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S1. OUTPUT ENERGY SPECTRUM FOR DIFFERENT INPUT QEW SHAPES

In this section, we present supplementary plots for Main Text Figs. 2(g) and 2(h). Specifically, we compare the
output quantum electron wavepacket (QEW) energy gain/loss spectrum with and without the effects of quantum
interference as a function of coupling strength G for input QEWs of different shapes (i.e., modulated by different
coupling strengths Gmod).
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Fig. S1. Output QEW spectrum as a function of coupling strength G for different input QEWs shapes. (a,c,e)
show the output spectrum when quantum interference is absent; (b,d,f) show the output spectrum with quantum interference.
We consider input QEWs shaped by a coupling strength (a,b) Gmod = 0.25, (c,d) Gmod = 0.75, and Gmod = 1.

We find that for input QEWs that have been weakly modulated (Gmod = 0.25) prior to interaction, as shown
in Supplementary Figs. S1(a) and (b), the difference between the spectra with quantum interference and without
quantum interference is relatively small. We note that the quantum interference contribution still results in a complete
suppression of the zero-loss peak at G ≈ 1. For input QEWs that have been modulated by stronger coupling strengths
of Gmod = 0.75 (Supplementary Figs. S1(c) and (d)) and Gmod = 1 (Supplementary Figs. S1(e) and (f)), the complete
suppression of the zero-loss peak can be achieved with coupling strengths as low as G ≈ 0.5 and G ≈ 0.2 respectively.
As expected, input QEWs that are more strongly modulated prior to interaction result in larger contributions from
the quantum interference term.
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S2. PINEM QUANTUM INTERFERENCE STRENGTH

Here, we consider spontaneous emission facilitated by a shaped quantum electron wavepacket (QEW). We obtain
the shaped QEW by subjecting an unshaped QEW to a photon-induced near-field electron microscopy (PINEM)
interaction. In a PINEM interaction, an incoming QEW exchanges an integer number of photons with the the
evanescent field of a nanostructure, resulting in the appearance of energy gain/loss peaks separated by the photon
energy in the electron spectrum. In Section S2A, we compute the electron bunching factor for the l-th harmonic of
the modulation frequency ωmod for a Gaussian (unmodulated) QEW modulated via the PINEM process. We then
derive the corresponding contribution of the quantum interference term to the spontaneous emission rate based on
general expressions derived in Section S5. Additionally, we also show in Section S2B that it suffices to consider only
the first harmonic l = 1 of the electron bunching factor.

A. Bunching factor and quantum intereference term for a PINEM-modulated QEW

We consider QEWs with wavenumber kz components tightly-packed about the central longitudinal wavenumber
kz,0 (i.e., |kz − kz,0| ≪ kz,0). We assume that the initial QEW (z = 0, t = 0) takes the form of a Gaussian electron
wavepacket:

Ψ(z = 0, t = 0) =
1√
2π

∫
dkzΦ(kz, t = 0), Φ(kz, t = 0) =

eiϕ0

(πσ2
q )

1/4
e−q2/(2σ2

q), (S1)

where q ≡ kz −kz,0 is the deviation from the central wavenumber, σq is its spread about kz,0, and ϕ0 is the inherently
random emission phase. Note that we use wavefunction normalization convention

∫
|Ψ(z, t)|2dz =

∫
|Φ(kz, t)|2dkz = 1.

During propagation, the wavefunction evolves as

Ψ(z, t) =
1√
2π

∫
Φ(kz, t)e

ikzzdkz, (S2)

where the momentum space wavefunction after propagating for a time t is

Φ(kz, t) =
eiϕ0

(πσ2
q )

1/4
e−q2/(2σ2

q)e−iE(q)t/ℏ. (S3)

Consistent with our previous assumption that all kz are close to the central value, we use the relativistic energy
dispersion expanded up to second order in q:

E(q) ≈ γ0mec
2 + v0ℏq +

ℏ2q2

2γ3
0me

. (S4)

Assuming the wavepacket drifts a distance Ls between emission and modulation (corresponding to a drift duration
ts = Ls/v0), Φ(kz, t) becomes

Φ(kz, ts) =
eiϕ0

(πσ2
q )

1/4
e−q2/(2σ2

q)e−iE(q)Ls/(ℏv0). (S5)

After modulation, and assuming that dispersion is negligible during the modulation, the wavefunction becomes
(Ref. [101])

Φ(kz, ts) =
eiϕ0

(πσ2
q )

1/4

+∞∑
N=−∞

eiNϕmodJN (2|gmod|) exp

[
− 1

2σ2
q

(
q −N

ωmod

v0

)2

− iLs

ℏv0
E
(
q −N

ωmod

v0

)]
, (S6)

where JN (·) is the Bessel function of the first kind of order N, and |gmod| is the dimensionless electron-light cou-
pling strength of the modulation stage. The N -th summand describes the momentum deflection as a result of the
absorption/emission of N -photons of angular frequency ωmod. Here, ϕmod is the modulation phase which can be
controlled, for instance, using the laser phase. The wavepacket acquires an additional phase when it drifts a distance
Lp (corresponding to drift duration tp = Lp/v0) between modulation and interaction:

Φ(kz, ts+tp) =
eiϕ0

(πσ2
q )

1/4
exp

[
− iLs

ℏv0
E(q)

]
+∞∑

N=−∞
eiNϕmodJN (2|gmod|) exp

[
− 1

2σ2
q

(
q−N

ωmod

v0

)2

− iLs

ℏv0
E
(
q−N

ωmod

v0

)]
.

(S7)
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We drop the ts+ tp dependence in our notation for compactness since we consider the wavefunction only at this time.
Additionally, as the momentum space wavefunction only depends on q, we change the dependence: Φ(kz) → Φ(q).
We now wish to solve for the l-th harmonic of the bunching factor (c.f. Eq. (S56))

⟨b⟩lωmod/v0
=

∫
Φ̄(q + lωmod/v0)Φ(q)dq, (S8)

where we translated the integration variable: dki = dq. Using Eq. S7, we perform the integration over q, arriving at
(Ref. [101])

⟨b⟩lωmod/v0
=eil[(π/2)+(Lpωmod/v0)−ϕmod]e

−
(

σqLplℏωmod
2v2

0γ3
0m

)2

Jl

[
4|gmod| sin

(
Lp

lℏω2
mod

2v30γ
3
0m

)]
. (S9)

To find the contribution of the interference term to the spontaneous emission rate, we substitute Eq. (S9) into Eq. (S68)
(which we derive in Section S5), yielding

Γap/ep =
τ

ℏ
ev0ωa|d|
ϵ0V ωcav

|ρaeg|
∑
l∈Z+

{
e
−
(

σqLplℏωmod
2v2

0γ3
0m

)2

cos(ξl)Jl

[
4|gmod| sin

(
Lp

lℏω2
mod

2v30γ
3
0m

)]

× sinc

[
(ωcav − ωa)τ

2

]
sinc

[
(β0ωcav − lωmod)τ

2

]
sinc

[
(ωcav − lωmod)τ

2

]}
,

(S10)

where the phase of the l-th term is

ξl =

(
ϕa −

ωcav

c
za −

π

2

)
+ l

(
π

2
+ Lp

ωmod

v0
− ϕmod

)
. (S11)

Here, τ is the interaction time, ϵ0 is the free space permittivity, V is the mode volume, ωcav is the cavity frequency, and
ωa, d, ρ

a
eg = |ρaeg|eiϕa and za are the emission frequency, transition dipole vector, coherence between the excited and

ground states and longitudinal position of the two-level atomic (i.e., bound electron) system. Note that to maximize
the sum over l ̸= 0, the phase-matching condition ξl = 0 should be met, which can be achieved by setting

ϕmod =
π

2
+ Lp

ωmod

v0
,

ωcav

c
za = ϕa −

π

2
. (S12)

Equation (S10) explicitly includes all PINEM parameters that ⟨b⟩lωmod/v0
depend on.

B. Bunching factor for a single dominant harmonic

In this section, we show that the l = 1 term in the sum of Eq. (S10) is dominant, allowing us to drop all other
terms in deriving an analytical approximation for the quantum interference contribution Γap/ep. For the specific
case of PINEM, which we consider here, it follows that we wish to obtain the value(s) of Lp that maximizes J1(·).
Numerically, we find that J1(x) reaches the first maxima at x ≈ 1.8411838, from which we obtain the ideal drift
length as

Lp,ideal ≈
2v30γ

3me

ℏω2
mod

arcsin
(
1.8411838/4|gmod|

)
. (S13)

Using the expression for Lp,ideal, recalling that σq ≪ ωmod/v0 must be satisfied for the treatment of QEW momentum
states as discrete to be valid, and noting that the arcsin(·) term is of the order of unity, we can make the approximation

exp

[
−
(
σqLp,ideallℏωmod

2v20γ
3
0m

)2]
= exp

{
−
[

lσq

ωmod/v0
arcsin

(
1.8411838/4|gmod|

)]2}
≈ 1. (S14)

With this approximation, we obtain

Γap/ep ≈τ

ℏ
ev0ωa|d|
ϵ0V ωcav

|ρaeg| cos(ξ1)J1

[
4|gmod| sin

(
Lp

ℏω2
mod

2v30γ
3
0m

)]

× sinc

[
(ωcav − ωa)τ

2

]
sinc

[
(β0ωcav − ωmod)τ

2

]
sinc

[
(ωcav − ωmod)τ

2

]
.

(S15)
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Importantly, we find that using the expression for the ideal drift length yields the maximum possible bunching factor
magnitude for PINEM:

max

{
J1

[
4|gmod| sin

(
Lp,ideal

ℏω2
mod

2v30γ
3
0m

)]}
≈ 0.58, (S16)

which agrees with the upper limit for bunching factor derived previously (Ref. [15]).
In Fig. S2, we compare the total rate Γ = Γap+Γep+Γap/ep computed using the approximate expression (Eq. (S15))

for Γap/ep with the exact expression Eq. (S10) for various incoming QEW kinetic energies (ωa = ωmod). Here, Γap and
Γep are the bound electron (i.e., atom) and the free electron spontaneous emission rates respectively in the absence
of quantum interference; their expressions are also derived in Section S5. We find that the rates computed using the
approximate expression (bottom panels) are in excellent agreement with the rate computed with the exact expression
(top panels). This indicates that we are justified in considering a single dominant harmonic. We have verified this
for other choices of kinetic energies and phases ξl. The cyan cross in each panel denotes the value of ωa and L where
the absolute value of the figure of merit, |γ| = |Γap/ep/(Γap + Γep)|, reaches its maximum.

Fig. S2. Dominance of the first-order Bessel function term in the modulated electron wavefunction for spon-
taneous emission. The panels show Γ = Γap + Γep + Γap/ep, where Γap/ep is computed using Eq. (S10) (top panels) and
Eq. (S15) (bottom panels), respectively, for various QEW kinetic energies EK. The top panels include all l up to 10: We see
excellent agreement between the top panels and the bottom panels, which consider only l = 1, indicating the dominance of
the l = 1 term. In all cases, we consider an incoming QEW modulated with a coupling strength |gmod| = 1 and frequency
ωmod = ωa, with the corresponding ideal drift length Lp,ideal given by Eq. (S13). The cyan cross in each panel denotes the

ordered pair (ωcav, L) corresponding to where the absolute value of the figure of merit, |γ| = |Γap/ep/(Γap+Γep)|, is maximized.
The excited and ground states of the bound electron system (Sn-N vacancy) are equally populated initially, although the
excellent agreement between Eqs. (S10) and (S15) continues to hold for other initial bound electron states. The phases ξl for
all cases were chosen according to the optimal condition Eq. (S12), but we have verified that the excellent agreement continues
to hold for other choices of ξl.
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S3. OPTIMAL INTERACTION LENGTHS FOR OTHER DIPOLE MOMENTS

In this section, we plot the optimal interaction length Lopt for maximizing the quantum interference contribution
as a function of the atomic (i.e., bound electron) emission frequency ωa and QEW kinetic energy for transition dipole
moment magnitudes |d| = 10−29 Cm (Fig. S3(a)) and 10−30 Cm (Fig. S3(b)). We find that dipole moments which
are smaller by an order of magnitude require Lopt that are larger by about an order of magnitude. However, note that
cavity dimensions ranging from ∼ 100 nm to ∼ 1 mm are still experimentally feasible. In addition, the dependence
of the Lopt on ωa and EK remain qualitatively unchanged for all |d|. As |d| for numerous two-level bound electron
systems (e.g., quantum dots, atoms, molecules, ions, superconducting qubits, and crystal defects) are typically of
the order of 10−29 Cm to 10−30 Cm, our results show that significant spontaneous emission modulation rates can be
achieved for a wide variety of emitters over practical interaction lengths.

Fig. S3. Optimal interaction length Lopt corresponding to maximum spontaneous emission modulation strength
|γmax| as a function of emission angular frequency ωa and QEW kinetic energy EK. Here, we plot Lopt for transition
dipole moments of magnitudes (a) |d| = 10−29 Cm and (b) |d| = 10−30 Cm. Although we find that larger |d| requires shorter
optimal interaction lengths (by about an order of mangitude), cavity lengths ranging from ∼ 100 nm to ∼ 1 mm are still
experimentally feasible. Additionally, the qualitative dependence of Lopt on ωa and EK persists. Since many emitters have
dipole moments of the order of 10−29 Cm or 10−30 Cm, our results show that strong spontaneous emission rate modulation
can be achieved in a variety of bound electron systems over practical interaction lengths. We use the same parameters as Main
Text Fig. 3(f), where we consider |d| = 4.33× 10−29 Cm.
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S4. APPROXIMATE EXPRESSION FOR THE OPTIMAL INTERACTION LENGTH

In this section, we derive an approximation for the optimal interaction length Lopt where the quantum interference
contribution is maximized. Our estimation of Lopt involves finding the oscillation envelope of the figure of merit

γ = Γap/ep/(Γap + Γep) as a function of interaction length (or time), and taking its maxima. This yields a ballpark
estimate of the exact Lopt. Using our expressions for Γap/ep, Γap and Γep (given by Eq. (S67), which we derive in full
in Section S5), we obtain (resonant case)

γ = 2|ρaeg||⟨b⟩| cos(ξ)
sinc(δβωaτ/2)

4Λ
1−sinc(δβωaτ)

(δβωaτ)2
+ (ρaee/Λ)

, (S17)

where Λ = ev0/(ωa|d|). Noting that the the oscillations of Asinc(Ax) are always contained within the envelope ±1/x,
we find that the envelope function for Eq. (S17) takes the form (without loss of generality, we consider the positve
branch only)

γenv = ± 4Λ

ρaee
|ρaeg||⟨b⟩| cos(ξ)

l2

l3 + ζl − ζ
, (S18)

where ζ = 4Λ2/ρaee and l = δβω0τ is the dimensionless interaction length. Taking the first derivative with respect to
l, and setting it to zero, we get the depressed cubic equation

l3 − ζl + 2ζ = 0. (S19)

Using Cardano’s formula, we find that the real root lopt is

lopt = C +
ζ

3C
, C =

3

√
−ζ + ζ

√
1− ζ

27
. (S20)

We note that the interaction length corresponding to lopt lies within one modulation period λSE = 4πv0/δβωa of the
exact L that maximizes |γ|. Hence, lopt as an excellent ballpark estimate for the optimal interaction length.
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S5. DERIVATION OF SPONTANEOUS EMISSION RATE

In this section, we derive the emission rate for a combined free electron-bound electron-photon system. In Sections
S5A and S5B, we introduce the second-quantized operators and coupling terms respectively. We then derive the
spontaneous emission rate between arbitrary initial and final states in Section S5C. This is followed by the scattering
matrix elements that connect these states up to first-order in perturbation theory in Section S5D. Having obtained
the S-matrix elements, we separately derive the spontaneous emission rates due to the quantum interference term,
the free electron-photon interaction term, and the bound electron-photon interaction term (Sections S5E to S5G)
in the narrow cavity bandwidth limit (Section S5H). In Sections S5F and S5G, we show that our results reduce to
known expressions for the spontaneous emission rate from free electron-photon and bound electron-photon interactions
respectively. Lastly, we define the limits of the weak coupling regime in Section S5 I.

A. Second-quantized operators

Here, we introduce the notation we adopt for the second quantized operators. For the bound electron state |s⟩
(s ∈ {e, g}), the raising and lowering operators, σ̂+ and σ̂− respectively, are defined to act in the following ways:

σ̂+ |g⟩ = |e⟩ , σ̂− |e⟩ = |g⟩ , (S21)

and returns zero otherwise. For a free electron, which we model as a quantum electron wavepacket (QEW), in

momentum eigenstate |k⟩ (understood to be the longitudinal momentum ℏk along propagation direction z), b̂∆k is
the ladder operator that acts as such:

b̂∆k |k⟩ = |k +∆k⟩ , (S22)

where we define a quantum of momentum deflection ∆k such that it can take positive or negative values (i.e., energy
gain or loss). For a photon number state |n⟩, we use the usual definitions of the creation and annihilation operators
(denoted by â† and â respectively):

â |n⟩ =
√
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩ . (S23)

B. Coupling terms

Here, we consider the interaction between a QEW, a single longitudinal EM cavity mode of angular frequency ω,
and a bound electron modelled as a two-level atom (as described in the main text). The bound electron-photon
interaction is described by the Hamiltonian

Ĥap
int = gapσ̂+â+ ḡapσ̂−â

† − ḡapσ̂+â
† − gapσ̂−â, (S24)

where gap is the coupling strength in units of energy. We use an overbar to denote the complex conjugate. The
coupling strength takes the following form for a dipole aligned parallel to the field:

gap(ω) = iωa|d|
√

ℏ
2ϵ0V ω

eiqza , (S25)

where ωa is the angular frequency corresponding to the atomic bandgap energy Ee−Eg, ℏ is the reduced Plank contant,
ϵ0 is the free-space permittivity, V is the mode volume, q = ω/c is the wavenumber, and za is the bound electron
system position.

The interaction between the QEW and the photon, which governs effects like PINEM and electron energy-loss
spectroscopy, is given by the Hamiltonian (Ref. [27])

Ĥep
int = b̂∆k

[
gep(∆k)â+ ḡep(−∆k)â†

]
, (S26)

where the electron-light coupling strength is

gep(∆k) =− iev0
ωL

∫ L/2

−L/2

E0,z(r)e
−i∆kzdz = ev0

√
ℏ

2ϵ0V ω
sinc

[
(q −∆k)L/2

]
. (S27)
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Here, e is the elementary charge, L is the interaction length, v0 is the QEW central velocity, and E0,z(r) =

i
√

ℏω/(2ϵ0V ) exp(iqz) is the mode profile. We use the convention sinc(x) = sin(x)/x.
We note that it is possible to rewrite the electron operators in terms of ladder operators. The purpose of this

paragraph is to clarify that Eq. S26 is consistent with the displacement operator Hamiltonian used in other works
e.g. O. Kfir, et al. (Main Text Ref. [27]). Rewriting Eq. S26 explicitly as a sum over all possible momentum change

∆k and bringing the operator b̂∆k inside:

Ĥep
int =

∑
∆k

[
b̂∆kgep(∆k)â+ b̂∆kḡep(−∆k)â†

]
, (S28)

Let us define the ladder operators operating on the free electron:

b̂† |k⟩ ≡ |k + ω/v0⟩ = b̂ω/v0 |k⟩ (S29)

b̂ |k⟩ ≡ |k − ω/v0⟩ = b̂−ω/v0 |k⟩ (S30)

Let us restrict the electron to only exchange energy with the photon such that the momentum change satisfies
v0∆k = ω. This corresponds to energy conservation when the free electron interacts with a single mode. If we now
apply this restriction in the Hamiltonian expression in Eq. S28 and substitute the new operators defined in Eq. S29
and Eq. S30 we obtain:

Ĥep
int = b̂†gep(ω/v0)â+ b̂ḡep(−ω/v0)â

† (S31)

Dropping the ω/v0 dependence since we’ve fixed it, we obtain the ladder operator form of the Hamiltonian:

Ĥep
int = b̂†gâ+ b̂ḡâ† (S32)

We also observe that the ladder operators commute as:

[b̂†, b̂] = 0 (S33)

Although the interaction Hamiltonian between the QEW and the bound electron – which is the Coulomb interaction
– does not contribute to the spontaneous process at the first order in perturbation theory, we state the corresponding
Hamiltonian here for completeness (Ref. [101]):

Ĥea
int = b̂∆k

[
geaeg(∆k)σ̂+ + geage(∆k)σ̂−

]
, (S34)

where the free electron-bound electron coupling strength is

geaij (∆k) =
e2∆k

2πϵ0L
ei∆kza

[
−K1(|∆k∆r⊥|)r⊥ + iK0(|∆k∆r⊥|)ẑ

]
· lllij . (S35)

Here K0,1(·) is the modified Bessel function of the second kind, r⊥ = (x, y) are the transverse coordinates of the free
electron, ∆r⊥ is the impact parameter that transversally separates the wavepacket from the bound electron, and lllij
is the transition dipole length between bound electron states i and j.

The total interaction Hamiltonian is simply the sum of these terms:

Ĥint = Ĥap
int + Ĥea

int + Ĥep
int. (S36)

C. Spontaneous emission rate

In this section, we compute the scattering matrix elements given the interaction Hamiltonian Eq. (S36). Consider
an initial combined free electron-photon-bound electron state of the form

|initial⟩ =
∑
ki,si

Be
ki
|ki⟩ ⊗ |0⟩ ⊗Ba

si |si⟩ =
∑
ki,si

Be
ki
Ba

si |ki, 0, si⟩ , (S37)

where Be
ki

and Ba
si are the complex amplitudes of finding the initial state containing a free electron at discrete

momentum state |ki⟩ and the bound electron state in |si⟩ (si ∈ {e, g}). As we consider only spontaneous emission,
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the initial photon state is the vacuum state |0⟩. As a result of the interaction described by Eq. (S36), |initial⟩ scatters
into a final state |kf , nf , sf ⟩ with probability

Pnf ,kf ,sf =

∣∣∣∣∣ ∑
ki,si

Be
ki
Ba

siC
nf ,kf ,sf
0,ki,si

∣∣∣∣∣
2

, (S38)

where we have introduced the scattering matrix (S-matrix) element C
nf ,kf ,sf
0,ki,si

= ⟨nf , kf , sf |Ŝ|0, ki, si⟩ and the scat-
tering operator

Ŝ = T̂ exp

{
− i

ℏ

∫ +∞

−∞
Ĥint(t)dt

}
. (S39)

Here, Ĥint(t) = e+iĤ0t/ℏĤinte
−iĤ0t/ℏ is the interaction Hamiltonian in the interaction picture and T̂ denotes time-

ordering. We can expand Pnf ,kf ,sf as

Pnf ,kf ,sf =
∑
ki,si

ρasisiρ
e
kiki

∣∣∣Cnf ,kf ,sf
0,ki,si

∣∣∣2 +∑
si

∑
ki<Ki

2Re

(
ρasisiρ

e
kiKi

C
nf ,kf ,sf
0,ki,si

C̄
nf ,kf ,sf
0,Ki,si

)
+

∑
ki

2Re

(
ρaegρ

e
kiki

C
nf ,kf ,sf
0,ki,e

C̄
nf ,kf ,sf
0,ki,g

)
+
∑

ki<Ki

2Re

(
ρaegρ

e
kiKi

C
nf ,kf ,sf
0,ki,e

C̄
nf ,kf ,sf
0,Ki,g

)
,

(S40)

where Bα
mB̄α

n = ρmn describes the population (m = n) and coherence (m ̸= n) of each system. Here, the superscript
refers to the system of interest: α ∈ {e, a}. Note that in the last 2 terms, we expanded si = e and Si = g for simplicity.
The second and third terms can be neglected since none of the interaction matrix elements (given by Eqs. (S47)-(S51))
are zero. Thus, Eq. (S40) reduces to

Pnf ,kf ,sf =
∑
ki,si

ρasisiρ
e
kiki

∣∣∣Cnf ,kf ,sf
0,ki,si

∣∣∣2︸ ︷︷ ︸
no QI

+2Re

( ∑
ki<Ki

ρaegρ
e
kiKi

C
nf ,kf ,sf
0,ki,e

C̄
nf ,kf ,sf
0,Ki,g

)
︸ ︷︷ ︸

quantum interference terms

.
(S41)

The first term depends only on the population, while the second describes the contribution arising from quantum
interference. We see that non-zero bound electron and QEW coherences, ρaeg and ρeki,Ki

respectively, are required to
observe the effects of quantum interference. Note that this is the same requirement for observing first-order changes
in the QEW gain/loss spectra for FEBERI (Ref. [101]). As a result, the incoming QEW needs to contain multiple
momentum peaks so that ρeki,Ki

̸= 0. Spatio-temporally, this translates to a electron pulse train, whose density
varies periodically along the propagation direction in space and time. Therefore, we see that quantum interference
arises only when the input QEW and bound electron systems are simultaneously in a superposition of eigenstates.
Additionally, note that the eigenstates should be related by a fixed phase relation to ensure nonvanishing contributions
upon statistical averaging. We refer to systems that are in a superposition of eigenstates with fixed phase relations
as shaped wavefunctions.

D. Scattering matrix elements

In this section, we derive the matrix elements C
nf ,kf ,sf
0,ki,si

. To do this, we consider the weak coupling limit and
perturbatively expand the scattering matrix to first order:

Ŝ ≈ I− i

ℏ

∫ +∞

−∞
Ĥint(t)dt = Ŝ(0) + Ŝ(1). (S42)

We define the j-th-order matrix element as

C
nf ,kf ,sf (j)
0,ki,si

= ⟨nf , kf , sf |Ŝ(j)|0, ki, si⟩ , j = 0, 1. (S43)
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Since nf ̸= 0 for spontaneous emission, the zeroth order term always vanishes. We then express C
nf ,kf ,sf
0,ki,si

C̄
nf ,kf ,sf
0,Ki,Si

in
terms of the interaction matrix elements as

C
nf ,kf ,sf
0,ki,si

C̄
nf ,kf ,sf
0,Ki,Si

≈C
nf ,kf ,sf (1)
0,ki,si

C̄
nf ,kf ,sf (1)
0,Ki,Si

=
1

ℏ2
⟨nf , kf , sf |Ĥint|0, ki, si⟩ ⟨0,Ki, Si|Ĥ†

int|nf , kf , sf ⟩

×
∫ +∞

−∞
exp

(
i∆Enf ,kf ,sf

0,ki,si
t/ℏ
)
dt

∫ +∞

−∞
exp

(
− i∆Enf ,kf ,sf

0,Ki,Si
t/ℏ
)
dt,

(S44)

where we have defined ∆Enf ,kf ,sf
0,ki,si

= nfℏω + v0ℏ(kf − ki) ± ℏωa as the difference between the eigenenergies of the

final and initial states. Here, the + (−) branch denotes a bound electron excitation (de-excitation) process. The
interaction Hamiltonian matrix element is

⟨nf , kf , sf |Ĥint|0, ki, si⟩ =geaeg(∆k)δnf ,0δsf ,si+1δkf ,ki+∆k + geage(∆k)δnf ,0δsf ,si−1δkf ,ki+∆k+

ḡep(−∆k)δnf ,1δsf ,siδkf ,ki+∆k + ḡapδnf ,1δsf ,si−1δkf ,ki−
ḡapδnf ,1δsf ,si+1δkf ,ki ,

(S45)

where ∆k = kf − ki, and the Hermitian conjugate is

⟨0,Ki, Si|Ĥ†
int|nf , kf , sf ⟩ =ḡeaeg(∆K)δKi,kf−∆Kδnf ,0δSi,sf−1 + ḡeage(∆K)δKi,kf−∆Kδnf ,0δSi,sf+1+

gep(−∆K)δKi,kf−∆Kδnf ,1δSi,sf + gapδnf ,1δSi,sf+1δKi,kf
−

gapδnf ,1δSi,sf−1δKi,kf
,

(S46)

where ∆K = kf −Ki. We multiply each of the 5 terms in Eq. (S45) by Eq. (S46):

geaeg(∆k)δnf ,0δsf ,si+1δkf ,ki+∆k × ⟨0,Ki, Si|Ĥ†
int|nf , kf , sf ⟩

=geaeg(∆k)ḡeaeg(∆K)δnf ,0δSi,siδsi,gδsf ,eδKi,kf−∆Kδkf ,ki+∆k,
(S47)

geage(∆k)δnf ,0δsf ,si−1δkf ,ki+∆k × ⟨0,Ki, Si|Ĥ†
int|nf , kf , sf ⟩

=geage(∆k)ḡeage(∆K)δnf ,0δSi,siδsi,eδsf ,gδkf ,ki+∆kδKi,kf−∆K ,
(S48)

ḡep(−∆k)δnf ,1δsf ,siδkf ,ki+∆k × ⟨0,Ki, Si|Ĥ†
int|nf , kf , sf ⟩

=ḡep(−∆k)gep(−∆K)δnf ,1δSi,siδsf ,siδkf ,ki+∆kδKi,kf−∆K+

ḡep(−∆k)gapδnf ,1δSi,si+1δsf ,siδsi,gδkf ,ki+∆kδKi,kf
−

ḡep(−∆k)gapδnf ,1δSi,si−1δsf ,siδsi,eδkf ,ki+∆kδKi,kf
,

(S49)

ḡapδnf ,1δsf ,si−1δkf ,ki
× ⟨0,Ki, Si|Ĥ†

int|nf , kf , sf ⟩
=ḡapgep(−∆K)δnf ,1δSi,si−1δsf ,gδkf ,ki

δKi,kf−∆K+

ḡapgapδnf ,1δSi,siδsi,eδsf ,gδkf ,ki
δKi,kf

,

(S50)

− ḡapδnf ,1δsf ,si+1δkf ,ki × ⟨0,Ki, Si|Ĥ†
int|nf , kf , sf ⟩

=− ḡapgep(−∆K)δnf ,1δSi,si+1δsf ,eδkf ,kiδKi,kf−∆K

+ ḡapgapδnf ,1δSi,siδsi,gδsf ,eδkf ,kiδKi,kf
.

(S51)

Here, it is understood that si + 1 refers to excited state “e” if si is the ground state “g”, and si − 1 refers to “g”
if si is “e”. Equations (S47) and (S48) do not contribute to the spontaneous emission process as they contain only
the FEBERI terms geaij . Using these matrix elements, we can compute the transition probabilities to an abitrary final
state |nf , kf , sf ⟩ through Eq. (S41).
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E. Spontaneous emission rate from the quantum interference term

In this section, we derive the spontaneous emission rate arising from the quantum interference term C
nf ,kf ,sf
0,ki,e

C̄
nf ,kf ,sf
0,Ki,g

in Eq. (S41). Because we are interested in a single output photon, we consider only terms proportional to δnf ,1δSi,si−1,
where ki ̸= Ki, of which there are two:

−ḡep(−∆k)gapδnf ,1δsf ,siδsi,eδkf ,ki+∆kδKi,kf

∫ +∞

−∞
exp

(
i∆Enf ,kf ,e

0,ki,e
t/ℏ
)
dt

∫ +∞

−∞
exp

(
− i∆Enf ,kf ,e

0,Ki,g
t/ℏ
)
dt, (S52)

ḡapgep(−∆K)δnf ,1δsf ,gδkf ,ki
δKi,kf−∆K

∫ +∞

−∞
exp

(
i∆Enf ,kf ,g

0,ki,e
t/ℏ
)
dt

∫ +∞

−∞
exp

(
− i∆Enf ,kf ,g

0,Ki,g
t/ℏ
)
dt. (S53)

These are lines 3 and 1 of Eqs. (S49) and (S50) respectively. Note that for finite interaction times between t =
−τ/2 and τ/2, where τ = L/v0 is the time-of-flight of the electron over interaction length L, the integral becomes∫ +τ/2

−τ/2
dt exp(±i∆Et/ℏ) = τsinc(∆Eτ/2ℏ). Equations (S52) and (S53) then reduce to

− ḡep(−∆k)gapδsf ,siδsi,eδkf ,ki+∆kδKi,kf
τ2sinc

[
∆E1,kf ,e

0,ki,e
τ/ℏ

]
sinc

[
∆E1,kf ,e

0,Ki,g
τ/ℏ

]
=− ḡep(ki −Ki)gapδsf ,siδsi,eδKi,ki+∆kδKi,kf

τ2sinc

{
[ω − v0(ki −Ki)]τ

2

}
sinc

[
(ω + ωa)τ

2

]
,

(S54)

and

ḡapgep(−∆K)δsf ,gδkf ,ki
δKi,kf−∆Kτ2sinc

[
∆E1,kf ,g

0,ki,e
τ/ℏ

]
sinc

[
∆E1,kf ,g

0,Ki,g
τ/ℏ

]
=ḡapgep(Ki − ki)δsf ,gδkf ,ki

δKi,kf−∆Kτ2sinc

[
(ω − ωa)τ

2

]
sinc

{
[ω − v0(Ki − ki)]τ

2

}
,

(S55)

respectively. We neglect Eq. S54, since it is not energy conserving at large L, and is significant only for low-energy
QEWs at impractically small L (see SM Section S6). Note that for a QEW modulated at ωmod, we have

∑
ki<Ki

ρekiKi
≈
∑
l∈Z+

⟨b⟩lωmod/v0
, ⟨b⟩lωmod/v0

≡
∫

dkiΦ(ki)Φ̄(ki + lωmod/v0), (S56)

where we have taken the continuous limit in wavenumber, and defined the bunching factor of the l-th harmonic as
⟨b⟩lωmod/v0

. Here, Φ(ki) is the momentum space wavefunction of the incoming QEW, and the approximation follows
from the fact that that the integral is sharply peaked when l ∈ Z, allowing us to consider only Ki separated from ki
by non-vanishing integer multiples of ωmod/v0. Equation (S56) tells us that ρeki,Ki

is related to the bunching factor

⟨b⟩, which in turn describes how the QEW is modulated. For an analytical expression for ⟨b⟩lωmod
/v0 corresponding to

the specific case of an incoming QEW modulated through a photon-induced near-field electron microscopy (PINEM)
process, refer to SM Section S2, Eq. (S9). Defining the rate as Γnf ,kf ,sf = Pnf ,kf ,sf /τ and multiplying the RHS of
Eq. (S55) by the photonic density of states DOS Dph(ω), we sum over all final bound and free electronic states and
integrate over all frequencies to obtain the spontaneous emission rate arising from quantum interference as

Γap/ep =
τ

ℏ2

∫
2Re

{
ρaeg

∑
l∈Z+

ḡap(ω)gep(lωmod/v0)⟨b⟩lωmod/v0
sinc

[
(ω − lωmod)τ

2

]
sinc

[
(ω − ωa)τ

2

]}
Dph(ω)dω.

(S57)
Since ⟨b⟩lωmod/v0

is a generally complex value, this implies that its phase, which depends on parameters such as drift
and dispersion prior to interaction, can be tailored to maximize or minimize quantum interference. Additionally the
phase of the bound electron coherence ρaeg can also result in changes to the interference effect.
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F. Electron-photon interaction emission rate

Here, we compute the spontaneous emission rate arising from the photon-free-electron interaction in the absence of
the bound electron system. From line 1 of Eq. (S49), we obtain

1

ℏ2
ḡep(−∆k)gep(−∆K)δSi,siδsf ,siδkf ,ki+∆kδKi,kf−∆K

1

τ

[
τsinc(∆E1,kf ,sf

0,ki,si
t/ℏ)

]2
=

τ

ℏ2
ḡep(ki − kf )gep(ki − kf )δsf ,siδkf ,ki+∆kδKi,kf−∆Ksinc2

{
[ω − v0(ki − kf )]τ

2

}
=

τ

ℏ2
|gep(ki − kf )|2δsf ,sisinc2

{
[ω − v0(ki − kf )]τ

2

}
.

(S58)

The corresponding emission rate is

Γel
sf ,kf

=
τ

ℏ2
∑
si

ρasisi

∫
ρeki,ki

|gep(ki − kf )|2sinc2
{
[ω − v0(ki − kf )]τ

2

}
dki. (S59)

Noting that
∑

si
ρasisi = 1, multiplying the RHS by the electronic DOS per unit final wavenumber De(kf ) = L/2π =

τv0/2π and Dph(ω), and integrating over kf and ω, we get

Γep =
τ

ℏ2

∫
dω

∫
dkf

∫
dkiρ

e
ki,ki

|gep(ki − kf )|2sinc2
{
[ω − v0(ki − kf )]τ

2

}
De(kf )Dph(ω). (S60)

Since gep and the sinc terms only depend on ∆k = kf − ki, we can change the integral over kf to an integral over ∆k.
Noting that

∫
dkiρ

e
ki,ki

= 1, the expression simplifies to

Γep =
τ

ℏ2

∫
dω

(∫ +∞

−∞
|gep(−∆k)|2sinc2

[
(ω + v0∆k)τ

2

]
d(∆k)

)
De(kf )Dph(ω). (S61)

Expanding gep(∆k) using Eq. (S27) and solving the integral over ∆k using the convolution∫ +∞

−∞
sinc2(x)sinc2(ξ − x)dx =

[
sinc2 ∗ sinc2

]
(ξ) =

4π[1− sinc(ξ)]

ξ2
, (S62)

we find that the free-electron-photon spontaneous emission rate expression simplifies to

Γep =
τ

ℏ2

∫
e2v20ℏ
2ϵ0V ω

4[1− sinc(ωτδβ)]

(ωτδβ)2
Dph(ω)dω, (S63)

where δβ = |1−β0| and β0 = v0/c. Equation (S63) reduces to a previously derived result in the limit of long interaction
times (Ref. [129]).

G. Bound-electron-photon interaction emission rate

The goal of this section is to show that Eq. (S50) reduces the the standard bound electron (i.e., atomic) spontaneous
emission rate in the absence of free electrons. From line 2 of Eq. (S50), we get the bound-electron-light spontaneous
emission term:

1

ℏ2
|gap|2δSi,siδsi,eδsf ,gδkf ,kiδKi,kf

1

τ

[
τsinc

(
∆E1,kf ,sf

0,ki,si
t/ℏ
)]2

=
τ

ℏ2
|gap|2δsi,eδsf ,gδkf ,ki

δKi,kf
sinc2

[
(ω − ωa)τ

2

]
,

(S64)

and integrating over all final states we find that

Γap =
τ

ℏ2
ρaee

∫
|gap(ω)|2sinc2

[
(ω − ωa)τ

2

]
Dph(ω)dω. (S65)

This expression reduces to the well-known spontaneous emission rate derived from Fermi’s Golden rule in the limit
of long times.
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H. Spontaneous emission rates in the narrow spectral width limit

In this section, we simplify the spontaneous emission rate expressions Eqs. (S57), (S61), and (S65) for the case
where the photon density of states Dph(ω) is described by a Cauchy-Lorentz distribution of spectral width ∆ωcav:

Dph(ω) =
2

π∆ωcav

∆ω2
cav

4(ω − ωcav)2 +∆ω2
cav

. (S66)

Additionally, we take the narrow cavity bandwidth limit ∆ωcav → 0, and the density of states reduces to a delta
function: Dph(ω) → δ(ω − ωcav). Integrating over all frequencies ω, and expanding all coupling terms (given by
Eqs. (S25) and (S27)), we obtain the various contributions to the total spontaneous emission rate as

Γap =
τ

ℏ2
ℏω2

a|d|2

2ϵ0V ωcav
ρaeesinc

2

[
(ωcav − ωa)τ

2

]
Γep =

τ

ℏ2
e2v20ℏ

2ϵ0V ωcav

4[1− sinc(ωcavτδβ)]

(ωcavτδβ)2

Γap/ep =
2τ

ℏ2
ev0ℏωa|d|
2ϵ0V ωcav

sinc

[
(ωcav − ωa)τ

2

]
×

Re

{
− iρaege

−iωcav
c za

∑
l∈Z+

⟨b⟩lωmod/v0
sinc

[
(β0ωcav − lωmod)τ

2

]
sinc

[
(ωcav − lωmod)τ

2

]}
.

(S67)

Further expressing the l-th harmonic of the bunching factor and bound electron coherence term in their polar forms

⟨b⟩lωmod/v0
= |⟨b⟩lωmod/v0

|eiΨl
b and ρaeg = |ρaeg|eiϕa , and collecting all phases of the l-th summand into a single term

ξl = ϕa +Ψl
b − ωcavza/c− π/2, we obtain

Γap/ep =
2τ

ℏ2
ev0ℏωa|d|
2ϵ0V ωcav

|ρaeg|
∑
l∈Z+

|⟨b⟩lωmod/v0
| cos(ξl)sinc

[
(ωcav − ωa)τ

2

]
sinc

[
(β0ωcav − lωmod)τ

2

]
sinc

[
(ωcav − lωmod)τ

2

]}
.

(S68)

In the resonant limit ω0 = ωa = ωcav = ωmod – which this study focuses on – the term sinc[(1 − l)ω0τ/2] in Eq.
(S68) is maxmized at l = 1. which justifies considering only that term. Furthermore, we can show that the l = 1 term
dominates even when the resonance condition is not met (see SM Section S2). We thus obtain Γap/ep as

Γap/ep ≈τ

ℏ
ev0ωa|d|
ϵ0V ωcav

|ρaeg||⟨b⟩| cos(ξ)sinc
[
(ωcav − ωa)τ

2

]
sinc

[
(β0ωcav − ωmod)τ

2

]
sinc

[
(ωcav − ωmod)τ

2

]
, (S69)

which is Main Text Eq. (3). We have defined ⟨b⟩ωmod/v0
= ⟨b⟩ and ξl=1 = ξ The emission rates from the bound-

electron-photon and free-electron-photon interactions are computed using the first two lines of Eq. (S67).

I. Weak coupling regime

In this section, we briefly describe how the maximum interaction times were chosen based on the coupling strengths
in the weak coupling limit. For our perturbative expressions to be valid, we impose the following conditions in our
study:

τ

ℏ
|gap(ωa)| < 0.1,

τ

ℏ
|gep(ωmod/v0)| < 0.1, (S70)

where gap and gep are given by Eqs. (S25) and (S27) respectively. The maximum interaction duration we consider
for the main text is the largest τ that satisfies both conditions.
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S6. NEGLECTING NON-ENERGY CONSERVING QUANTUM INTERFERENCE TERM

In this section, we show that the non-energy conserving contribution to the quantum interference term, given by

Γ̃ap/ep =
2τ

ℏ2
ev0ℏωa|d|
2ϵ0V ωcav

sinc

[
(ωcav + ωa)τ

2

]
×

Re

{
− iρaege

iωcav
c za

∑
l∈Z+

⟨b⟩lωmod/v0
sinc

[
(β0ωcav + lωmod)τ

2

]
sinc

[
(ωcav + lωmod)τ

2

]}
,

(S71)

is insignificant for the range of parameters (e.g., QEW kinetic energy, interaction length L) we consider in this work.

Fig. S4. Insignificant contribution of the non-energy conservation (non-COE) term Γ̃ap/ep to the spontaneous

emission rate modulation strength γ. The panels compare γ = (Γap/ep + Γ̃ap/ep)/(Γap + Γep) (red curves) with γ =

Γap/ep/(Γap + Γep) (blue curves) for various QEW kinetic energies. We see excellent agreement between both curves at longer

interaction lengths. The contribution due to Γ̃ap/ep is only significant for less energetic electrons (≈ 1 keV), and even then,
only for extremely short L of the order of ∼ 1 nm, which correspond to impractictically small cavity lengths. For higher QEW
kinetic energies, the change in γ as a result of Γ̃ap/ep at small L remains at least an order of magnitude smaller than the peak
amplitude of γ (≈ 0.41), which is reached at much larger L. We consider the same QEW parameters as Fig. S2, and include
all l from −10 to 10.

In Fig. S4, we compare γ = (Γap/ep + Γ̃ap/ep)/(Γap + Γep) (red curves) with γ = Γap/ep/(Γap + Γep) (blue curves).
We compare the figure of merits with and without the non-energy conserving term respectively – as a function of
interaction length L for various QEW kinetic energies at ωa = ωcav = ωmod. We see that the non-COE (conservation
of energy) term only contributes significantly to γ for less energetic electrons (≈ 1 keV to 2 keV) and impractically

short cavity lengths (of the order of L ∼ 1 nm). For more energetic QEWs, the contribution of Γ̃ap/ep to γ at short
times is insignificant (by at least an order of magnitude) as compared to the peak amplitude of γ, which is reached

at a large-enough L such that Γ̃ap/ep ≈ 0. Hence, we are justified in neglecting the non-COE term in computing the
spontaneous emission modulation strengths. We have verified that our conclusions hold for other choices of parameters
that fall within the regime of interest of our work.
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S7. QUANTUM INTERFERENCE BETWEEN DISTINGUISHABLE PATHWAYS ENABLED BY
SHAPING GOES BEYOND QUANTUM INTERFERENCE BETWEEN INDISTINGUISHABLE

PATHWAYS

In this section, we emphasize the difference between the quantum interference introduced in this work and previous
works on quantum interference between indistinguishable pathways While quantum interference between indistinguish-

Quantum interference 
between indistinguishable

pathways

Quantum interference between
distinguishable pathways Bound Electron

Free Electron

a) b)

Fig. S5. Schematic depicting the difference between quantum interference between distinguishable pathways
enabled by wave-shaping and quantum interference between indistinguishable pathways in the context of free-
electron-bound-electron emission. Consider the free-electron-bound-electron-light example from the main text. The free elec-
tron’s possible energy states lie in an energy ladder whereas the bound electron can only take on two states: ground and
excited. Here we show the free electron (purple) on the energy ladder with three states labelled (|−1⟩ , |0⟩ and |1⟩ ). The
bound electron’s (brown) energy spectrum consists of the excited state |e⟩ and the ground state |g⟩. (a) We examine an example
of quantum interference between indistinguishable pathways. We start with an excited bound electron and a free electron in
the state |0⟩. We can see that for a given final state, where the bound electron transitions to the ground state, there can be
many transition pathways that are indistinguishable insofar that their initial states and final states are the same. Shown here
are two such pathways: the red path indicates a direct spontaneous emission from the bound electron, the blue path involves
emission and absorption from the free electron in the intermediate steps. These pathways can interfere, resulting in quantum
interference. This is however distinct from quantum interference between distinguishable pathways enabled by shaping, which
occurs due to different input eigenstates transitioning to the same output state. (b) We show an example of quantum inter-
ference between distinguishable pathways enabled by shaping. Consider the example where we shape the bound electron to
be in a superposition of the ground and excited states. Similarly let us shape the free electron in a superposition of the |0⟩
and |1⟩ states. In this case we see that among the input eigenstates that make up the initial state, we can find eigenstates
that transition to the same final state as shown here. These distinguishable transitions from different input eigenstates to the
same final state can interfere, giving rise to the quantum interference discussed in this work. Note that both of the pathways
discussed in (a) are included in the upper transition pathway in (b).

able pathways exists regardless of the shaping (or lack thereof) of the particles involved, the quantum interference
discussed in this work requires the initial state of the combined system to be shaped. Specifically it requires that
multiple eigenstates that make up the initial state of the combined system transition to the same final state. As
an example, let’s consider the light-free-electron-bound-electron example we’ve used in the main text. Since we’re
concerned purely about spontaneous emission rates, let us fix the initial state of light to be vaccum and the final
state of light to correspond to one photon. Consider one such initial state of the combined system such as |0, k, e⟩
corresponding to 0 photons, the free electron with k quanta of energy and e denoting the excited state of the bound
electron. One can see that this state can transition to a final state |1, k, g⟩ through many pathways: for example the
bound electron could directly exchange energy with the light field (the red path in Fig. S5 (a)) or have the free
electron exchange energy with the light field as well (the blue path in Fig. S5 (a)). All these pathways interfere
and we find quantum path interference to be present in our system. This is interference between indistinguishable
yet different pathways. Once we shape our initial interacting systems, we can see that there are multiple eigenstates
of the system making up the initial state, that transition to the same final state. For example, the states |0, k + 1, g⟩
and |0, k, e⟩ transition to the final state |1, k, g⟩. The interference between the transitions of these different initial
eigenstates of the system to the same final state is quantum interference between distinguishable pathways enabled
by shaping.
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S8. CONDITIONS FOR OPTIMIZING QUANTUM INTERFERENCE IN THE
FREE-ELECTRON-CLASSICAL-LIGHT FIELD CASE

In this section, we define a Figure of Merit to quantify the amount of quantum interference, γQI. We then plot the
trend of γQI as the shaping parameter Gmod increases, in the free-electron-classical-light field example studied in the
main text.

Fig. S6. Plotting figure of merit γQI for quantum interference against increasing shaping parameter Gmod for
fixed interaction coupling constant G. We plot the values for γQI for interaction coupling constant values G = 0.1, 0.5 and
1. (a) As expected when G is very low, we see that γQI is also very low. This is because the electron doesn’t exchange energy
with the light field very often on account of low coupling strength. (b)(c) We see that at higher values of G, the trend indicates
a value of shaping parameter Gmod at which γQI is the highest (for the values of Gmod considered).

We note that here, as in the main text, G refers to the free-electron coupling constant for the actual interaction
(after the shaping). Moreover, Gmod is the modulation coupling constant used to shape the electron in the first place
and acts as a shaping parameter. To compute the trend of quantum interference w.r.t. Gmod where we observe high
quantum interference, we define a figure of merit, γQI. We compute γQI by comparing the statistical distribution
of the free electron after the interaction, with and without quantum interference. If the probability of finding the
electron in the final state |K⟩ is given by P (K)QI and P (K)0 for the cases with and without quantum interference
respectively, we compute γQI as:

γQI =
∑
K

(P (K)QI − P (K)0)
2 (S72)

This value is computed for a given value of Gmod and coupling constant G. We then vary Gmod while keeping G fixed
and plot the figure of merit γQI as a function of Gmod. Shown in Fig. S6 are the plots for G = 0.1, G = 0.5 and G = 1
for reference.

S9. EXPERIMENTAL SCHEMATIC FOR FREE-ELECTRON-BOUND-ELECTRON-LIGHT
INTERACTION.

We consider the setup shown in Fig. S7. We choose for our electromagnetic environment, a microcavity with free-
electron-light interaction length in the order of 10µm. We then have a two-level system i.e., our bound electron inside
the microcavity. Strong bound-electron-light coupling has been shown to occur in semiconductor microcavities [125].
In the schematic we see that the two level system has two energy states that it can access: the ground state denoted
by g and the excited state denoted by e. Our two level system has an excitation bandgap frequency of about 1015

rad/s and couples to the cavity radiation with coupling strength gap. Note that this means our assumed interaction
length corresponds to the optimal interaction length (from Fig. S3) for a Quantum Electron Wavepacket (QEW) of
energy in the order of 10 keV. Thus, we fix our QEW energy to be of that order as well. The QEW originates from a
nanotip source unmodulated and is subjected to a PINEM modulation to shape it. The PINEM modulation strength
can be chosen to tailor the QEW appropriately, here we assume the modulation strength is Gmod = 0.5. The QEW
then travels alongside the microcavity where it exchanges energy with the cavity radiation with coupling strength
gep. We then can measure the QEW spectra through electron spectroscopy measurement. We note that the two level
system and QEW do not interact with each other directly. We assume the microcavity to be nearly lossless, with
escaping radiation post-interaction being collected by a photodetector for measurement.
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Fig. S7. Schematic for the free-electron-bound-electron-light interaction. The free quantum electron wavepacket
(QEW) with energy on the order of 100 keV originates from a nanotip source and passes through a PINEM modulation stage.
The shaped QEW then passes close to a microcavity with interaction length comparable to 10 µm. The cavity contains a two
level system which here is our bound electron system with two possible energy states available to it (ground and excited). The
excitation gap frequency of the two level system is on the order of 1015 Hz. The two level system-QEW coupling is absent and
the cavity is assumed to be nearly lossless. The free electron interacts with a single phase-matched cavity mode as does the
two level system. Escaping radiation is captured by a photodetector post interaction. The QEW is measured with the help of
a electron detector such as electron energy-loss spectroscopy to examine its spectra.
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