltyping”. First, Signac only 
accepts scATAC-seq fragment files. When the input data is bam files, users must use another 
tool sinto (https://timoast.github.io/sinto/installation.html) to transform bam files into fragment 
files. Second, for each celltyping prediction, users need to first call peaks on the reference 
dataset and then generate peak counts for both reference and target datasets. This usually 
takes a long time to accomplish (~1-2h for processing reference and target peak counts). Third, 
since Signac needs to project target dataset onto reference dataset to compute integration 
anchors, users need to run Signac every time for a new celltyping prediction. Compared to 
Signac, Cellcano uses gene scores as input, which (1) achieves better celltyping accuracy and 
computational efficiency; (2) can take pre-trained classifier on atlas-level reference dataset as 
input; and (3) can be easily connected to scRNA-seq and other modalities.  
 
References: 
Luecken, Malte D., et al. "Benchmarking atlas-level data integration in single-cell genomics." Nature 
methods 19.1 (2022): 41-50. 
Tran, Hoa Thi Nhu, et al. "A benchmark of batch-effect correction methods for single-cell RNA 
sequencing data." Genome biology 21.1 (2020): 1-32. 
 
 
The terminology of experiments will be confusing for a majority of reviewers who will think it is 
referring to individual datasets / bench experiments. I strongly suggest changing this 
terminology to be more suitable to the broad readership of the journal. 
 
Thank you for your suggestions. We have changed all the “experiments” to “celltyping tasks” to 
avoid potential confusions.  
 
As a user of these methods, there is nothing that makes this method jump out to me, which I 
believe is more of a presentation issue. Is there any way to simply show a UMAP/tSNE of an 
unannotated dataset and one of the reference used, then show the cell type transfer labeling 

Intra-dataset 
individual prediction

Inter-dataset 
individual prediction

Inter-dataset prediction 
(combined reference)

Inter-dataset prediction 
(combined target)

0.958 0.979 0.975 0.975 0.974 0.967 0.863 0.954 0.723 0.871 0.793 0.862 0.794

0.876 0.975 0.965 0.931 0.933 0.959 0.753 0.795 0.919 0.626 0.604 0.545 0.662
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0.951 0.971 0.97 0.919 0.909 0.97 0.723 0.924 0.951 0.632 0.487 0.525 0.815

0.886 0.854 0.833 0.784 0.774 0.793 0.711 0.645 0.7 0.668 0.617 0.521 0.566
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0.787 0.799 0.734 0.724 0.725 0.707 0.606 0.565 0.52 0.568 0.575 0.437 0.466

0.92 0.831 0.765 0.784 0.774 0.802 0.703 0.682 0.813 0.689 0.594 0.533 NA

0.894 0.862 0.939 0.872 0.864 0.84 0.841 0.906 0.595 0.796 0.678 0.704 NA
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0.886 0.947 0.931 0.933 0.931 0.908 0.869 0.674 0.386 0.683 0.622 0.564 0.741

0.698 0.938 0.912 0.903 0.896 0.904 0.532 0.418 0.803 0.197 0.541 0.162 0

0.671 0.928 0.89 0.806 0.779 0.888 0.609 0.439 0.784 0.247 0.601 0.081 0
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0.937 0.962 0.855 0.859 0.862 0.768 0.945 0.686 0.237 0.54 −0.001 0.371 0.073

0.868 0.9 0.704 0.864 0.873 0.864 0.824 0.536 −0.009 0.409 −0.001 0.301 0

0.757 0.649 0.668 0.528 0.521 0.532 0.467 0.433 0.382 0.306 0.347 0.277 0.203

0.61 0.63 0.585 0.543 0.525 0.23 0.631 0.353 0.022 0.298 0.272 0.278 0.702
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plus the actual annotations? This would clarify things for potential users and make it more 
approachable and appealing to them versus comparisons with a lot of methods they probably 
are not using. 
 
Thank you for your suggestion. We have shown the predicted cell types of target dataset in 
Figure 3D-F where 3D is the ground-truth label and 3F is the final prediction. Here, 
according to your suggestions, we added the reference dataset into the tSNE plots and 
provided comparisons on how other methods perform. As shown in the following figures, the 
existence of batch effect between reference and target datasets indicates that we do not 
perform any data transformation. 
 
We first plotted the batch information (left panel) and their ground-truth cell types (right 
panel). As shown in the left panel, there exists a strong domain shift between reference and 
target datasets.  

 
Then, we plotted all predicted cell types from different methods.  The prediction accuracies 
of the following methods are: 

Cellcano Signac Seurat scJoint SingleR ACTINN EpiAnno 
0.900 0.829 0.686 0.903 0.829 0.869 0.835 
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As for integration methods with label transfer, we have provided the integrated embedding 
space along with cell type information in Supplementary Figure S11. 
 
In summary, we believe our supervised celltyping method is accurate, efficient, and scalable 
and we hope it can replace the traditional “clustering + annotation with prior knowledge” 
step in all single-cell genomics data analysis. We believe the correctly predicted cell types 
can better guide the scATAC-seq data preprocessing steps such as identifying cell-type-
specific accessibilities, peak-to-gene linkage, etc. 
 
Besides the accuracy, we aim to have a pre-trained classifier for publicly available high-
quality datasets which can be quickly adapted to predict cell types in the target dataset.  
 
 
Response to Reviewer 2’s comments: 
 
The authors have addressed my concerns. 
 
Thank you for your previous comments and we are glad that we have addressed them. 
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

I appreciate the additional comparisons as well as clarifications by the authors, all of my 

comments have been fully addressed. I believe we are now 'in sync' with the presentation and 

characterization of cellcano and I have no further comments.



Introduction 
 
We thank the reviewers for their thoughtful comments and suggestions for us to improve our 
manuscript. We addressed the individual points raised by the reviewers, as detailed below. The 
reviewers’ comments are in italic blue, and our replies are in regular font. 
 
Response to Reviewer 1’s comments: 
 
I appreciate the additional comparisons as well as clarifications by the authors, all of my 
comments have been fully addressed. I believe we are now 'in sync' with the presentation and 
characterization of cellcano and I have no further comments. 
 
Thank you for your previous comments and we are glad that we have addressed them.  


