Supplementary Information

An NmrA-like enzyme-catalysed redox-mediated Diels-Alder

cycloaddition with anti-selectivity

Zhiwen Liu^{1,11}, Sebastian Rivera^{2,11}, Sean A. Newmister^{2,11}, Jacob N. Sanders^{3, 11}, Qiuyue Nie¹, Shuai Liu¹, Fanglong Zhao¹, Joseph D. Ferrara⁴, Hao-Wei Shih¹, Siddhant Patil⁵, Weijun Xu⁵, Mitchell D. Miller⁵, George N. Phillips, Jr.^{5,6}, K. N. Houk^{3*}, David H. Sherman^{2,7,8,9*} and Xue Gao^{1,6,10*}

¹Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.

²Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.

³Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.

⁴Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX, USA.

⁵Department of Biosciences, Rice University, Houston, TX, USA.

⁶Department of Chemistry, Rice University, Houston, TX, USA.

⁷Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.

⁸Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA.

⁹Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.

¹⁰Department of Bioengineering, Rice University, Houston, TX, USA.

¹¹These authors contributed equally.

*Corresponding authors: <u>xue.gao@rice.edu; davidhs@umich.edu; houk@chem.ucla.edu</u>

Table of Contents

Supplementary	Tables	S4
Supplementary	Table 1 Strains and plasmids in this study.	S 4
Supplementary	Table 2 Primers used in this study.	S5
Supplementary	Table 3 BLASTP CtdN homologs in NCBI databases.	S6
Supplementary	Table 4 BLASTP CtdP homologs in NCBI databases.	S 7
Supplementary	Table 5 NMR Data of compound 3 (δ in ppm, <i>J</i> in Hz).	S 8
Supplementary	Table 6 NMR Data of compound 5 (δ in ppm, J in Hz).	S9
Supplementary	Table 7 NMR Data of compound 6 (δ in ppm, J in Hz)	S10
Supplementary	Table 8 NMR Data of compound 7 (δ in ppm, J in Hz).	S11
Supplementary	Table 9 NMR Data of compound 10 (δ in ppm, <i>J</i> in Hz).	S12
Supplementary	Table 10 NMR Data of compound R1 (δ in ppm, J in Hz).	S13
Supplementary	Table 11 Crystal data and structure refinement for compound 5.	S14
Supplementary	Table 12 Crystal data and structure refinement for compound 10.	S15
Supplementary	Table 13 Crystallographic data collection and structure refinement statistics.	S16
Supplementary	Table 14 Structural homologs of CtdP identified by DALI server.	S17
Supplementary	Figures	S18
Supplementary	Fig. 1 Biomimetic synthesis of the CtdP and MalC substrates.	S18
Supplementary	Fig. 2 SDS-PAGE (12%) analysis of purified proteins.	S19
Supplementary	Fig. 3 PCR confirmation of <i>ctd</i> mutants.	S20
Supplementary	Fig. 4 UV and mass spectra of compounds 1-6.	S21
Supplementary	Fig. 5 UV and mass spectra of compounds 7-11.	S22
Supplementary	Fig. 6 Electronic circular dichroism spectra of 2, 5, and 6.	S23
Supplementary	Fig. 7 Kinetic analysis of CtdP, NADP ⁺ content in the purified CtdP protein, and refold CtdP assays.	S24
Supplementary	Fig. 8 The proposed pathways of spontaneous Diels-Alder reactions of compound 3.	S25
Supplementary	Fig. 9-1 ¹ H NMR spectrum of 3 in DMSO- d_6 .	S26
Supplementary	Fig. 9-2 ¹³ C NMR spectrum of 3 in DMSO- d_6 .	S27
Supplementary	Fig. 9-3 DEPT135 and ¹³ C NMR spectra of 3 in DMSO- d_6 .	S28
Supplementary	Fig. 9-4 ¹ H- ¹ H COSY NMR spectrum of 3 in DMSO- d_6 .	S29
Supplementary	Fig. 9-5 HSQC NMR spectrum of 3 in DMSO- d_6 .	S30
Supplementary	Fig. 9-6 HMBC NMR spectrum of 3 in DMSO- d_6 .	\$31
Supplementary	Fig. 9-7 HKMS spectrum of 3.	532 522
Supplementary	Fig. 10-1 'H NMR spectrum of 5 in CDCl ₃ . Fig. 10 2^{13} C NMP supertrum of 5 in CDCl	533
Supplementary	Fig. 10-2 $^{-1}$ C NMR spectrum of 5 in CDCl ₃ .	534 525
Supplementary	Fig. 10-5 DEF 1155 and \sim NMR spectrum of 5 in CDCl.	S35
Supplementary	Fig. 10-5 HSOC NMR spectrum of 5 in CDCl.	\$30
Supplementary	Fig. 10-5 HSQC NMR spectrum of 5 in CDCl ₂	\$38
Supplementary	Fig. 10-7 NOFSY NMR spectrum of 5 in CDCl ₂	\$30
Supplementary Supplementary	Fig. 10-8 HRMS spectrum of 5	S40
Supplementary	Fig. 11-1 ¹ H NMR spectrum of 6 in CD ₂ CN	S40
Supplementary	Fig. 11-2 ¹³ C NMR spectrum of 6 in CD ₃ CN.	S41 S42
Supplementary	Fig. 11-3 DEPT135 and 13 C NMR spectra of 6 in CD ₃ CN.	S43
Supplementary	Fig. 11-4 1 H- 1 H COSY NMR spectrum of 6 in CD ₃ CN.	S44
Supplementary	Fig. 11-5 HSQC NMR spectrum of 6 in CD ₃ CN.	S45
Supplementary	Fig. 11-6 HMBC NMR spectrum of 6 in CD ₃ CN.	S46

Supplementary Fig. 11-7 NOESY NMR spectrum of 6 in CD ₃ CN.	S47
Supplementary Fig. 11-8 HRMS spectrum of 6.	S48
Supplementary Fig. 12-1 ¹ H NMR spectrum of 7 in DMSO- <i>d</i> ₆ .	S49
Supplementary Fig. 12-2 13 C NMR spectrum of 7 in DMSO- d_6 .	S50
Supplementary Fig. 12-3 DEPT135 and ¹³ C NMR spectra of 7 in DMSO- d_6 .	S51
Supplementary Fig. 12-4 1 H- 1 H COSY NMR spectrum of 7 in DMSO- d_{6} .	S52
Supplementary Fig. 12-5 HSQC NMR spectrum of 7 in DMSO-d ₆ .	S53
Supplementary Fig. 12-6 HMBC NMR spectrum of 7 in DMSO-d ₆ .	S54
Supplementary Fig. 12-7 HRMS spectrum of 7.	S55
Supplementary Fig. 13-1 ¹ H NMR spectrum of 9 in DMSO-d ₆ .	S56
Supplementary Fig. 13-2 13 C NMR spectrum of 9 in DMSO- d_6 .	S57
Supplementary Fig. 14-1 ¹ H NMR spectrum of 10 in CD ₃ CN.	S58
Supplementary Fig. 14-2 ¹³ C NMR spectrum of 10 in CD ₃ CN.	S59
Supplementary Fig. 14-3 DEPT135 and ¹³ C NMR spectra of 10 in CD ₃ CN.	S60
Supplementary Fig. 14-4 ¹ H- ¹ H COSY NMR spectrum of 10 in CD ₃ CN.	S61
Supplementary Fig. 14-5 HSQC NMR spectrum of 10 in CD ₃ CN.	S62
Supplementary Fig. 14-6 HMBC NMR spectrum of 10 in CD ₃ CN.	S63
Supplementary Fig. 14-7 NOESY NMR spectrum of 10 in CD ₃ CN.	S64
Supplementary Fig. 14-8 HRMS spectrum of 10.	S65
Supplementary Fig. 15-1 ¹ H NMR spectrum of 11 in CD ₃ OD/CDCl ₃ (10/1).	S66
Supplementary Fig. 15-2 ¹³ C NMR spectrum of 11 in CD ₃ OD/CDCl ₃ (10/1).	S67
Supplementary Fig. 16-1 ¹ H NMR spectrum of S7 in DMSO- d_6 .	S68
Supplementary Fig. 16-2 13 C NMR spectrum of S7 in DMSO- d_6 .	S69
Supplementary Fig. 16-3 DEPT135 and ¹³ C NMR spectra of S7 in DMSO- d_6 .	S70
Supplementary Fig. 16-4 1 H- 1 H COSY NMR spectrum of S7 in DMSO- d_{6} .	S71
Supplementary Fig. 16-5 HSQC NMR spectrum of S7 in DMSO-d ₆ .	S72
Supplementary Fig. 16-6 HMBC NMR spectrum of S7 in DMSO- d_6 .	S73
Supplementary Fig. 17-1 ¹ H NMR spectrum of R1 in CDCl ₃ .	S74
Supplementary Fig. 17-2 ¹³ C NMR spectrum of R1 in CDCl ₃ .	S75
Supplementary Fig. 17-3 DEPT135 and ¹³ C NMR spectra of R1 in CDCl ₃ .	S76
Supplementary Fig. 17-4 ¹ H- ¹ H COSY NMR spectrum of R1 in CDCl ₃ .	S77
Supplementary Fig. 17-5 HSQC-TOCSY NMR spectrum of R1 in CDCl ₃ .	S78
Supplementary Fig. 17-6 HMBC NMR spectrum of R1 in CDCl ₃ .	S79
Supplementary Fig. 17-7 NOESY NMR spectrum of R1 in CDCl ₃ .	S80
Supplementary Fig. 17-8 HRMS spectrum of R1.	S81
Energies and molecular coordinates of calculated structures	S82
Supplementary References	S102

Supplementary Tables

Strain or plasmid	lasmid Characteristics			
Strains				
E.coli TOP 10	General cloning host strain	Invitrogen		
E.coli BL21 (DE3)	Protein production host strain	StrataGene		
Penicillin citrinum ATCC 9849	Wild-type <i>P. citrinum</i> used in this study	ATCC		
$\Delta ctdP$	The <i>ctdP</i> knockout mutant of <i>P. citrinum</i> ATCC 9849	This study		
$\Delta ctdR$	The <i>ctdR</i> knockout mutant of <i>P. citrinum</i> ATCC 9849	This study		
$\Delta ctdO$	The <i>ctdO</i> knockout mutant of <i>P. citrinum</i> ATCC 9849	This study		
$\Delta ctdN$	The <i>ctdN</i> knockout mutant of <i>P. citrinum</i> ATCC 9849	This study		
Plasmids				
Modified pETDuet-1	Amp ^r , vector for protein expression	This study		
pUC57	Amp ^r , vector for gene cloning	Addgene		
ctdP-KO-P	Amp ^r , gene knockout plasmid used for $\Delta ctdP$ mutant construction	This study		
ctdR-KO-P	Amp ^r , gene knockout plasmid used for $\Delta ctdR$ mutant construction	This study		
ctdO-KO-P	Amp ^r , gene knockout plasmid used for $\Delta ctdO$ mutant construction	This study		
pET- <i>ctdR</i>	Amp ^r , vector for CtdR expression	This study		
pET-ctdO	Amp ^r , vector for CtdO expression	This study		
pET-malC	Amp ^r , vector for MalC expression	This study		
pET- <i>ctdP</i>	Amp ^r , vector for CtdP expression	This study		
pET-ctdP (Q118A)	Amp ^r , vector for CtdP (Q118A) expression	This study		
pET-ctdP (V133A)	Amp ^r , vector for CtdP (V133A) expression	This study		
pET- $ctdP$ (L134A)	Amp ^r , vector for CtdP (L134A) expression	This study		
pET- <i>ctdP</i> (W160A)	Amp ^r , vector for CtdP (W160A) expression	This study		
pET-ctdP (Y161A)	Amp ^r , vector for CtdP (Y161A) expression	This study		
pET-ctdP (N164A)	Amp ^r , vector for CtdP (N164A) expression	This study		
pET-ctdP (F170A)	Amp ^r , vector for CtdP (F170A) expression	This study		
pET-ctdP (E173A)	Amp ^r , vector for CtdP (E173A) expression	This study		
pET- <i>ctdP</i> (<i>S</i> 273A)	Amp ^r , vector for CtdP (S273A) expression	This study		
pET- <i>ctdP</i> (<i>F277A</i>)	Amp ^r , vector for CtdP (F277A) expression	This study		
pET-ctdP (Y269A)	Amp ^r , vector for CtdP (Y269A) expression	This study		
pET-ctdP (Y280A)	Amp ^r , vector for CtdP (Y280A) expression	This study		
pET-ctdP (Y280F)	Amp ^r , vector for CtdP (Y280F) expression	This study		
pET-ctdP (S340A)	Amp ^r , vector for CtdP (S340A) expression	This study		
pET- <i>ctdP</i> (<i>P342A</i>)	Amp ^r , vector for CtdP (P342A) expression	This study		
pET-SUMO- <i>ctdP</i> (Δ330-367)	Amp ^r , vector for SUMO-CtdP (Δ 330-367) expression	This study		
pET-SUMO- <i>ctdP</i> (Δ335-367)	Amp ^r , vector for SUMO-CtdP (Δ 335-367) expression	This study		
pET-SUMO- <i>ctdP</i> (Δ342-367)	Amp ^r , vector for SUMO-CtdP (Δ 342-367) expression	This study		
pET-SUMO- <i>ctdP</i> (Δ345-367)	Amp ^r , vector for SUMO-CtdP (Δ 345-367) expression	This study		
pET-BmGDH	Amp ^r , vector for BmGDH expression	This study		

Supplementary Table 1 | Strains and plasmids in this study.

Supplementary Table 2 | Primers used in this study.

Primer	Sequence (5'-3')	Description
bar-R	TCATCGCAAGACCGGCAACAGGATTCAATC	For colony PCR verification
bar-F	CATACCTTCTTAAGTTCGCCCTTCCTCCCT	mutant
ctdP-up-F	ATGGCGGGTTCCTTTTGACTTAAGAGTCGC	For colony PCR verification of
ctdP-dn-R	AGTCTGTCGCTTTGAGACTGGGAGCAGATG	$\triangle ctdP$
ctdO-up-F	GGGGGAAACCTGCGGAGCTTTTCAAGACTG	For colony PCR verification of
ctdO-dn-R	GTGACTCCTGGAGGTAAGGACGGTCGGCAG	$\triangle ctdO$
ctdR-up-F	CTGATGTTGATTAGACCCAGCCTGGAGGTC	For colony PCR verification of
ctdR-dn-R	CCAGGGTACCGTTCAGGGCATTCCAATCCG	$\triangle ctdR$
ctdN-up-F	TACATGGGGATCACCAGGAG	For colony PCR verification of
ctdN-dn-R	CAACGAACTGTAATGGAGCG	$\triangle ctdN$
ctdN-Exp-F	CTTTAAGAAGGAGATATACCATGACCCAGGGTGTAAGAAA	Plasmid construction for CtdN
ctdN-Exp-R	TTAGTGATGGTGGTGGTGATGAGTCAAAAGGAACCCGCCATT	expression
ctdP-Exp-F	CTTTAAGAAGGAGATATACCATGACACACGAGATTAAAAAC	Plasmid construction for CtdP
ctdP-Exp-R	TTAGTGATGGTGGTGGTGATGTTCACCAGGATCTTCTCTGAC	expression
ctdO-Exp-F	CTTTAAGAAGGAGATATACCATGACAATCCAACAAAAATC	Plasmid construction for CtdO
ctdO-Exp-R	TTAGTGATGGTGGTGGTGATGTGTTGTCAAGTTACCCTTA	expression
ctdR-Exp-F	CTTTAAGAAGGAGATATACCATGACTGTTGAAAGAAAGATTG	Plasmid construction for CtdR
ctdR-Exp-R	TAGTGATGGTGGTGGTGGTGGTGGGAAGCATTGAGACGCTTAAAA	expression
ctdP(Q118A)-Exp-F	TCGCATGCGCTGTCTGGCGGCAAATTTAACACCCCCAGTTCTG	Plasmid construction for CtdP
ctdP(Q118A)-Exp-R	GCCGCCAGACAGCGCATGCGATGAGGGTGCCGAGCTGAACACGAC	(Q118A) expression
ctdP(V133A)-Exp-F	GTGAAAGCCTGGGGCGAGTCTTGGGGGACGAGCTTGTCCCACA	Plasmid construction for CtdP
ctdP(V133A)-Exp-R	AGACTCGCCCCAGGCTTTCACGTCCAGTGCTGGGGGTGTTAAATTT	(V133A) expression
ctdP(L134A)-Exp-F	GTGAAAGCCTGGGGCGAGTCTTGGGGACGAGCTTGTCCCACA	Plasmid construction for CtdP
ctdP(L134A)-Exp-R	AGACTCGCCCAGGCTTTCACGTCTGCAACTGGGGTGTTAAATTT	(L134A) expression
ctdP(W160A)-Exp-F	TACTTCCAGAACTTTTTCATTCCATCTTTCGTGGCCGAGTTTGGTGGC	Plasmid construction for CtdP
ctdP(W160A)-Exp-R	AATGAAAAAGTTCTGGAAGTATGCCGATGCCATGATCGGCGTGAAGCT	(W160A) expression
ctdP(Y161A)-Exp-F	TTCCAGAACTTTTTCATTCCATCTTTCGTGGCCGAGTTTGGTGGCTTT	Plasmid construction for CtdP
ctdP(Y161A)-Exp-R	AATGAAAAAGTTCTGGAATGCCCACGATGCCATGATCGGCGTGAAGCT	(Y161A) expression
ctdP(N164A)-Exp-F	ATTCCATCTTTCGTGGCCGAGTTTGGTGGCTTTCCG	Plasmid construction for CtdP
ctdP(N164A)-Exp-R	CTCGGCCACGAAAGATGGAATGAAAAATGCCTGGAAGTACCACGA	(N164A) expression
ctdP(F170A)-Exp-F	GAGTTTGGTGGCTTTCCGTGGAATCAAGACGATGAA	Plasmid construction for CtdP
ctdP(F170A)-Exp-R	CCACGGAAAGCCACCAAACTCGGCCACTGCAGATGGAATGAAAAA	(F170A) expression
ctdP(E173A)-Exp-F	GGCTTTCCGTGGAATCAAGACGATGAAGGTTATCTGACTTTGCGT	Plasmid construction for CtdP
ctdP(E173A)-Exp-R	ATCGTCTTGATTCCACGGAAAGCCACCAAATGCGGCCACGAAAGATGG	(E173A) expression
ctdP(E173A)-Exp-F	GGCTTTCCGTGGAATCAAGACGATGAAGGTTATCTGACTTTGCGT	Plasmid construction for CtdP
ctdP(F174A)-Exp-R	GTCTTGATTCCACGGAAAGCCACCTGCCTCGGCCACGAAAGATGGAAT	(F1/4A) expression
ctdP(S273A)-Exp-F		Plasmid construction for CtdP
ctdP(S273A)-Exp-R		(S2/3A) expression
ctdP(F277A)-Exp-F		Plasmid construction for CtdP
ctdP(F27/A)-Exp-R		(F2//A) expression
ctdP(Y269A)-Exp-F		Plasmid construction for CtdP
<i>ctaP</i> (<i>Y269A</i>)- <i>Exp</i> - <i>K</i>		(1269A) expression
ctdP(P280A)-Exp-F		(V280A and V280E) approaches
ctdP(P280A)-Exp-K		(1200A and 1280F) expression
ctar(r280F)-Exp-K		Diagonid according to a few Other
ctar(5540A)-Exp-F		(S340A) expression
ctur (5540A)-Exp-K		Desmid construction for CtdD
cur(r542A)-Exp-r atdP(P342A) Even D		(P342A) expression
ctdD(1342A)-Exp-K		Plasmid construction for Sume
ctdP(A330-367)-Exp-F		CtdP(A330-367)-expression
ctdP(1335-367)_Fvn_P		Plasmid construction for Sumo
сия (2333-307)-Ехр-к		CtdP(Δ 335-367)-expression
ctdP(<i>\Delta 342-367</i>)-Exp-R	CTCAGCTTCCGGGCCTCGAGTGCGGCCGCTTAACCCGATCTCTCGATCTTCTCG	Plasmid construction for Sumo- CtdP(Δ 342-367)-expression
ctdP(<i>4348-367</i>)-Exp-R	ACTCAGCTTCCTTTCGGGCCTCGAGTGCGGCCGCTTAATCTTCTCTGACGATGGGACC	Plasmid construction for Sumo- CtdP(Δ348-367)-expression
BmGDH-Exp-F	CTTTAAGAAGGAGATATACCATGTATAAAGATTTAGAAGGAA	Plasmid construction for
BmGDH-Exp-R	TTAGTGATGGTGGTGGTGATgTCCGCGTCCTGCTTGGAATGA	BmGDH expression
pET-Exp-F	CATCACCACCATCACTAATGATAATTTGAACGCCAGCACA	Plasmid construction for
pET-Exp-R	GGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGG	proteins expression

Supplementary Table 3 | BLASTP CtdN homologs in NCBI databases.

Description	Max	Total	Ouerv	Ε	Per.	Accession
L	Score	Score	Cover	value	Ident	
Short-chain dehydrogenase/reductase PhqE [Penicillium fellutanum]	296	296	99%	2e ⁻¹⁰⁰	50.57%	L0E2Z4.1
Short-chain dehydrogenase/reductase MalC [Malbranchea aurantiaca]	251	251	97%	1e ⁻⁸²	45.77%	L0E4F8.1
Short-chain dehydrogenase/reductase ATR9 [<i>Stachybotrys chlorohalonata</i> IBT 40285]	169	169	95%	9e ⁻⁵¹	37.89%	A0A084R1K2.1
Short-chain dehydrogenase/reductase UcsE [Acremonium sp.]	142	142	95%	7e ⁻⁴⁰	30.08%	A0A411KUU9. 1
Short-chain dehydrogenase/reductase Fsr5 [<i>Fusarium fujikuroi</i> IMI 58289]	127	127	97%	3e ⁻³⁴	31.82%	S0DRI2.1
Uncharacterized oxidoreductase YkvO [<i>Bacillus subtilis subsp. subtilis str.</i> 168]	87.8	87.8	95%	2e ⁻¹⁹	27.03%	O31680.1
3alpha-hydroxysteroid dehydrogenase [<i>Ruminococcus gnavus</i> ATCC 29149]	67.8	67.8	94%	4e ⁻¹²	25.77%	A7B3K3.1
Tropinone reductase homolog P29X [Datura stramonium]	67.4	67.4	97%	5e ⁻¹²	26.60%	P50165.1
Dihydroanticapsin 7-dehydrogenase BacC [Bacillus subtilis]	65.5	65.5	94%	2e-11	26.54%	Q8KWT4.1
Tropinone reductase TR-II [Hyoscyamus niger]	64.7	64.7	95%	5e ⁻¹¹	25.77%	P50164.1
Noroxomaritidine/norcraugsodine reductase NorRed [Narcissus pseudonarcissus]	64.3	64.3	94%	6e ⁻¹¹	27.84%	A0A1A9TAK5. 1
Tropinone reductase TR-I [Datura stramonium]	63.2	63.2	94%	2e ⁻¹⁰	25.95%	P50162.1
3alpha-hydroxy bile acid-CoA-ester 3-dehydrogenase 1/3 [<i>Clostridium scindens</i>]	62.4	62.4	95%	2e ⁻¹⁰	25.97%	P07914.3
Peroxisomal trans-2-enoyl-CoA reductase [Cavia porcellus]	40.4	40.4	25%	0.010	33.80%	Q9JIF5.1
Peroxisomal trans-2-enoyl-CoA reductase [Pongo abelii]	39.7	39.7	29%	0.017	29.76%	Q5RCH8

Supplementary Table 4 | BLASTP CtdP homologs in NCBI databases.

Description	Max	Total	Query	E	Per.	Accession
NmrA-like family domain-containing oxidoreductase HimF [<i>Aspergillus japonicus</i>]	266	266	85%	3e ⁻⁸⁶	45.62%	A0A2Z5TWF0.1
NmrA-like family domain-containing oxidoreductase LnaB [Aspergillus flavus NRRL3357]	245	245	85%	1e ⁻⁷⁷	41.69%	B8NU00.1
NmrA-like family domain-containing oxidoreductase PtmS [<i>Penicillium simplicissimum</i>]	207	207	88%	5e ⁻⁶³	35.87%	A0A140JWT5.1
NmrA-like family domain-containing oxidoreductase PhqG [<i>Penicillium fellutanum</i>]	200	200	85%	2e ⁻⁶⁰	38.56%	L0E2U6.1
NmrA-like family domain-containing oxidoreductase NotA' [<i>Aspergillus versicolor</i>]	195	195	87%	3e ⁻⁵⁸	34.97%	L7WRQ4.1
NmrA-like family domain-containing protein DDB_G0286605 [<i>Dictyostelium discoideum</i>]	104	104	74%	2e ⁻²⁴	29.02%	Q54LJ8.1
NmrA-like family domain-containing protein 1 [Bos taurus]	82.0	82.0	74%	2e ⁻¹⁶	27.30%	Q0VCN1.1
NmrA-like family domain-containing protein 1 [Gallus gallus]	81.3	81.3	67%	4e ⁻¹⁶	26.88%	Q5ZID0.1
NmrA-like family domain-containing protein 1 [Mus musculus]	80.5	80.5	45%	8e ⁻¹⁶	31.64%	Q8K2T1.1
NmrA-like family domain-containing protein 1 [Homo sapiens]	78.6	78.6	42%	3e ⁻¹⁵	33.33%	Q9HBL8.1
NmrA-like family domain-containing protein 1 [<i>Rattus</i> norvegicus]	40.0	40.0	13%	0.007	42.31%	P86172.1
CtdP aligned sequence with MalC and PhqE						
Short-chain dehydrogenase/reductase MalC [Malbranchea aurantiaca]	24.6	41.2	30%	0.004	30.00%	L0E4F8.1
Short-chain dehydrogenase/reductase PhqE [<i>Penicillium fellutanum</i>]	16.2	16.2	6%	2.0	20.83%	L0E2Z4.1

Supplementary Table 5 | NMR Data of compound 3 (δ in ppm, J in Hz)^a.

Position		$^{1}\mathrm{H}$	¹³ C		¹ H- ¹ H COSY	НМВС
1(NH)		10.53 s				C2, 3, 3a
2			140.7	С		
3			104.5	С		
3a			129.1	С		
4		7.32 d (7.5)	117.7	CH	Н5	C3, 6, 7a
5		6.92 dd (7.5, 7.5)	118.3	CH	H4, 6	C3a, 7
6		7.00 dd (7.5, 7.5)	120.4	CH	H5, 7	C4, 7a
7		7.32 d (7.5)	110.9	CH	H6	C3a, 5
7a			134.7	С		
8		3.49 s	25.2	CH_2		C2, 3a, 10
9			115.9	С		
10		4.95 s	112.8	CH		C3, 12, 16
12		2.46 m	54.4	CH	H13, 27	
13	a	1.41 m	32.5	CH_2	H12, 14	
	b	0.98 m			H12, 14	
14	а	1.68 m	23.1	CH_2	H13, 15	C12
	b	1.30 m			H13, 15	
15	a	1.75 m	24.6	CH_2	H14	C13
	b	1.35 m			H14	
16		3.01 m	60.7	CH		
17	a	5.05 dd (17.4, 1.1)	111.1	CH_2	H18	C19
	b	5.02 dd (10.5, 1.1)			H18	
18		6.16 dd (17.4, 10.5)	146.0	CH	H17	C28, 29
19			38.9	С		
25 (NH)		9.03 s				
27		0.75 d (6.3)	20.1	CH ₃	H12	C13
28		1.48 s	27.5	CH ₃		C2, 18, 29
29		1.48 s	27.5	CH ₃		C2, 18, 28
30			166.8	С		

^aMeasured in DMSO- d_6 , 600 MHz for ¹H and 150 MHz for ¹³C NMR. Overlapped signals are reported without designating multiplicity.

Supplementary Table 6 | NMR Data of compound 5 (δ in ppm, J in Hz)^a

Position		$^{1}\mathrm{H}$	¹³ C		¹ H- ¹ H COSY	HMBC	NOESY
1		7.83 s		NH		C2, 3, 3a, 7a	
2			140.0	С			
3			104.3	С			
3a			127.1	С			
4		7.48 d (7.8)	118.6	CH	H5	C3, 6, 7a	
5		7.18 dd (7.8, 7.8)	119.7	СН	H4, 6	C3a, 7	
6		7.11 dd (7.8, 7.8)	122.2	CH	H5, 7	C4, 7a	
7		7.32 d (7.8)	110.7	CH	H6	C3a, 5	
7a			136.5	С			
8	α	3.78 d (15.5)	26.8	CH ₂		C2, 3a, 10, 18	H10
	β	2.53 d (15.5)				C2, 3a, 10, 18	H25
9			58.4	С			
10		4.44 d (7.6)	81.5	CH	OH	C12, 16	Η8α, 17, 29
12		3.01 m	50.9	CH	H13, 27		H10, 29
13	a	1.64 overlapped	35.1	CH ₂	H12, 14	C15	
	b	1.18 m			H12, 14		
14	a	1.73 overlapped	19.8	CH ₂	H13, 15		
	b	1.50 m			H13, 15		
15	a	2.07 m	29.6	CH_2	H14	C17, 30	
	b	1.73 overlapped			H14	C13	
16			58.3	С			
17	α	2.43 m	24.5	CH ₂	H18	C19, 30	H12
	β	1.60 overlapped			H18	C30	
18		2.41 m	48.1	CH	H17	C8, 10, 28, 29	H28
19			34.9	С			
25		5.91 s		NH			Η8β
27		1.12 d (6.1)	23.1	CH ₃	H12	C13	
28		1.38 s	31.1	CH ₃		C3, 18, 29	H18
29		1.42 s	27.1	CH ₃		C3, 18, 28	H10, 12
30			175.0	С			
OH		1.57 d (7.6)			H10	C10	

^aMeasured in CDCl₃, 600 MHz for ¹H and 150 MHz for ¹³C NMR. Overlapped signals are reported without designating multiplicity.

Supplementary Table 7 | NMR Data of compound 6 (δ in ppm, J in Hz)^a.

Position		¹ H	¹³ C		¹ H- ¹ H COSY	HMBC	NOESY
1		9.10 s		NH		C2, 3, 3a	
2			142.5	С			
3			104.6	С			
3a			128.4	С			
4		7.63 d (7.7)	118.7	CH	H5	C3, 6, 7a	
5		7.08 dd (7.7, 7.7)	119.6	CH	H4, 6	C3a, 7	
6		7.01 dd (7.7, 7.7)	121.9	CH	H5, 7	C4, 7a	
7		7.31 d (7.7)	111.5	CH	H6	C3a, 5	
7a			137.5	С			
8	β	2.99 d (17.4)	27.9	CH_2		C2, 3a, 18	H25
	α	2.91 d (17.4)				C2, 10	H10
9			57.6	С			
10		3.87 d (8.1)	91.0	CH	OH	C12	Η8α, 18
12		2.81 m	53.1	CH	H13, 27	C10, 16	Η17α
13	a	1.64 m	35.7	CH_2	H12, 14	C15	
	b	1.13 m			H12, 14		
14	a	1.61 overlapped	20.0	CH ₂	H13, 15		
	b	1.54 m			H13, 15		
15	a	1.84 m	30.2	CH ₂	H14	C17	
	b	1.61 overlapped			H14	C13	
16			58.9	С			
17	α	2.62 m	24.7	CH ₂	H18	C19, 30	H12, 18
	β	1.28 m			H18		
18		1.97 m	44.2	CH	H17	C8, 29	H28
19			35.0	С			
25		6.33 s		NH			Η8β, 29
27		1.15 d (6.1)	23.4	CH ₃	H12	C13	
28		1.28 s	28.4	CH ₃		C3, 18, 29	H18
29		1.17 s	24.7	CH ₃		C3, 18, 28	H25
30			174.9	С			
ОН		2.61 overlapped			H10	C10	

^aMeasured in CD₃CN, 600 MHz for ¹H and 150 MHz for ¹³C NMR. Overlapped signals are reported without designating multiplicity.

Supplementary Table 8 | NMR Data of compound 7 (δ in ppm, J in Hz)^a.

Position		¹ H	¹³ C		¹ H- ¹ H COSY	НМВС
1		10.64 s		NH		C2, 3, 3a
2			141.3	С		
3			102.5	С		
3a			129.4	С		
4		7.29 d (7.8)	117.5	CH	Н5	C3, 6, 7a
5		6.92 dd (7.8, 7.8)	118.4	CH	H4, 6	C3a, 7
6		7.02 dd (7.8, 7.8)	120.5	CH	H5, 7	C4, 7a
7		7.31 d (7.8)	110.9	CH	H6	C3a, 5
7a			134.6	С		
8		3.98 s	33.4	CH_2		C2, 3a, 10
9		Missing	Missing	С		
10			172.2	С		
12		4.00 overlapped	48.5	CH	H13, 27	C14
13		1.62 overlapped	27.5	CH ₂	H12	
		1.52 overlapped				
14	a	1.63 overlapped	15.9	CH ₂		
	b	1.51 overlapped				
15	a	2.00 m	24.7	CH_2	H16	C2, 12
	b	1.56 m				
16		4.91 m	51.2	CH		
17	a	5.06 d (17.4)	111.2	CH ₂	H18	C19
	b	5.03 dd (10.6)				
18		6.08 dd (17.4, 10.6)	145.9	CH	H17	C2, 28/29
19			39.5	С		
25		8.09 s		NH		C16
27		1.21 d (7.0)	21.5	CH ₃	H12	C13
28		1.44 s	27.5	CH ₃		C2, 18
29		1.44 s	27.5	CH ₃		C2, 18
30			171.7	С		

^aMeasured in DMSO- d_6 , 600 MHz for ¹H and 150 MHz for ¹³C NMR. Overlapped signals are reported without designating multiplicity.

Supplementary Table 9 | NMR Data of compound 10 (δ in ppm, J in Hz)^a.

Position		¹ H	¹³ C		¹ H- ¹ H COSY	HMBC	NOESY
1		9.12 s		NH			
2			142.9	С			
3			104.3	С			
3a			128.2	С			
4		7.40 d (7.7)	118.5	CH	H5	C3, 6, 7a	Η8α
5		7.01 dd (7.7, 7.7)	119.7	CH	H4, 6	C3a, 7	
6		7.02 dd (7.7, 7.7)	121.9	CH	H5, 7	C4, 7a	
7		7.31 d (7.7)	111.5	CH	H6	C3a, 5	H1
7a			137.6	С			
8	α	2.90 d (17.0)	29.0	CH ₂		C2, 3a, 18	H4, 25
	β	2.82 d (17.0)				C2, 3a, 10	Η10β, 18
9			56.4	С			
10	α	3.07 d (10.1)	62.5	CH ₂		C12, 16	H12
	β	2.62 d (10.1)				C8, 12, 16, 18	Η8β
12	а	3.02 m	53.7	CH ₂	H13		Η10α
	b	2.31 dd (16.6, 8.5)			H13		
13	а	1.83 m	23.5	CH ₂	H12, 14	C15	
	b	1.80 m			H12, 14	C27	
14	а	2.42 m	28.0	CH ₂	H13	C12	
	b	1.36 m			H13	C16	
16			65.8	С			
17	β	2.06 m	32.2	CH ₂	H18	C15, 19, 30	
	α	1.89 m			H18	C15, 19, 30	
18		2.17 overlapped	46.9	CH	H17	C8, 10, 16, 28, 29	Η8β, 28
19			35.1	С			
25		6.44 s		NH		C10, 16	Η8α, 29
28		1.26 s	28.0	CH ₃		C2, 18, 29	H18
29		1.16 s	24.5	CH ₃		C2, 18, 28	H25
30			174.2	С			

^aMeasured in CD₃CN, 600 MHz for ¹H and 150 MHz for ¹³C NMR. Overlapped signals are reported without designating multiplicity.

Supplementary Table 10 | NMR Data of compound R1 (δ in ppm, J in Hz)^a.

Position		$^{1}\mathrm{H}$	¹³ C		¹ H- ¹ H COSY	HMBC	NOESY
1		9.64 s		NH		C3, 3a	
2			182.5	С			
3			64.4	С			
3a			131.8	С			
4		7.46 d (7.7)	131.1	CH	H5	C3, 6, 7a	Η8β, 29
5		7.10 dd (7.7, 7.7)	121.0	CH	H4, 6	C3a, 7	
6		7.76 d (7.7)	128.0	CH	Н5	C4, 7a	
7			116.8	С			
7a			144.0	С			
8	β	2.34 d (14.8)	32.9	CH ₂		C2, 3a, 10, 18	H4, 29
	α	2.05 d (14.8)				C2, 3a, 10, 19	H10, 12
9			76.0	С			
10	β	4.00 m	57.9	CH ₂			H18
	α	2.82 m				C12, 18	H26
12		2.81 m	63.2	CH	H13, 27	C14	
13	a	1.85 overlapped	30.7	CH ₂	H12, 14		
	b	1.69 overlapped			H12, 14		
14		1.86 overlapped	20.4	CH ₂	H13, 15	C12, 16	
		1.69 overlapped				,	
15	a	2.26 overlapped	27.7	CH ₂	H14, 16		
	b	2.24 overlapped			H14, 16	C13	
16		missing	missing	С			
17	a	2.42 overlapped	38.9	CH ₂	H18		
	b	1.66 overlapped			H18	C19	
18		3.05 m	52.5	CH	H17	C10	H-28
19			47.3	С			
20			194.9	С			
21		4.02 s	64.4	CH		C23, 24	
22			61.6	С		,	
23		1.60 s	24.4	CH ₃		C21, 24	
24		1.25 s	18.8	CH ₃		C21, 23	
26		2.47 s	30.7	CH ₃		C9	H29
27		1.35 d (3.5)	20.4	CH ₃	H12	C13	-
28		0.72 s	23.5	CH ₃		C3, 18, 29	H18
29	+	1.06 s	22.1	CH ₂		C3 18 28	H4 86 26

^aMeasured in CDCl₃, 600 MHz for ¹H and 150 MHz for ¹³C NMR. Overlapped signals are reported without designating multiplicity.

Supplementary Table 11 | Crystal data and structure refinement for compound 5.

Empirical formula	$C_{23}H_{29}N_3O_2$
Formula weight	379.49
Temperature/K	100.15
Crystal system	monoclinic
Space group	P21
a/Å	9.17410(10)
b/Å	22.2451(2)
c/Å	11.6697(2)
α/°	90
β/°	106.2410(10)
γ/°	90
Volume/Å ³	2286.50(5)
Z	4
$\rho_{calc}g/cm^3$	1.102
µ/mm ⁻¹	0.562
F(000)	816.0
Crystal size/mm ³	$0.38 \times 0.28 \times 0.14$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.89 to 149
Index ranges	$-11 \le h \le 11, -22 \le k \le 27, -14 \le l \le 14$
Reflections collected	25927
Independent reflections	7483 [$R_{int} = 0.0289, R_{sigma} = 0.0242$]
Data/restraints/parameters	7483/1/582
Goodness-of-fit on F ²	1.043
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0357, wR_2 = 0.0980$
Final R indexes [all data]	$R_1 = 0.0362, wR_2 = 0.0984$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.22
Flack parameter	0.04(9)
CCDC number	2127333

Supplementary Table 12 | Crystal data and structure refinement for compound 10.

Empirical formula	$C_{23}H_{29}N_{3}O_{2}$
Formula weight	379.49
Temperature/K	99.99(10)
Crystal system	monoclinic
Space group	P21
a/Å	9.17410(10)
b/Å	22.2451(2)
c/Å	11.6697(2)
a/°	90
β/°	106.2410(10)
$\gamma/^{\circ}$	90
Volume/Å3	2286.50(5)
Z	4
pcalcg/cm3	1.102
μ/mm-1	0.562
F(000)	816.0
Crystal size/mm3	0.38 imes 0.28 imes 0.14
Radiation	Cu Ka ($\lambda = 1.54184$)
2 Θ range for data collection/°	7.89 to 149
Index ranges	$-11 \le h \le 11, -22 \le k \le 27, -14 \le l \le 14$
Reflections collected	25927
Independent reflections	7483 [$R_{int} = 0.0289$, $R_{sigma} = 0.0242$]
Data/restraints/parameters	7483/1/741
Goodness-of-fit on F2	1.052
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0344, wR2 = 0.0942
Final R indexes [all data]	R1 = 0.0348, $wR2 = 0.0946$
Largest diff. peak/hole / e Å-3	0.26/-0.21
Flack parameter	0.05(9)
CCDC number	2127332

Supplementary Table 13 | Crystallographic data collection and structure refinement statistics.

	SeMet CtdP				
PDB code	7UF8				
Data Collection*					
Space group	P 61 2 2				
Cell Dimensions					
<i>a, b, c</i> (Å)	166.8, 166.8, 195.4				
α, β, γ (°)	90, 90, 120				
Wavelength (Å)	0.979				
Resolution range (Å)	48.14 - 2.5 (2.589 - 2.5)				
$R_{meas}(\%)$	18.45 (3.161)				
$I/\sigma I$	24.52 (2.07)				
Completeness (%)	99.77 (99.18)				
Redundancy	39.8 (39.3)				
Refinement					
Resolution range (Å)	48.14 - 2.5				
No. Reflections	55726				
Rwork / Rfree	0.214 / 0.245				
No. Atoms					
Protein	10397				
Ligand	462				
Water	1325				
B-factors (Å ²)					
Protein	71.97				
Ligand	74.51				
Water	58.56				
R.M.S. deviations					
Bond lengths (Å)	0.011				
Bond angles (°)	1.26				
*Values in parenthese	s are for highest-resolution shell				

Supplementary Table 14 | Structural homologs of CtdP identified by DALI server¹.

No	Protein	PDB-	Z	rmsd	Number of	Total	%identity
110		Chain	score		structurally	number of	, 0100010103
					equivalent residues	amino acids	
1	NADP(H) sensor HSCARG protein	2exx-A	31.8	2	290	305	24
	(Homo sapiens)						
2	NmrA-like family domain containing	2wmd-A	31.9	2.1	289	295	24
3	protein 1 (Homo sapiens)	2wm3-A	31.8	2.1	289	296	24
4	NmrA-like family domain containing	3dxf-A	31.5	2.1	288	292	24
5	protein 1	3e5m-A	31.4	2	287	294	24
6		3e5m-B	31.1	2	287	295	24
7	NmrA (Aspergillus nidulans)	1k6i-A	30.2	2.6	294	318	20
8	NmrA	1xgk-A	30.2	2.6	295	325	21
9	NmrA-like family domain containing	3dxf-B	30.1	2.1	280	282	24
	protein 1						
10	NmrA	1k6j-B	30.1	2.7	296	321	20
11		1ti7-A	30	2.6	294	324	20
12		2vuu-A	29.8	2.7	294	318	20
13		2vus-E	29.8	2.9	297	318	20
14		2vus-D	29.8	2.9	297	318	20
15		2vus-B	29.7	2.7	294	318	20
16		2vuu-F	29.7	2.7	294	318	20
17		2vus-F	29.7	2.7	294	318	20
18		2vuu-G	29.7	2.7	294	319	20
19		2vuu-E	29.7	2.7	294	318	20
20		2vus-G	29.7	2.7	294	318	20
21		1k6x-A	29.6	2.6	293	324	21
22		2vuu-D	29.6	2.7	295	319	20
23		1k6j-A	29.5	2.6	294	322	21
24		2vut-G	29.5	2.8	295	319	20
25		2vut-D	29.4	2.8	294	320	20
26		2vuu-B	29.4	2.8	293	319	20
27		2vus-A	29.3	2.6	291	318	21
28		2vus-C	29.2	2.6	292	318	21
29		2vuu-C	29.2	2.6	292	318	21
30		2vus-H	29.1	2.6	292	318	21
31		2vuu-H	29.1	2.7	292	319	21
32		2vut-F	29.1	2.6	291	318	21
33		2vut-A	29.1	2.7	293	318	21
34		2vut-C	29.1	2.6	291	318	21
35		2vut-E	29.0	2.6	291	318	21
36		2vut-H	29.0	2.7	292	319	21
37	NmrA-like protein KstA11	5f5n-A	28.9	2.5	281	289	26
	(Micromonospora sp. TP-A0468)						

Supplementary Figures

Supplementary Fig. 1 | **Biomimetic synthesis of the CtdP and MalC substrates. a**, Compound **3** synthetic pathway. **b**, Compound **9** synthetic pathway. **c**, Thin-layer chromatography (TLC) purification of compound **3** after the reaction from **S7**. **d**, LCMS analysis of bands A-C in **c**. Band A is pure **3**, while band C is presumed to be tautomerized to major **3** and proposed to contain compound **4** based on its UV and MS data. **e**, TLC purification of compound **9** after the reaction from **S10**. The symbol * represents the compound identified by MS and UV spectra.

Supplementary Fig. 2 | **SDS-PAGE (12%) analysis of purified proteins. a**. *C*-His-tagged proteins of CtdP, MalC, CtdN, CtdR, CtdO, BmGDH, and refolded CtdP enzymes. **b**. *C*-His-tagged proteins of CtdP mutants. Experiments in **a** and **b** were repeated independently with similar results for three times.

Supplementary Fig. 3 | **PCR confirmation of** *ctd* **mutants.** *ctd* transformants were screened by PCR using primers ctdx-up-F and bar-R for up-stream screening, primers bar-F and ctdx-dn-R for down-stream screening.

Supplementary Fig. 4 \mid UV and mass spectra of compounds 1-6.

Supplementary Fig. 5 | UV and mass spectra of compounds 7-11.

Supplementary Fig. 6 | Electronic circular dichroism spectra. a, Compounds 2, 5, and 6. b, Compounds R1 and 1.

Supplementary Fig. 7 | Kinetic analysis of CtdP, NADP⁺ content in the purified CtdP protein, and refold CtdP assays. **a**, Standard curve of compound **2**. **b**, Michaelis-Menton kinetic analysis of CtdP with and **3**. Data was presented as mean \pm s.d. from triplicate independent experiments (n = 3). **c**, Standard curve of NADPH. **d**, Left: absorption value of NADP⁺ in 1 µL CtdP (0.88 \pm 0.18). NADP⁺ amount = total NADP – NADPH. Right: the relative ratio of NADP⁺ in CtdP protein (7.8 \pm 2.6%). Data was presented as mean \pm s.d. from triplicate independent experiments (n = 3). **e**, 20 µM CtdP (no addition of extra NADP⁺) reacts with 200 µM **3** in time course. The conversion rate reaches a maximum of 33.8% at 30 min. **f**, 10 µM CtdP and 200 µM **3** react with the addition of different concentrations of NADP⁺ for 15 min. The conversion rate of **2** increased from 10.4% to 63.9% with the increased amount of additional NADP⁺ from 0 to 1000 µM. **g**, CtdP (40 µM) and refolded CtdP (40 µM) react with **3** (200 µM) for 1 hour, respectively. The reaction buffer is 50 mM Tris-HCl (pH 7.0) and the reaction temperature is 28 °C. The 100% conversion of **2** as the control.

Supplementary Fig. 8 | The proposed pathways of spontaneous Diels-Alder reactions of compound 3.

Supplementary Fig. 9-1|¹H NMR spectrum of 3 in DMSO-*d*₆.

Supplementary Fig. 9-2| ¹³C NMR spectrum of 3 in DMSO-*d*₆.

Supplementary Fig. 9-3 | DEPT135 and ¹³C NMR spectra of 3 in DMSO-*d*₆.

Supplementary Fig. 9-4 | ¹H-¹H COSY NMR spectrum of 3 in DMSO-*d*₆.

Supplementary Fig. 9-5 | HSQC NMR spectrum of 3 in DMSO-*d*₆.

Supplementary Fig. 9-6 | HMBC NMR spectrum of 3 in DMSO-*d*₆.

Supplementary Fig. 9-7 | HRMS spectrum of 3.

Supplementary Fig. 10-1 | ¹H NMR spectrum of 5 in CDCl₃.

Supplementary Fig. 10-2 | ¹³C NMR spectrum of 5 in CDCl₃.

Supplementary Fig. 10-3 | DEPT135 and ¹³C NMR spectra of 5 in CDCl₃.

Supplementary Fig. 10-4 | ¹H-¹H COSY NMR spectrum of 5 in CDCl₃.

Supplementary Fig. 10-5 | HSQC NMR spectrum of 5 in CDCl₃.

Supplementary Fig. 10-6 | HMBC NMR spectrum of 5 in CDCl₃.

Supplementary Fig. 10-7 | NOESY NMR spectrum of 5 in CDCl₃.

Supplementary Fig. 10-8 | HRMS spectrum of 5.

Supplementary Fig. 11-1 | ¹H NMR spectrum of 6 in CD₃CN.

Supplementary Fig. 11-3 | DEPT135 and ¹³C NMR spectra of 6 in CD₃CN.

Supplementary Fig. 11-4 | ¹H-¹H COSY NMR spectrum of 6 in CD₃CN.

Supplementary Fig. 11-5 | HSQC NMR spectrum of 6 in CD₃CN.

Supplementary Fig. 11-6 | HMBC NMR spectrum of 6 in CD₃CN.

Supplementary Fig. 11-7 | NOESY NMR spectrum of 6 in CD₃CN.

Supplementary Fig. 11-8 | HRMS spectrum of 6.

Supplementary Fig. 12-1 | ¹H NMR spectrum of 7 in DMSO-*d*₆.

Supplementary Fig. 12-3 | DEPT135 and ¹³C NMR spectra of 7 in DMSO-d₆.

Supplementary Fig. 12-4 | ¹H-¹H COSY NMR spectrum of 7 in DMSO-*d*₆.

Supplementary Fig. 12-5 | HSQC NMR spectrum of 7 in DMSO-*d*₆.

Supplementary Fig. 12-6 | HMBC NMR spectrum of 7 in DMSO-d₆.

Supplementary Fig. 12-7 | HRMS spectrum of 7.

Supplementary Fig. 13-1 | ¹H NMR spectrum of 9 in DMSO-*d*₆.

Supplementary Fig. 13-2 | ¹³C NMR spectrum of 9 in DMSO-*d*₆.

Supplementary Fig. 14-1 | ¹H NMR spectrum of 10 in CD₃CN.

Supplementary Fig. 14-2 | ¹³C NMR spectrum of 10 in CD₃CN.

Supplementary Fig. 14-3 | DEPT135 and ¹³C NMR spectra of 10 in CD₃CN.

Supplementary Fig. 14-4 | ¹H-¹H COSY NMR spectrum of 10 in CD₃CN.

Supplementary Fig. 14-5 | HSQC NMR spectrum of 10 in CD₃CN.

Supplementary Fig. 14-6 | HMBC NMR spectrum of 10 in CD₃CN.

Supplementary Fig. 14-7 | NOESY NMR spectrum of 10 in CD₃CN.

matograms Method Wizards Actions Configuration Tools Help - @ 🎦 🕒 🗗 🛕 🏨 ዙ 🎿 🔶 🏠 堆 難 😭 🎕 🕼 🗤 📾 🔒 🔛 Navigator View 🎛 Compound Details View CH. 🛕 Chromatogram Results Mass Calculator Base formula (M) Diff (ppm) Defect Species Calc m/z Mono m/z (M+H)+ 336.207 336.207 0.207 Þ C21 H25 N3 O -Species to calculate Positive ions Negative ions Radical ✓ +H → +Na → +K → +NH4 • 🗙 • x105 +ESI Scan (rt: 0.299 min) Frag=200.0V P336B-2.d 1.55 1.45 1.44 1.35 1.25 1.25 1.25 1.25 1.25 1.25 0.9 0.9 0.85 0.65 0.55 0.55 0.45 0.44 0.35 0.55 0 Н 336.2075 10

Supplementary Fig. 14-8 | HRMS spectrum of 10.

Supplementary Fig. 15-1 | ¹H NMR spectrum of 11 in CD₃CD/CDCl₃ (1/10).

Supplementary Fig. 16-1 | ¹H NMR spectrum of S7 in DMSO-*d*₆.

Supplementary Fig. 16-2 | ¹³C NMR spectrum of S7 in DMSO-*d*₆.

Supplementary Fig. 16-3 | DEPT135 and ¹³C NMR spectra of S7 in DMSO-*d*₆.

Supplementary Fig. 16-4 | ¹H-¹H COSY NMR spectrum of S7 in DMSO-*d*₆.

Supplementary Fig. 16-5 | HSQC NMR spectrum of S7 in DMSO-*d*₆.

Supplementary Fig. 16-6 | HMBC NMR spectrum of S7 in DMSO-*d*₆.

Supplementary Fig. 17-1 | ¹H NMR spectrum of R1 in CDCl₃.

Supplementary Fig. 17-2 | ¹³C NMR spectrum of R1 in CDCl₃.

Supplementary Fig. 17-3 | DEPT135 and ¹³C NMR spectra of R1 in CDCl₃.

Supplementary Fig. 17-4 | ¹H-¹H COSY NMR spectrum of R1 in CDCl₃.

Supplementary Fig. 17-5 | HSQC-TOCSY NMR spectrum of R1 in CDCl₃.

Supplementary Fig. 17-6 | HMBC NMR spectrum of R1 in CDCl₃.

Supplementary Fig. 17-7 | NOESY NMR spectrum of R1 in CDCl₃.

Supplementary Fig. 17-8 | HRMS spectrum of R1 in CDCl3.

Energies and Molecular Coordinates of Calculated Structures.

Structure	Single-Point Energy	Enthalpy	Gibbs Free Energy
	(Hartree)	Correction	Correction
		(Hartree)	(Hartree)
	M06-2X/		
	6-311++G(2d,2p)	M06-2X/6-31+G(d)	M06-2X/6-31+G(d)
	CPCM water solvent	CPCM water solvent	CPCM water solvent
Substrate 3	-1133.27763795	0.512919	0.432077
Substrate 3-taut	-1133.24220759	0.512060	0.431172
Substrate 3-ox	-1132.51988010	0.503054	0.423583
TS-taut _{a-anti}	-1133.20758299	0.510622	0.436393
TS-ox _{α-anti}	-1132.48695913	0.502384	0.429517
Product 2-taut	-1133.30637638	0.515543	0.443782
Product 2-ox	-1132.54357524	0.505760	0.433204
Product 2	-1133.32726952	0.515808	0.443338
Substrate 3-ox _{a-syn}	-1132.51871022	0.503050	0.423882
Substrate 3-ox _{β-syn}	-1132.51660234	0.503183	0.424415
Substrate 3-ox β-anti	-1132.51549387	0.503060	0.425197
TS-oxa-syn	-1132.48734470	0.502322	0.430120
TS-ox _{β-syn}	-1132.49035735	0.502212	0.429479
TS-oxβ-anti	-1132.48763403	0.502498	0.429897
NADP ⁺ Model	-456.702066786	0.169217	0.124487
NADPH Model	-457.446769424	0.178720	0.131205
Substrate 4	-1132.06562844	0.488953	0.408388
Substrate 9	-1053.44990317	0.428902	0.353768
Substrate 9-red	-1054.65441754	0.453013	0.376677

Substrate 3

Ν	-1.707056	-1.291350	-1.810658
С	-2.999269	-1.405467	-1.416401
0	-3.839078	-2.009447	-2.077905
С	-3.318343	-0.771696	-0.058276
Ν	3.297103	0.430707	0.880042
С	3.580603	-2.855172	-1.129870
Ν	-2.525273	0.454711	0.113926
С	3.099662	-3.046384	0.098080
С	-0.727432	-0.631251	-1.038922
С	0.704299	-0.943344	-1.387339
С	1.705779	-0.171221	-0.582238
С	2.002182	1.223259	-0.769252
С	1.505957	2.213515	-1.636554
С	2.020547	3.498543	-1.549285
С	3.023993	3.819523	-0.607850
С	3.529536	2.863045	0.261120
С	3.005978	1.567551	0.166459
С	2.513840	-0.620209	0.441014
С	2.610946	-1.991868	1.077538
С	3.596712	-1.990267	2.262194
С	1.226192	-2.406332	1.619648
С	-1.152630	0.218713	-0.095708
Н	3.975810	0.377227	1.626435
Н	3.630500	-1.866177	-1.580001
Н	3.933645	-3.692115	-1.725305
Н	3.067252	-4.060260	0.502322
Н	0.855675	-0.720489	-2.455976
Н	0.877879	-2.021615	-1.285739
Н	0.726951	1.974344	-2.357103
Н	1.647177	4.274800	-2.210944
Н	3.405786	4.835261	-0.562293
Н	4.299621	3.108185	0.986868
Н	3.271723	-1.296572	3.046063
Η	3.637334	-2.991208	2.702533
Н	4.611855	-1.729524	1.944470
Н	0.886956	-1.685716	2.371538
Н	0.472546	-2.450595	0.828958
Н	1.290735	-3.393732	2.090387
С	-4.815556	-0.514956	0.057646
Н	-5.132730	0.111887	-0.785724
С	-2.823058	1.212077	1.348728
Η	-2.505806	0.607499	2.220363
С	-5.136771	0.183290	1.372528
Н	-6.208357	0.398426	1.437630
Η	-4.887283	-0.477330	2.214478
С	-4.324833	1.468589	1.469711
Η	-4.627446	2.158454	0.669065
Η	-4.508513	1.975005	2.423610
Η	-5.339672	-1.470179	-0.030184
С	-2.079865	2.547254	1.362549
Η	-0.995863	2.445112	1.451799
Η	-2.300889	3.104066	0.444981
Η	-2.422105	3.139485	2.216701
Η	-3.019373	-1.516981	0.710864
Η	-1.440270	-1.774992	-2.662344
Н	-0.434737	0.751667	0.513516

Substrate **3-taut**

С	0.459260	-0.629075	-0.864877
С	-0.750694	-0.079799	-1.582561
С	-1.945099	0.172469	-0.709773
Ċ	-2.137760	1.183512	0.210396
Ċ	-1.225570	2.311206	0.663786
Č	-0.434324	2.826272	-0.522193
\tilde{c}	0.893086	2 879288	-0.628438
\hat{c}	2 722359	-1 206661	0.578036
c	1 509850	-1 760620	0.809606
N	0.339251	-1 327199	0.203816
\hat{C}	-3 983600	-0.117287	0.203010
c	-5.203000	-0.685564	0.615272
c	-5 584497	-1 838983	-0.068701
c	-4 725861	-2 414484	-1.031120
c	-3 497431	-1 842564	-1 328103
c	-3.11009/	-0.670033	-0.653713
N	-3 365938	0.998406	0.820605
\hat{C}	1 823217	-0.440748	-1 480362
N	2 810111	-0.210033	-0.429447
C	<i>1</i> 135323	0.007518	-0.905887
c	4.155525	0.007/318	0.051612
C	5 219672	-1 326852	0.778389
c	3 883318	1 455126	1 501070
C O	1 330104	2 661036	1.301070
C	1.330104	1 / 87013	-1 629471
c	2.057022	3 501140	1 188558
C	-0.318756	1 805380	1.188558
с u	1 0/8000	3 200075	1 3300/3
и П	-1.048909 5 883678	0.241411	1 358131
и П	-5.885078	2 202002	0.141249
п u	-0.340803	-2.308908	0.141346
п u	-3.033003	-3.320291	2 060506
и П	2.044911	1 617012	1 508005
и П	-3.772420	0.654033	1.308093
и П	4.355009	-0.034033	-1.780097
п u	1 022066	0.824607	2 262604
п	-1.022000	-0.800343	-2.303094
п	1.330033	2.493732	1 51 4210
п	1.303324	3.298014	-1.314310
п u	2.065045	-1.330344	-2.008030
п u	6 10800	0.409443	-2.102730
п u	5 110110	0.109010	-0.436139
п u	5.119119	1 208215	1.402862
п	0.044994 5 227795	-1.396213	1.493603
п	2 95 72 42	-2.143032	0.033429
п	2.652545	-0./10040	2.317073
п	2 428000	-2.436393	2.451601
П U	5.428909	1.392098	-2.431091
п	2 000507	1.093994	-2.031941
П U	3.90939/ 1700025	2.243/04	-0.0/140/
п u	-2.700900	3.043431	0.442403
п	-1.300314	4.332034	1.420044 2.100126
п u	-2.373341	3.243177 1.425470	2.109130
п u	-0.932830	1.423470	2.020003
п u	0.30149/	2.022942 0.006615	2.102031
п u	0.334109	0.990013	1.430307
п	0.383324	-2.0/3190	1.00000/

Substrate **3-ox**

С	0.529772	-0.354241	-0.932042
С	-0.720620	0.066585	-1.658313
С	-1.915192	0.183780	-0.753813
С	-2.224274	1.182511	0.151307
С	-1.472454	2.441897	0.543732
С	-0.825718	3.046922	-0.686888
С	0.456524	3.386501	-0.816306
С	2.784237	-1.242056	0.427477
С	1.457417	-1.798626	0.781275
Ν	0.409535	-1.277339	0.063629
С	-3.848359	-0.376646	0.348926
С	-4.982191	-1.111550	0.715315
С	-5.186105	-2.325456	0.076570
С	-4.286886	-2.797822	-0.904638
С	-3.168860	-2.062401	-1.267030
С	-2.937656	-0.825033	-0.636048
Ν	-3.387626	0.835152	0.801806
С	1.767577	0.113531	-1.229887
Ν	2.871842	-0.352578	-0.533567
С	4.190420	0.262471	-0.937380
С	5.342061	-0.647958	-0.533057
С	5.254444	-1.021566	0.941851
С	3.950411	-1.768849	1.195083
0	1.316125	-2.645738	1.649149
С	4.260238	1.669808	-0.349015
С	-2.446701	3.501183	1.101717
С	-0.447188	2.089103	1.634000
Н	-1.515506	3.245392	-1.509579
Н	-5.669844	-0.745208	1.471820
Н	-6.052993	-2.925426	0.336612
Н	-4.477382	-3.754492	-1.381737
Н	-2.485733	-2.440150	-2.024155
Н	-3.854097	1.402385	1.496177
Н	4.134737	0.318743	-2.027010
Н	-0.504465	0.993761	-2.192264
Н	-0.924535	-0.695730	-2.421229
Н	1.183831	3.215880	-0.026774
Н	0.820920	3.853830	-1.726860
Н	5.321426	-1.553470	-1.150408
Н	6.273507	-0.121068	-0.756823
Η	5.304708	-0.126415	1.569191
Η	6.095546	-1.657746	1.225629
Н	3.666522	-1.771000	2.252674
Н	4.040011	-2.828825	0.916043
Н	3.450152	2.299414	-0.725681
Н	5.208714	2.123986	-0.646634
Н	4.206089	1.650799	0.742524
Η	-3.246104	3.726484	0.388452
Н	-1.894862	4.423513	1.303493
Η	-2.895853	3.178717	2.047569
Н	-0.951279	1.614211	2.481382
Н	0.053100	2.993286	1.996621
Н	0.317571	1.399904	1.260170
Η	1.950012	0.842792	-2.006360
Н	-0.524825	-1.606832	0.313884

TS-tauta-anti

С	0.428085	-0.781343	-0.034476
С	-0.880332	-1.446132	-0.390417
С	-2.070004	-0.548121	-0.258990
С	-2.102003	0.814559	-0.426143
С	-1.008545	1.807348	-0.753842
С	0.272615	1.109271	-1.214764
С	1.517475	1.666667	-1.010278
С	2.769787	0.373842	0.462571
С	1.753959	0.324433	1.402995
Ν	0.568505	-0.259457	1.172656
С	-4.219360	0.192045	0.063938
С	-5.591154	0.145308	0.337831
С	-6.147980	-1.098871	0.602827
С	-5.360883	-2.270438	0.595930
С	-4.001044	-2.217050	0.322547
С	-3.409946	-0.970465	0.051987
Ν	-3.401684	1.255193	-0.230432
С	1.630910	-1.390039	-0.733500
Ν	2.886760	-0.670550	-0.505038
С	4.025899	-1.583303	-0.271610
С	5.318414	-0.797683	-0.045785
С	5.177230	0.267310	1.037111
С	4.010063	1.189976	0.670976
0	1.837040	1.111276	2.520426
С	4.196534	-2.523068	-1.462410
С	-1.475695	2.685360	-1.940423
С	-0.775986	2.718069	0.465265
Н	0.142388	0.473730	-2.092818
Н	-6.195784	1.047711	0.343003
Н	-7.209803	-1.171503	0.819457
Н	-5.830493	-3.226710	0.807377
Н	-3.404175	-3.125969	0.316964
Н	-3.708616	2.216371	-0.285990
Н	3.816077	-2.185223	0.636014
Н	-0.806932	-1.847133	-1.410063
Н	-1.000816	-2.319579	0.267002
Н	1.646096	2.567414	-0.416459
Н	2.338067	1.409087	-1.669779
Н	1.702564	-2.412777	-0.315173
Н	1.431925	-1.501128	-1.806564
Н	6.112004	-1.509838	0.207002
Н	5.601799	-0.317098	-0.993076
Н	6.104394	0.842016	1.135925
Н	4.978596	-0.206674	2.007600
Н	4.251464	1.708455	-0.267699
Н	3.834636	1.946511	1.439215
Н	3.333053	-3.176205	-1.613750
Н	5.071833	-3.160837	-1.304091
Η	4.352510	-1.938739	-2.376415
Η	-1.705287	2.069554	-2.816273
Η	-0.681806	3.389316	-2.208086
Η	-2.368353	3.268486	-1.687528
Η	-1.724975	3.138156	0.813320
Η	-0.121554	3.557149	0.210682
Η	-0.328601	2.157423	1.290034
Н	0.950162	1.135476	2.918431

TS-oxa-anti

11			
С	0.357901	-1.105925	0.271298
С	-0.993548	-1.642493	-0.075817
С	-2.048015	-0.580765	-0.156731
С	-1.911260	0.768164	-0.391316
C	-0.710998	1.673711	-0.601367
Č	0.565103	0.940412	-1.007963
Ċ	1.824753	1.386019	-0.598861
C	2.719403	0.091810	0.716184
Č	1.671619	0.204073	1.778020
N	0.520733	-0.465752	1.482620
С	-4.127821	0.382472	-0.149443
Č	-5.520740	0.488864	-0.057072
Č	-6.231590	-0.677229	0.187575
Č	-5.577755	-1.919655	0.336211
Č	-4.197345	-2.017264	0.242436
Č	-3.453607	-0.849914	-0.002201
Ň	-3.172034	1.339930	-0.383962
C	1 495842	-1 557268	-0.368928
N	2 695295	-1.051620	-0.044956
C	3 885339	-1 556938	-0.816058
č	5 176797	-1 118722	-0.134128
č	5 171627	0 382369	0.137451
č	4 041519	0.703969	1 105662
õ	1 820013	0.885395	2 781651
č	3 812323	-1 130013	-2 282918
c	-0.994185	2 588797	-1 826879
č	-0 535078	2.578760	0.635492
н	0.488266	0 395744	-1 946857
н	-6 022469	1 445041	-0.172521
н	-7 313867	-0 633508	0.265498
н	-6 168707	-2.810780	0.203498
н	-3 703832	-2.010700	0.354172
н	-3 370821	2 322443	-0 511439
н	3 792845	-2 644374	-0.756842
н	-0.912435	-2.044974	-1.017250
н	-1.275358	-2.170747	0.603/150
н	1 885748	2 254003	0.052030
н	2 647575	1 200620	-1 300500
н	5 295510	-1 661806	0.810722
н	6.008767	-1.001800	-0.783500
и П	5.062061	-1.405255	-0.783300
н	6 120167	0.930409	0.583752
и П	3 806505	1 780207	1 230842
п П	1 282525	0.212824	2 102225
п	4.262333	1 380687	2.105555
п П	2.034740	-1.369087	-2.741012
п	4.397808	-1.000127	-2.02/0/5
п U	-1 2/01/0	1 007/01	-2.413090
п u	-1.240109	2 201202	-2.713472
п Ц	1 825074	3.201202	-2.041904
п	-1.023070	3.270301	0.006207
п Ц	-1.490309	3.010940	0.900207
п U	-0.149201	2.40400/	1 510021
п	1 // 2002	2.031933	1.510051
п	1.442773	-2.219192	2 085234
п	-0.200493	-0.519010	2.003234

Product 2-taut

С	-0.374464	0.577250	-0.155862
С	0.920966	1.395286	-0.191594
С	2.133656	0.520714	-0.137266
С	2.107702	-0.836254	-0.322207
С	0.892276	-1.697449	-0.527430
С	-0.266551	-0.747003	-0.960642
С	-1.663192	-1.403192	-0.935223
С	-2.626848	-0.599823	-0.031644
Ċ	-1.871020	-0.343117	1.260418
N	-0.752409	0.265300	1.229896
C	4 270316	-0.305226	0.006537
Č	5.660171	-0.312460	0.168743
Ĉ	6.284612	0.906289	0.401847
Č	5.546391	2.106825	0.471200
c	4 167596	2.108737	0 307604
c	3 508030	0.890320	0.071922
N	3 393311	-1 338295	-0.232566
$\hat{\mathbf{C}}$	-1 513482	1 416943	-0 769405
N	-2 808817	0.715065	-0.701517
$\hat{\mathbf{C}}$	-3.870590	1 568741	-0.138571
c	-5.187696	0.800860	-0.130571
c	-5.039687	-0.486143	0.761669
c	-3.946504	-0.400145	0.133220
õ	-2 411123	-0.779470	2 415452
C	-2.411123	2 700/02	-1.022430
c	1 122628	2.799402	1 660828
č	0.649020	-2.702773	0.776390
н	-0.030577	-2.407200	-1 991338
н	6 228282	-1 236872	0 115043
н	7 362399	0.935076	0 533393
н	6.068603	3 041329	0.654996
н	3 605482	3.037982	0.361897
н	3 655255	-2 309668	-0.329951
н	-3 582489	1 904500	0.879277
н	0.937974	2 001178	-1 109020
н	0.903962	2.001170	0.647329
н	-1 626866	-2 436909	-0 578435
н	-2 109775	-1 420747	-1.934153
н	-1.554156	2 351836	-0.192051
н	-1.267776	1 674498	-1.807228
н	-5.939297	1.074490	0.412747
н	-5.539297	0 566144	-1.058076
н	-5 984594	-1 039922	0 778708
н	-4 781755	-0.250349	1 800717
н	-4.761755	-1.662219	-0.867421
н	-3.764507	-2 252191	0 710/35
н	-3.170381	3 /31507	-1.080036
и П	-3.179381	3.431397	-1.080030
и П	4.330742	2 484054	2 038465
н	1 410088	_2.404034	-2.030403
ц	0.206602	-2.171030	-2.37+204
н	1 906/20	-3.273031	-1.002000
н	1 500420	-3 141/21	0.965667
ц	-0.222714	-3.141431	0.706141
н	0.232714	-3.134398	1 633242
н	-1 793686	-0 553793	3 135725
	1.1/0000	0.000110	5.155145

Product 2-ox

С	0.349574	-0.690078	0.206323
С	-0.959165	-1.471386	0.121065
С	-2.117943	-0.543788	-0.045596
С	-2.001445	0.767573	-0.422966
С	-0.736393	1.550457	-0.649951
С	0.435867	0.525136	-0.795011
С	1.838929	1.156615	-0.633036
С	2.659290	0.413548	0.461708
С	1.791658	0.446939	1.747732
Ν	0.618287	-0.185526	1.547948
С	-4.207147	0.373311	-0.220199
Ċ	-5.603538	0.460977	-0.192026
C	-6.308103	-0.683980	0.153931
Č	-5.643930	-1.889950	0.464397
Ĉ	-4.259209	-1.972199	0.434089
Ĉ	-3.520677	-0.827533	0.088949
N	-3 259510	1 324602	-0.525177
C	1 533426	-1 549557	-0 143785
N	2 688781	-1 014373	-0.013171
\hat{C}	3 916942	-1 723372	-0.529475
c	5 185722	-1.057167	-0.529475
c	5 131083	0.457733	-0.179627
c	4 038504	1.008711	0.728655
C O	2 120200	1.008/11	0.728055
C	2.129390	1.023033	2.708204
C	0.812270	-1.734407	-2.037007
C	-0.813370	2.552051	-1.9/49/8
п	-0.367411	2.371003	1 709951
п	6 114500	0.095570	-1./98631
п	-0.114390	1.300043	-0.431704
п	-7.393130	-0.030704	0.185745
н	-0.229552	-2./05140	0.729078
н	-3./54500	-2.904961	0.072870
H	-3.463839	2.279400	-0./8//66
H	3.836533	-2./39181	-0.135404
H	-0.894341	-2.156908	-0.733643
H	-1.061236	-2.100439	1.014110
H	1./84618	2.203458	-0.331297
H	2.405329	1.121024	-1.568032
H	5.324930	-1.299098	1.050872
Н	6.026446	-1.494398	-0.554725
Н	4.961389	0.734469	-1.226566
Н	6.08/0/1	0.900598	0.111366
Н	3.946965	2.094911	0.636423
Η	4.304120	0.802353	1.769779
Η	2.942237	-2.256167	-2.406938
Η	4.711140	-2.310562	-2.431272
Η	3.874153	-0.748764	-2.484688
Η	-1.053438	1.669789	-2.812360
Η	0.144883	2.821505	-2.181180
Η	-1.574593	3.117305	-1.924068
Η	-1.500458	3.171707	0.558421
Η	0.235882	3.269321	0.326232
Η	-0.447437	2.093498	1.472714
Η	1.444656	-2.556672	-0.547721
Н	-0.080039	-0.239207	2.282925

Product 2

01			
С	-0.381757	0.587523	-0.269892
С	0.910257	1.402316	-0.332063
С	2.114402	0.524834	-0.192899
С	2.082911	-0.839536	-0.318982
С	0.872707	-1.705778	-0.540796
Ċ	-0.282576	-0.768160	-1.013723
C	-1.687420	-1.411144	-0.948900
Ĉ	-2.630549	-0.608651	-0.022575
Č	-1.890201	-0.406406	1.314777
N	-0.768953	0 324822	1 1 1 8 5 8 3
C	4 236272	-0.305166	0.062241
č	5 619507	-0 314536	0.273998
č	6 244631	0.909282	0 474342
č	5 514231	2 116669	0.463631
c	4 142337	2.110009	0.252047
c	3 /82532	0.896623	0.048450
N	3 360322	-1 342775	-0 162523
C	-1 542421	1 302832	-0.874258
N	2 833050	0.705137	-0.874238
C	-2.033939	1 571450	-0.080333
C	5 160901	0.814156	-0.039239
C	4 006074	0.014130	0.105517
C	-4.990974	-0.492171	0.807848
C O	-3.940331	-1.330447	0.170217
C	-2.242038	-0.840482	2.409038
C	-4.092854	2.803937	-0.92/8/8
C	1.133034	-2./21//1	-1.00/8/9
U U	0.000818	-2.495300	0./5968/
H	-0.051847	-0.515636	-2.05/420
H	-0.116/45	0.458441	1.885235
н	6.181462	-1.244091	0.281864
H	/.31/309	0.937251	0.642274
н	0.03/43/	3.054990	0.023122
H	3.586431	3.055028	0.244148
н	3.619403	-2.318856	-0.208133
н	-3.50/646	1.9014/6	0.942872
Н	0.934495	1.9368//	-1.291663
Н	0.883494	2.1/6181	0.446674
Н	-1.648/91	-2.44/83/	-0.602570
Н	-2.15/665	-1.420540	-1.93/256
H	-1.545491	2.363562	-0.362749
Н	-1.352468	1.572708	-1.940125
Н	-5.886314	1.4/0845	0.6103/8
Н	-5.570874	0.605167	-0.898827
Н	-5.948193	-1.032824	0.922302
Н	-4.6/8910	-0.284849	1.896232
Н	-4.311860	-1.643894	-0.822771
Н	-3.747137	-2.267349	0.734753
H	-3.212368	3.446172	-1.022205
Н	-4.895793	3.408855	-0.491937
Н	-4.400442	2.494227	-1.932604
Н	1.454075	-2.218635	-2.585901
Н	0.219954	-3.286787	-1.884692
Н	1.904066	-3.446654	-1.383908
Н	1.473029	-3.116935	0.989698
Η	-0.252949	-3.171816	0.655556
Η	0.424357	-1.842479	1.616631

Substrate **3-ox**_{a-syn}

С	-0.614527	0.237283	-1.304445
С	-3.217008	-0.253574	-0.458409
С	-2.978838	0.726914	-1.541163
Ν	-1.658551	0.891558	-1.885780
С	-0.886961	-0.659306	-0.322073
N	-2.195363	-0.890097	0.065747
C	-2.365886	-1.912736	1.164263
č	-3 784975	-2.464666	1 153509
\tilde{c}	-4 811423	-1 338659	1 181907
\hat{c}	-4 638575	-0.471343	-0.059568
õ	-3 887908	1 336600	-2.082350
č	-3.887908	1.330099	2.082330
с u	-1.940032	-1.271985	0.807808
и П	-1.003743	2.700312	0.897808
п П	-3.928007	-3.078388	0.230319
11 11	-3.889039	-3.122043	2.020187
п u	-4.093390	1 745200	2.063931
п u	-3.824900	-1.743209	1.199333
п	-3.097746	0.025050	0.031144
п	-3.131/03	-0.923030	-0.951481
H	-0.896494	-0.908933	2.40/095
H	-2.073013	-2.008070	3.283109
H	-2.55/20/	-0.395094	2./159/9
H	-0.114559	-1.220924	0.184957
H	-1.4/4402	1.569002	-2.624861
N	3.190/3/	0.394549	0.996384
C	-0.324337	3.525240	-0.284/8/
C	0.944816	3.12/335	-0.196417
C	0.774139	0.521685	-1.813852
C	1.846/40	0.279698	-0./91438
C	2.708105	-0.8/423/	-0./8/39/
C	2.848538	-1.990928	-1.631914
C	3.80/8/8	-2.944122	-1.325844
C	4.636075	-2.808186	-0.190005
C	4.516985	-1.719957	0.661481
C	3.542452	-0.764526	0.348958
C	2.168483	1.031204	0.323811
С	1.552212	2.289958	0.910573
С	0.516726	1.893547	1.975101
С	2.642873	3.159973	1.572983
Н	3.634270	0.737199	1.837530
H	-1.079791	3.236798	0.441791
Н	-0.651531	4.159110	-1.104443
Н	1.656447	3.451364	-0.958829
Н	0.795104	1.545446	-2.196234
Н	0.942887	-0.131022	-2.680030
Η	2.216281	-2.110437	-2.508389
Н	3.926633	-3.811872	-1.967843
Η	5.378756	-3.571624	0.021646
Η	5.149919	-1.613232	1.537406
Η	0.981737	1.259743	2.736813
Η	0.117038	2.785945	2.468625
Η	-0.318405	1.340682	1.533291
Η	3.075102	2.671355	2.452745
Η	3.448454	3.392213	0.869170
Η	2.196646	4.099566	1.911761

Substrate **3-ox**_{β-syn}

С	-3.020343	0.515190	1.665661
С	1.818988	0.333673	0.781782
С	2.145266	1.121119	-0.306943
С	2.698727	-0.807066	0.757123
С	-0.645704	0.219419	1.293792
С	3.548691	-0.651990	-0.361875
С	-0.898623	-0.510131	0.178540
С	-0.597328	3.328300	0.155476
С	-2.345669	-1.635659	-1.449330
С	1.526904	2.384134	-0.882527
С	0.715244	3.097322	0.179181
С	0.737114	0.524532	1.804476
С	-4.710200	-0.749044	-1.534289
С	-1.551277	-2.924670	-1.249958
С	-3.805439	-1.950690	-1.751510
С	-4.643802	-0.365016	-0.063899
С	0.678041	2.010241	-2.108760
0	-3.946928	0.956714	2.327197
Ν	-1.703649	0.685861	2.014589
Ν	-2.203585	-0.756096	-0.219087
Ν	3.189932	0.520932	-0.979738
С	4.540901	-1.584478	-0.687345
С	-3.236308	-0.250693	0.416143
С	3.819284	-2.876891	1.251563
С	2.842126	-1.945990	1.570545
С	2.638781	3.362910	-1.320114
С	4.662272	-2.696079	0.133258
Н	-3.844812	-2.302598	-2.786019
Н	-5.127195	0.593780	0.147084
Н	1.293653	1.501927	-2.857141
Н	0.257964	2.912182	-2.566436
Н	-0.146702	1.343240	-1.839316
Н	3.631331	0.887881	-1.812070
Н	5.185692	-1.443374	-1.549633
Н	3.940348	-3.761602	1.869543
н	2.198502	-2.100253	2.433169
Н	5.418669	-3.442731	-0.089480
Н	-1.238904	2.976785	-0.648980
Н	-1.078365	3.879986	0.958550
Н	0.729724	1.539364	2.212000
Н	0.923082	-0.142429	2.656457
Н	-1.912991	-1.031148	-2.253344
н	1.303814	3.478190	1.016401
н	2.183810	4.293712	-1.672344
Н	3.236719	2.959462	-2.143760
н	3.308646	3.596690	-0.486593
Н	-5.740693	-0.985795	-1.807645
н	-4.386285	0.092754	-2.157224
н	-0.471020	-2.776828	-1.227008
Н	-1.776478	-3.583388	-2.092842
Н	-1.866535	-3.425445	-0.329770
Н	-4.134084	-2.780766	-1.113019
Н	-5.158031	-1.106257	0.564017
Н	-1.533882	1.225579	2.862432
Н	-0.105338	-0.898166	-0.440890

Substrate 3-0x_{β-anti}

-			
С	-0.529385	-0.917047	-0.383022
С	0.759043	-1.163204	-1.122443
С	1.942433	-0.392719	-0.599941
С	2.126387	0.968052	-0.409759
С	1.249657	2.198865	-0.601046
С	-0.026841	1.867173	-1.345980
С	-1.262977	2.214915	-0.982314
С	-2.844028	-0.186157	0.943839
С	-1.544711	-0.075421	1.640641
Ν	-0.464218	-0.492313	0.904577
С	4.055623	-0.032882	0.228250
С	5.348542	-0.310305	0.688942
С	5.738781	-1.640382	0.719598
С	4.866429	-2.669118	0.301683
С	3.588524	-2.384819	-0.154674
С	3.165075	-1.043689	-0.194993
N	3.399716	1.163758	0.085140
C	-1.752159	-1.079527	-0.950953
Ň	-2.892852	-0.731444	-0.252953
C	-4.033750	0.378602	1.644477
õ	-1.444202	0.361788	2.777614
C	2.007705	3.217335	-1.488435
Č	0.964351	2.838720	0.768208
Ĥ	0.116915	1.365376	-2.304794
н	6.015406	0.485085	1.008244
Н	6.734079	-1.896061	1.070547
н	5.205801	-3.699908	0.338652
н	2.932575	-3.190121	-0.475096
Н	3.793623	2.062080	0.330101
н	0.572821	-0.978002	-2.185030
Н	0.984242	-2.233159	-1.040163
н	-1.477977	2.740941	-0.055278
н	-2.111517	1.989370	-1.623546
Н	-3.694017	1.281442	2.161210
н	2.264536	2.776253	-2.456511
Н	1.372167	4.091164	-1.659801
Н	2.930416	3.562985	-1.012058
н	1.896732	3.069757	1.291159
Н	0.414918	3.776696	0.641383
Н	0.372232	2.177372	1.410802
С	-4.196735	-0.974058	-0.992022
Ĥ	-4.131159	-0.310375	-1.860611
С	-5.176905	0.647958	0.677767
Ĥ	-6.076707	0.918547	1.234384
н	-4.923454	1.491218	0.024122
С	-5.408302	-0.610629	-0.142285
Ĥ	-6.251762	-0.495362	-0.828612
Н	-5.645461	-1.447634	0.526861
Н	-4.336527	-0.325248	2.432478
C	-4.263478	-2.435708	-1.428427
H	-4.149263	-3.094430	-0.562537
Н	-5.252326	-2.606928	-1.862040
Н	-3.520822	-2.701501	-2.181501
Н	0.457706	-0.376100	1.329132
Н	-1.877733	-1.403491	-1.972439

TS-ox_{α-syn}

11			
N	1 360779	2 373123	-0 379573
C	2 676280	2.008306	-0.481812
õ	3 535686	2.000300	-0.401012
c	2 937210	0.645962	0.044154
N	2.937210	1 22/110	0.044134
C	-2.767490	-1.554119	-0.710377
C N	2.012997	-0.2/501/	-1.0//385
N	2.114208	0.199/33	1.038982
C	0.644108	-0.041813	-1.664538
C	0.404605	1.503277	0.091013
C	-1.039200	1.876291	-0.079849
С	-1.927965	0.673581	-0.213294
С	-3.289236	0.627946	0.252265
С	-4.123157	1.547637	0.912630
С	-5.419219	1.166843	1.226276
С	-5.903093	-0.116640	0.891514
С	-5.102443	-1.041937	0.238141
С	-3.795585	-0.650166	-0.076029
С	-1.655690	-0.546225	-0.796849
С	-0.419301	-1.109504	-1.471508
С	0.089889	-2.331695	-0.694249
С	-0.800573	-1.556569	-2.907753
С	0.812659	0.523681	0.984825
Н	-2.864917	-2.285629	-1.043537
Н	2.391100	-1.266171	-1.440819
Н	2.638355	0.308230	-2.347866
Н	0.291938	0.825426	-2.224102
Н	-1.129211	2.537367	-0.950483
н	-1 350089	2 469554	0 789424
н	-3 763439	2.409554	1 172274
н	-6.076117	1 865000	1.736351
н	-6 923287	-0.38/389	1 1/00/7
н	-5.723287	-2 029337	-0.021060
ц	0 707003	3 060378	-0.021000
и П	-0.707993	-3.009378	1 226228
п	0.909559	-2.824433	-1.220228
п	0.452011	-2.055509	0.500049
н	-1.548952	-2.354/04	-2.881997
H	-1.209063	-0.720037	-3.482366
Н	0.085056	-1.9401/8	-3.422647
C	4.360847	0.184/88	0.069331
Н	4.838347	0.49/10/	-0.861742
С	2.687597	-0.785664	2.013778
Н	3.428651	-0.205540	2.575545
С	4.503934	-1.328021	0.305991
Η	4.487515	-1.852566	-0.653399
Η	5.488012	-1.509944	0.743851
С	3.399361	-1.886241	1.224328
Н	2.648014	-2.437662	0.648698
Н	3.817214	-2.592083	1.946866
Н	4.862947	0.747164	0.869664
С	1.650594	-1.320391	2.984165
Н	1.151433	-0.520000	3.536475
Н	0.900348	-1.945260	2.489902
Н	2.174074	-1.947463	3.709672
Н	1.074752	3.221698	-0.862344
Н	0.100423	-0.011111	1.598729

TS-ox_{β-syn}

11			
С	2.645427	1.101914	1.666884
Ĉ	-1.963821	0.382474	0.549866
Č	-1 733512	-0.945709	0 254115
č	-3 313166	0.679168	0.145300
c	0.303606	1 1/18706	0.145500
c	3 854528	0.500845	0.303786
C	-3.834328	-0.309843	-0.393780
C	0.622233	1 209121	1 1 2 4 0 4 0
C	1.910032	-1.596121	1.164940
C	2.331003	0.515054	-2.070909
C	-0.524499	-1.843611	0.435553
C	0.542311	-1.162/36	1.2/3384
C	-1.051663	1.385247	1.19//16
C	4.586218	-0.762844	-1.102739
С	2.028630	1.418501	-3.001492
С	4.041568	0.153846	-2.187576
С	4.338062	-0.104217	0.245202
С	-0.022450	-2.325479	-0.933825
0	3.498085	1.298234	2.518370
Ν	1.345522	1.511949	1.789669
Ν	2.119953	0.613235	-0.656877
Ν	-2.878123	-1.472097	-0.312742
С	-5.161037	-0.580648	-0.891658
С	2.907644	0.322066	0.424602
С	-5.405905	1.774035	-0.299626
С	-4.110551	1.836587	0.191388
С	-0.942500	-3.084062	1.270921
С	-5.925254	0.575570	-0.835936
Н	4.246686	-0.242134	-3.186095
Н	4.602474	-0.753669	1.084590
Н	-0.808412	-2.886105	-1.447574
Н	0.835659	-2.995697	-0.829851
Н	0.255618	-1.489960	-1.581774
Н	-2.982988	-2.420359	-0.647028
н	-5.558312	-1.504022	-1.302508
н	-6.034684	2.658877	-0.271621
н	-3 724104	2 764472	0.605333
н	-6 944026	0 558486	-1 211501
н	2 296411	-2 053680	0.408612
н	2.290411	-1 376022	2 100480
н	-1 167150	1 381898	2.100400
н	-1.320878	2 305615	0.864474
н	2 05/036	-0.640001	-2 328118
и П	0.173050	0.815274	2 230144
и П	0.175050	2 722605	1 424046
п	-0.073830	-3.733003	0.750286
п	-1./10912	-3.003330	0.750560
п	-1.33/003	-2./031//	2.240100
п	3.038347	-0.920884	-1.255529
п	4.098430	-1./4423/	-1.13390/
H	0.940336	1.403943	-3.009218
H	2.4101/0	1.21805/	-4.000100
H	2.409387	2.390208	-2.6/3221
H	4.519944	1.139/96	-2.120844
H	4.962174	0./93414	0.348182
H	1.061809	1.900217	2.686145
н	0.11/488	0.834927	-1.240957

TS-oxβ-anti

11 C -0.391625 -1.029075 0.217560 0.946037 -1.605762 -0.119853 С 2.034481 -0.577342 -0.179927 С С 1.942621 0.773127 -0.427723 C 0.774026 1.708542 -0.680006 C -0.510452 1.001257 -1.102571 C -1.768704 1.482873 -0.737014 C -2.706932 0.262638 0.623029 C -1.666691 0.348428 1.693633 N -0.540926 -0.372500 1.420601 С 4.139797 0.327149 -0.123179 С 5.532197 0.395381 0.006597 С 6.203010 -0.788138 0.278973 С 5.510596 -2.010558 0.418824 С 4.131056 -2.070344 0.288078 С 3.427187 -0.884710 0.014684 N 3.218058 1.309306 -0.389922 C -1.537185 -1.436071 -0.435662 N -2.726959 -0.897058 -0.115532 C -3.996563 0.958184 0.972127 O -1.797883 1.048889 2.686244 С 1.110168 2.592924 -1.914780 С 0.594407 2.639434 0.536547 Н -0.425462 0.427279 -2.022827 Н 6.063766 1.336155 -0.101992 Η 7.283589 -0.774104 0.386155 6.070804 -2.916324 0.630611 Н Н 3.608149 -3.017632 0.393262 Н 3.448297 2.284137 -0.523171 Н 0.857266 -2.151095 -1.065941 H 1.195477 -2.352208 0.646991 H -1.829751 2.379173 -0.125800 H -2.576995 1.363374 -1.453926 H -3.773960 2.013601 1.147517 H 1.356109 1.978988 -2.785862 Н 0.253747 3.227685 -2.158532 Н 1.957345 3.252305 -1.702296 H 1.561322 3.065960 0.816903 Н -0.069333 3.474793 0.295505 Н 0.197214 2.121857 1.413646 C -3.923059 -1.316622 -0.930911 Н -3.748928 -0.902035 -1.932688 C -5.079107 0.756822 -0.077031 Н -6.023404 1.161113 0.296019 H -4.838850 1.300105 -0.998890 C -5.208164 -0.732499 -0.358676 H -6.000781 -0.931312 -1.085483 H -5.469057 -1.267129 0.564052 H -4.328471 0.553159 1.937553 C -4.002372 -2.838643 -0.994481 H -4.036772 -3.258087 0.015391 Н -4.926624 -3.107400 -1.512596 Н -3.177733 -3.296625 -1.542964 Н 0.265666 -0.248365 2.028991 H -1.489160 -2.128691 -1.265037

NADP⁺ Model

2.790063	-1.392824	0.158797
1.705279	-0.391857	0.053557
0.421878	-0.781114	0.056584
-0.603546	0.149820	-0.025245
-0.278816	1.499882	-0.133451
1.061863	1.881738	-0.145606
2.039401	0.913533	-0.045207
-2.007053	-0.404586	-0.034389
-2.985189	0.434961	0.347536
-2.199639	-1.560682	-0.393977
0.219375	-1.843532	0.123012
-1.050201	2.257244	-0.230332
1.351904	2.921105	-0.235254
3.099418	1.138415	-0.043286
-3.933108	0.079769	0.380652
-2.807902	1.316283	0.809492
2.346753	-2.383747	0.217120
3.420956	-1.315322	-0.725881
3.366557	-1.185181	1.059742
	2.790063 1.705279 0.421878 -0.603546 -0.278816 1.061863 2.039401 -2.007053 -2.985189 -2.199639 0.219375 -1.050201 1.351904 3.099418 -3.933108 -2.807902 2.346753 3.420956 3.366557	2.790063 -1.392824 1.705279 -0.391857 0.421878 -0.781114 -0.603546 0.149820 -0.278816 1.499882 1.061863 1.881738 2.039401 0.913533 -2.007053 -0.404586 -2.985189 0.434961 -2.199639 -1.560682 0.219375 -1.843532 -1.050201 2.257244 1.351904 2.921105 3.099418 1.138415 -3.933108 0.079769 -2.807902 1.316283 2.346753 -2.383747 3.420956 -1.315322 3.366557 -1.185181

NADPH Model

$0\ 1$			
С	2.804645	-1.420812	0.046659
Ν	1.737492	-0.438670	-0.066344
С	0.424910	-0.795876	-0.034847
С	-0.601348	0.090465	-0.008902
С	-0.368709	1.590423	-0.004480
С	1.113469	1.880448	0.020453
С	2.048215	0.923566	-0.010146
С	-1.961838	-0.473088	0.003684
Ν	-2.977515	0.430043	0.022826
0	-2.204118	-1.690726	0.003519
Н	0.218394	-1.861939	-0.037528
Η	-0.823865	2.065153	-0.888780
Н	1.436491	2.915861	0.056101
Η	3.110202	1.146716	0.002971
Η	-3.929717	0.090575	0.010576
Н	-2.832420	1.428218	-0.012397
Η	2.405103	-2.408712	-0.185188
Η	3.599379	-1.188959	-0.666868
Η	3.225411	-1.434775	1.058130
Н	-0.851952	2.063304	0.864925

Substrate 4

Ν	-1.653566	-1.443146	-1.806768
С	-2.974416	-1.335511	-1.516315
0	-3.863219	-1.895274	-2.195457
С	-3.379938	-0.528575	-0.354653
Ν	3.224166	0.526881	0.844709
С	3.680073	-2.739551	-1.185734
Ν	-2.452993	0.129521	0.328734
С	3.219104	-2.958944	0.045106
С	-0.763580	-0.798956	-1.042950
С	0.696335	-0.980887	-1.412691
Ċ	1.664462	-0.163215	-0.613394
Ĉ	1.867801	1.249866	-0.786884
Ĉ	1.295475	2.214793	-1.635757
č	1 721676	3 531002	-1 535107
\tilde{c}	2 711499	3 906894	-0 599910
c	3 290239	2 976094	0.251309
c	2 854098	1 649673	0.145274
c	2.004070	-0 567940	0.145274
C	2.500527	1 022622	1.022258
C	2.000444	-1.955052	1.032236
C	3.062090	-1.880003	2.200713
C	1.331/00	-2.423128	1.366064
С П	-1.120010	-0.005219	0.021923
н	3.913109	0.509447	1.585500
Н	3.677444	-1./4//03	-1.632196
H	4.068947	-3.555903	-1./8/388
Н	3.239554	-3.9/4623	0.445496
н	0./8/614	-0.726848	-2.4///19
Н	0.932398	-2.048263	-1.344642
Н	0.528515	1.933406	-2.354220
Н	1.289436	4.288487	-2.182471
Н	3.024376	4.945443	-0.544784
Н	4.049535	3.263785	0.972719
Н	3.324518	-1.212678	2.998926
Н	3.788677	-2.879586	2.639224
Η	4.676555	-1.556026	1.880236
Η	0.951811	-1.714061	2.331314
Η	0.580146	-2.528729	0.801248
Н	1.458307	-3.397962	2.072151
С	-4.826315	-0.519207	0.025387
Н	-5.371037	0.117244	-0.686448
С	-2.774861	1.053792	1.480893
Н	-2.375200	0.539455	2.361469
С	-5.046279	-0.040126	1.452257
Н	-6.112736	0.110556	1.638453
Н	-4.690775	-0.796087	2.163336
С	-4.276837	1.257081	1.639300
Н	-4.620604	1.997977	0.904986
Н	-4.439055	1.686134	2.632424
Н	-5.200256	-1.534173	-0.139497
C	-2.076443	2.398421	1.284264
Ĥ	-0.990263	2.345173	1.375399
H	-2.331534	2.816475	0.305239
Н	-2.440568	3.083123	2.055296
Н	-0.414112	0.517378	0.641646

Substrate 9

Ν	-2.174768	-0.794634	-1.699387
С	-3.479053	-0.638782	-1.330516
0	-4.439116	-0.993530	-2.048699
С	-3.723065	-0.027350	-0.036473
Ν	3.039611	0.251152	0.841516
С	3.014969	-2.664727	-1.679730
N	-2.701278	0.365695	0.703932
C	2 600086	-3.036108	-0.469125
č	-1 185127	-0 376414	-0.902387
\hat{c}	0 224019	-0.609766	-1 413295
c	1 320114	-0.031563	-0 571604
c	1.683556	1 359762	-0 557268
c	1 188548	2 498558	-1 218360
c	1 782175	3 727244	-0.969221
c	2 864795	3 8//303	-0.069461
c	2.004793	2 7 2 7 0 2 0	0.507211
C	2 767316	2.737939	0.397211
C	2.707310	0.677275	0.341173
C	2.109203	-0.077373	0.302921
C	2.233443	-2.136039	1 706103
C	0.866458	-2.373192	1.790103
C	1 406805	-2.378783	0.227607
п	-1.400803	0.223980	1.515901
п	3.703343	0.040327	1.515691
H H	3.093912	-1.01//9/	-1.904210
п	3.262263	-3.403780	-2.427402
н	2.554215	-4.100567	-0.234001
п	0.209047	-0.182/32	-2.424270
н	0.358505	-1.089014	-1.544/50
н	0.352354	2.4108/1	-1.909320
H	1.411550	4.616405	-1.4/0899
Н	3.308397	4.820259	0.104957
H	4.203333	2.826/86	1.290196
Н	3.053937	-1.807845	2.704398
Н	3.310007	-3.434443	2.061982
Н	4.296405	-2.103923	1.452821
Н	0.603268	-1.966991	2.135930
Н	0.067084	-2.483650	0.526833
Н	0.914881	-3.626859	1.582310
Н	-0.636492	0.575763	1.000905
С	-3.142864	1.028586	1.957634
С	-4.608184	0.593662	2.071577
С	-5.028695	0.279279	0.621431
Η	-3.023786	2.105445	1.811898
Η	-2.505167	0.700021	2.778495
Η	-5.220880	1.369098	2.531872
Η	-4.676883	-0.310205	2.681887
Н	-5.723034	-0.560388	0.541614
Η	-5.496351	1.139855	0.126150

Substrate 9-red

Ν	-2.214608	-0.574435	-1.688337
С	-3.508914	-0.646115	-1.272715
0	-4.436927	-0.943849	-2.019499
С	-3.670206	-0.378290	0.211961
Ν	3.113313	0.158812	0.850912
С	2.938336	-2.739603	-1.666171
Ν	-2.751139	0.681541	0.606993
С	2.516116	-3.096380	-0.453663
С	-1.128125	-0.209988	-0.853350
С	0.238801	-0.559956	-1.379389
С	1.365474	-0.034940	-0.541591
С	1.802898	1.334712	-0.536295
С	1.367493	2.495596	-1.200769
С	2.033020	3.689896	-0.966833
С	3.128776	3.751615	-0.077151
Ċ	3.578017	2.622377	0.592482
Ċ	2.902903	1.419841	0.349195
Ċ	2.189019	-0.723723	0.323971
Ĉ	2.188261	-2.186676	0.719048
č	3.235994	-2.470679	1.813151
Ĉ	0.804209	-2.570184	1.284287
č	-1.413681	0.426002	0.294738
н	3.831243	-0.082059	1.519441
Н	3.054870	-1.696015	-1.950155
н	3.174255	-3.489381	-2.415730
н	2.412208	-4 157999	-0 219905
н	0.334270	-0.150414	-2.397767
н	0.318042	-1 648403	-1 492803
Н	0.519640	2,456076	-1.881125
Н	1.708927	4.595390	-1.471621
н	3 628523	4 701893	0.086411
н	4 420245	2.667159	1 277000
н	3 025763	-1 893321	2,720707
н	3.203368	-3.531248	2.080517
н	4 252311	-2 250299	1 469529
н	0 576106	-1 960329	2 165044
н	0.006313	-2.420104	0.552401
н	0.804020	-3 624383	1 583279
н	-3 406578	-1 321845	0.736951
н	-2.030489	-0.835975	-2.651949
н	-0.639317	0 780754	0.967025
\hat{C}	-3 149632	1.065048	1 955465
\hat{c}	-4 686918	1.009040	1 864110
\hat{c}	-5 032922	0.129805	0.683705
н	-2 718238	2 031600	2 227335
н	-2 810573	0 311144	2.686440
н	-5 044978	2 090485	1 655468
н	-5 139660	0 753189	2 802801
н	-5 683340	-0 694738	0.981367
Н	-5.527975	0.671309	-0.126761
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0,100/	U U / U /

## **Supplementary References**

- 1. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. *Nucleic Acids Res.* **38**, W545-W549 (2010).
- 2. Ding, Y., Greshock, T.J., Miller, K.A., Sherman, D.H. & Williams, R.M. Premalbrancheamide: synthesis, isotopic labeling, biosynthetic incorporation, and detection in cultures of *Malbranchea aurantiaca*. *Org. Lett.* **10**, 4863-4866 (2008).