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S1. OUTPUT ENERGY SPECTRUM FOR DIFFERENT INPUT QEW SHAPES

In this section, we present supplementary plots for Main Text Figs. 2(g) and 2(h). Specifically, we compare the
output quantum electron wavepacket (QEW) energy gain/loss spectrum with and without the effects of quantum
interference as a function of coupling strength G for input QEWs of different shapes (i.e., modulated by different
coupling strengths Gpod)-
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Fig. S1. Output QEW spectrum as a function of coupling strength G for different input QEWs shapes. (a,c,e)
show the output spectrum when quantum interference is absent; (b,d,f) show the output spectrum with quantum interference.
We consider input QEWs shaped by a coupling strength (a,b) Gmoda = 0.25, (¢,d) Gmoa = 0.75, and Gmoa = 1.

We find that for input QEWSs that have been weakly modulated (Gnoq = 0.25) prior to interaction, as shown
in Supplementary Figs. a) and (b), the difference between the spectra with quantum interference and without
quantum interference is relatively small. We note that the quantum interference contribution still results in a complete
suppression of the zero-loss peak at G =~ 1. For input QEWSs that have been modulated by stronger coupling strengths
of Gmoa = 0.75 (Supplementary Figs. ¢) and (d)) and Gpyoq = 1 (Supplementary Figs. e) and (f)), the complete
suppression of the zero-loss peak can be achieved with coupling strengths as low as G ~ 0.5 and G = 0.2 respectively.
As expected, input QEWSs that are more strongly modulated prior to interaction result in larger contributions from
the quantum interference term.



S2. PINEM QUANTUM INTERFERENCE STRENGTH

Here, we consider spontaneous emission facilitated by a shaped quantum electron wavepacket (QEW). We obtain
the shaped QEW by subjecting an unshaped QEW to a photon-induced near-field electron microscopy (PINEM)
interaction. In a PINEM interaction, an incoming QEW exchanges an integer number of photons with the the
evanescent field of a nanostructure, resulting in the appearance of energy gain/loss peaks separated by the photon
energy in the electron spectrum. In Section we compute the electron bunching factor for the I-th harmonic of
the modulation frequency wp,eq for a Gaussian (unmodulated) QEW modulated via the PINEM process. We then
derive the corresponding contribution of the quantum interference term to the spontaneous emission rate based on
general expressions derived in Section Additionally, we also show in Section that it suffices to consider only
the first harmonic [ = 1 of the electron bunching factor.

A. Bunching factor and quantum intereference term for a PINEM-modulated QEW

We consider QEWs with wavenumber k., components tightly-packed about the central longitudinal wavenumber
k.o (ie., |ky — k0| < kz0). We assume that the initial QEW (z = 0,¢ = 0) takes the form of a Gaussian electron
wavepacket:

1 € /e
\IJ(Z = O,t = O) = E dkzq)(kz,t = 0), @(kz,t = 0) = We a’, (Sl)
q

where ¢ = k, — k. o is the deviation from the central wavenumber, oy is its spread about k. o, and ¢q is the inherently
random emission phase. Note that we use wavefunction normalization convention [ |¥(z,t)|?dz = [ |®(k,,t)[*dk, = 1.
During propagation, the wavefunction evolves as

U(z,t) = \/%/Cﬁ(kz,t)eikzzdkz, (S2)

where the momentum space wavefunction after propagating for a time ¢ is
eldo

Groayi7ac 1/ CreT i, (s3)
o
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O(k,,t) =

Consistent with our previous assumption that all k, are close to the central value, we use the relativistic energy
dispersion expanded up to second order in ¢:
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Assuming the wavepacket drifts a distance L; between emission and modulation (corresponding to a drift duration
ts = Ls/vo), ®(k,,t) becomes
ei®o
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After modulation, and assuming that dispersion is negligible during the modulation, the wavefunction becomes
(Ref. [101])
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where Jy(+) is the Bessel function of the first kind of order N, and |gmod| is the dimensionless electron-light cou-
pling strength of the modulation stage. The N-th summand describes the momentum deflection as a result of the
absorption/emission of N-photons of angular frequency wpeq. Here, ¢moa is the modulation phase which can be
controlled, for instance, using the laser phase. The wavepacket acquires an additional phase when it drifts a distance
L, (corresponding to drift duration ¢, = L,/vg) between modulation and interaction:
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q N=—o00

(S7)




We drop the t5+t, dependence in our notation for compactness since we consider the wavefunction only at this time.
Additionally, as the momentum space wavefunction only depends on ¢, we change the dependence: ®(k,) — ®(q).
We now wish to solve for the [-th harmonic of the bunching factor (c.f. Eq. (S56]))

DVt s = / (g + lumoa /00)®(q)da, (s8)

where we translated the integration variable: dk; = dq. Using Eq. [S7] we perform the integration over g, arriving at
(Ref. [101])
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To find the contribution of the interference term to the spontaneous emission rate, we substitute Eq. (S9)) into Eq. (S68))
(which we derive in Section [S5), yielding
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where the phase of the [-th term is
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Here, 7 is the interaction time, €q is the free space permittivity, V' is the mode volume, w,y is the cavity frequency, and
Wa, d, pi, = | p2g|ei¢a and z, are the emission frequency, transition dipole vector, coherence between the excited and
ground states and longitudinal position of the two-level atomic (i.e., bound electron) system. Note that to maximize
the sum over [ # 0, the phase-matching condition & = 0 should be met, which can be achieved by setting

s Wmod Weay m
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Equation (S10) explicitly includes all PINEM parameters that (b);,, . /v, depend on.

B. Bunching factor for a single dominant harmonic

In this section, we show that the [ = 1 term in the sum of Eq. is dominant, allowing us to drop all other
terms in deriving an analytical approximation for the quantum interference contribution I'*P/P. For the specific
case of PINEM, which we consider here, it follows that we wish to obtain the value(s) of L, that maximizes Ji(-).
Numerically, we find that Jj(x) reaches the first maxima at « ~ 1.8411838, from which we obtain the ideal drift
length as

208v3m
hw?

mod

Lpideal ~ arcsin(1.8411838/4|gm0d|>. (S13)

Using the expression for Ly, iqeal, recalling that o < wmea/vo must be satisfied for the treatment of QEW momentum
states as discrete to be valid, and noting that the arcsin(-) term is of the order of unity, we can make the approximation

9 2
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Importantly, we find that using the expression for the ideal drift length yields the maximum possible bunching factor

magnitude for PINEM:
max< J- 4| ‘ si1 L —Amoc 0.58 (S|6)
mo idea! 3.3 ~ V.09,
1 9mod p,id 121} 5

which agrees with the upper limit for bunching factor derived previously (Ref. [15]).

In Fig. we compare the total rate I' = I'*P 4 TP 4 T#P/°P computed using the approximate expression (Eq. )
for T#P/¢P with the exact expression Eq. for various incoming QEW kinetic energies (w, = wmod). Here, I'*P and
TP are the bound electron (i.e., atom) and the free electron spontaneous emission rates respectively in the absence
of quantum interference; their expressions are also derived in Section We find that the rates computed using the
approximate expression (bottom panels) are in excellent agreement with the rate computed with the exact expression
(top panels). This indicates that we are justified in considering a single dominant harmonic. We have verified this
for other choices of kinetic energies and phases §;. The cyan cross in each panel denotes the value of w, and L where

the absolute value of the figure of merit, |y| = [T#P/°P /(T'*P + I'°P)|, reaches its maximum.
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Fig. S2. Dominance of the first-order Bessel function term in the modulated electron wavefunction for spon-
taneous emission. The panels show I' = T'* 4 I'°P 4 ['*P/°P where '**/°P is computed using Eq. (S10) (top panels) and
Eq. (bottom panels), respectively, for various QEW kinetic energies Fx. The top panels include all [ up to 10: We see
excellent agreement between the top panels and the bottom panels, which consider only [ = 1, indicating the dominance of

the I = 1 term. In all cases, we consider an incoming QEW modulated with a coupling strength |gmod| = 1 and frequency
Wmod = Wa, With the corresponding ideal drift length Ly idea1 given by Eq. |D The cyan cross in each panel denotes the
ordered pair (weav, L) corresponding to where the absolute value of the figure of merit, |y| = |['*?/°P /(I'*P 4 T'°P)|, is maximized.

The excited and ground states of the bound electron system (Sn-N vacancy) are equally populated initially, although the
excellent agreement between Egs. and continues to hold for other initial bound electron states. The phases & for
all cases were chosen according to the optimal condition Eq. , but we have verified that the excellent agreement continues
to hold for other choices of &;.



S3. OPTIMAL INTERACTION LENGTHS FOR OTHER DIPOLE MOMENTS

In this section, we plot the optimal interaction length Loy for maximizing the quantum interference contribution
as a function of the atomic (i.e., bound electron) emission frequency w, and QEW kinetic energy for transition dipole
moment magnitudes |d| = 1072° Cm (Fig. a)) and 1073° Cm (Fig. b)) We find that dipole moments which
are smaller by an order of magnitude require L, that are larger by about an order of magnitude. However, note that
cavity dimensions ranging from ~ 100 nm to ~ 1 mm are still experimentally feasible. In addition, the dependence
of the Lopy on w, and Ex remain qualitatively unchanged for all |d|. As |d| for numerous two-level bound electron
systems (e.g., quantum dots, atoms, molecules, ions, superconducting qubits, and crystal defects) are typically of
the order of 1072 Cm to 1073° Cm, our results show that significant spontaneous emission modulation rates can be
achieved for a wide variety of emitters over practical interaction lengths.
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Fig. S3. Optimal interaction length L.,; corresponding to maximum spontaneous emission modulation strength
|Ymax| as a function of emission angular frequency w, and QEW Kkinetic energy Fk. Here, we plot Lop for transition
dipole moments of magnitudes (a) |d| = 1072° Cm and (b) |d| = 1073° Cm. Although we find that larger |d| requires shorter
optimal interaction lengths (by about an order of mangitude), cavity lengths ranging from ~ 100 nm to ~ 1 mm are still
experimentally feasible. Additionally, the qualitative dependence of Lopy on w, and Ex persists. Since many emitters have
dipole moments of the order of 1072° Cm or 1073° Cm, our results show that strong spontaneous emission rate modulation
can be achieved in a variety of bound electron systems over practical interaction lengths. We use the same parameters as Main
Text Fig. 3(f), where we consider |d| = 4.33 x 1072° Cm.



S4. APPROXIMATE EXPRESSION FOR THE OPTIMAL INTERACTION LENGTH

In this section, we derive an approximation for the optimal interaction length Lo where the quantum interference
contribution is maximized. Our estimation of Ly involves finding the oscillation envelope of the figure of merit

v = I['ap/eP /(T'#P 4 T'°P) as a function of interaction length (or time), and taking its maxima. This yields a ballpark
estimate of the exact Lopt. Using our expressions for [ap/ep Tap apd [P (given by Eq. |D which we derive in full
in Section , we obtain (resonant case)

sinc(dpwa7/2)

AN+ (/A

7 = 2|pg|1(b)] cos(€) (S17)

where A = evg/(w,|d]). Noting that the the oscillations of Asinc(Ax) are always contained within the envelope +1/z,
we find that the envelope function for Eq. (S17)) takes the form (without loss of generality, we consider the positve
branch only)

2

A,
Yenv = £——[pZ,[[(b}] cos(£)

o B¢ (518)

where ¢ = 4A?/p?, and | = §swoT is the dimensionless interaction length. Taking the first derivative with respect to
I, and setting it to zero, we get the depressed cubic equation

P —¢l+2¢=0. (S19)

Using Cardano’s formula, we find that the real root l,p¢ is

¢ s ¢
lopt = C + —=, C=\- 1-—=. S20
opt + 30 C + C D) ( )
We note that the interaction length corresponding to lopg lies within one modulation period Agg = 4mvy/dgw, of the
exact L that maximizes |y|. Hence, lop¢ as an excellent ballpark estimate for the optimal interaction length.



S5. DERIVATION OF SPONTANEOUS EMISSION RATE

In this section, we derive the emission rate for a combined free electron-bound electron-photon system. In Sections
[S5A] and [S5B] we introduce the second-quantized operators and coupling terms respectively. We then derive the
spontaneous emission rate between arbitrary initial and final states in Section [S5 C] This is followed by the scattering
matrix elements that connect these states up to first-order in perturbation theory in Section Having obtained
the S-matrix elements, we separately derive the spontaneous emission rates due to the quantum interference term,
the free electron-photon interaction term, and the bound electron-photon interaction term (Sections to
in the narrow cavity bandwidth limit (Section . In Sections and we show that our results reduce to
known expressions for the spontaneous emission rate from free electron-photon and bound electron-photon interactions
respectively. Lastly, we define the limits of the weak coupling regime in Section

A. Second-quantized operators

Here, we introduce the notation we adopt for the second quantized operators. For the bound electron state |s)
(s € {e, g}), the raising and lowering operators, 61 and &_ respectively, are defined to act in the following ways:

orlg)=le),  o-le)=lg), (S21)

and returns zero otherwise. For a free electron, which we model as a quantum electron wavepacket (QEW), in

momentum eigenstate |k) (understood to be the longitudinal momentum hk along propagation direction z), bay is
the ladder operator that acts as such:

bak k) = |k + Ak) (522)

where we define a quantum of momentum deflection Ak such that it can take positive or negative values (i.e., energy
gain or loss). For a photon number state |n), we use the usual definitions of the creation and annihilation operators
(denoted by a' and @ respectively):

aln)=+vnln-1), a'ln)=vn+1ijn+1). (S23)

B. Coupling terms

Here, we consider the interaction between a QEW, a single longitudinal EM cavity mode of angular frequency w,
and a bound electron modelled as a two-level atom (as described in the main text). The bound electron-photon
interaction is described by the Hamiltonian

HEP = gap0ra + Gapd_al — Gaporal — gapd_a, (S24)
where g,p, is the coupling strength in units of energy. We use an overbar to denote the complex conjugate. The
coupling strength takes the following form for a dipole aligned parallel to the field:

h .

YJap (w) = iwa|d| 2e0Vw ezqza7 (825)
where w, is the angular frequency corresponding to the atomic bandgap energy £, — &y, h is the reduced Plank contant,
€o is the free-space permittivity, V' is the mode volume, ¢ = w/c is the wavenumber, and z, is the bound electron
system position.

The interaction between the QEW and the photon, which governs effects like PINEM and electron energy-loss
spectroscopy, is given by the Hamiltonian (Ref. [27])

Hb, = bk [ gep(AK)a + Gop (~Ak)a1 (526)

where the electron-light coupling strength is

, L/2

€% —iAkz h
oo (AK) = — Eo.. — evoy/ , — ARVL/2). $27
Gep(AK) oL | 1 0,2(r)e dz = evy 260Vw51nc{(q k)L/ ] (527)




Here, e is the elementary charge, L is the interaction length, vy is the QEW central velocity, and Ey.(r) =

in/hw/(260V) exp(igz) is the mode profile. We use the convention sinc(x) = sin(x)/x.

We note that it is possible to rewrite the electron operators in terms of ladder operators. The purpose of this
paragraph is to clarify that Eq. is consistent with the displacement operator Hamiltonian used in other works
e.g. O. Kfir, et al. (Main Text Ref. [27]). Rewriting Eq. explicitly as a sum over all possible momentum change

Ak and bringing the operator by inside:

A = D [bargen (AR + bargip(~ M), ($28)

Ak

Let us define the ladder operators operating on the free electron:

b |k) = [k + w/vo) = by, [K) (S29)

blk) = [k — w/vo) = b_u, k) (S30)

Let us restrict the electron to only exchange energy with the photon such that the momentum change satisfies
voAk = w. This corresponds to energy conservation when the free electron interacts with a single mode. If we now
apply this restriction in the Hamiltonian expression in Eq. and substitute the new operators defined in Eq.
and Eq. [S30] we obtain:

Hmt - b gep((JJ/Uo) + lA)gep(_w/UO)&T (831)

Dropping the w/vy dependence since we’ve fixed it, we obtain the ladder operator form of the Hamiltonian:

HP = blga + bgat (S32)

int —

We also observe that the ladder operators commute as:
[bF, 0] =0 (S33)

Although the interaction Hamiltonian between the QEW and the bound electron — which is the Coulomb interaction
— does not contribute to the spontaneous process at the first order in perturbation theory, we state the corresponding
Hamiltonian here for completeness (Ref. [101]):

Hiz, = ban 955 (AR)G 4 + giz(AR)- |, (834)

where the free electron-bound electron coupling strength is

e2Ak

a(Ak) =
9 (Ak) = 27T60L

o e | = Ky (|ARAT e L+ iKo(|ARATL[)3] - L. (S35)
Here Ko 1(+) is the modified Bessel function of the second kind, r; = (z,y) are the transverse coordinates of the free
electron, Ar is the impact parameter that transversally separates the wavepacket from the bound electron, and I;;
is the transition dipole length between bound electron states ¢ and j.

The total interaction Hamiltonian is simply the sum of these terms:

Hint Hap + Hmt + Hlnt (836)

int

C. Spontaneous emission rate

In this section, we compute the scattering matrix elements given the interaction Hamiltonian Eq. (S36|). Consider
an initial combined free electron-photon-bound electron state of the form

linitial) = Y By, |ki) ®[0) @ BY, |s;) = > By B |ki,0,s:), (S37)
ki,s; ki,s;

where B and Bf, are the complex amplitudes of finding the initial state containing a free electron at discrete
momentum state |l<: ) and the bound electron state in |s;) (s; € {e,g}). As we consider only spontaneous emission,
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the initial photon state is the vacuum state |0). As a result of the interaction described by Eq. (S36)), |initial) scatters
into a final state |k, ny, sy) with probability

2

e a ~nf,kf,s
> BLBLCG (S38)

ki,si

PTLf,k‘f,Sf =

where we have introduced the scattering matrix (S-matrix) element C’g’,;f;’sf = (nys, kg, 57|50, k;, 5;) and the scat-
tering operator /

i [T .

S= ’f'exp{ -z Hint(t)dt}. (S39)

Here, 7:lint (t) = etitot/ h?':[inte’mot/ " is the interaction Hamiltonian in the interaction picture and T denotes time-

ordering. We can expand Py k; s, as

2

o a e ny,ky,sf z : z a e nyg.kg,sp Ang.ky,sy

Pnf7kf75f - § psisipk:ik:i CU,ki,si + 2Re (psisipk:iKiCO,ki,si CO,Ki,si +
ki,si s; k<K,

a e ny,kp,sp Ang ks a e nfkpssy Angikyp.sy
§ 2Re <pegpkiki00,ki,e CO,k.;,g > + E : 2Re (pegpkiKiCO,ki,e 007Ki7g ’
ki ki <K;

(S40)

where B BY = pp,y, describes the population (m = n) and coherence (m # n) of each system. Here, the superscript
refers to the system of interest: « € {e,a}. Note that in the last 2 terms, we expanded s; = e and \S; = g for simplicity.
The second and third terms can be neglected since none of the interaction matrix elements (given by Eqs. —)
are zero. Thus, Eq. reduces to

2
72 : a e nyp.kp.sy § : a e nyp.kp,sp Ang.kp,sy
P"kafvsf - Ps;siPkik; CO,ki,si +2Re< pegpkiKiCO,ki,e C’O,K,;,g . (S41)
ki,si ki <K;
no QI quantum interference terms

The first term depends only on the population, while the second describes the contribution arising from quantum
interference. We see that non-zero bound electron and QEW coherences, pg, and pf, j. respectively, are required to
observe the effects of quantum interference. Note that this is the same requirement for observing first-order changes
in the QEW gain/loss spectra for FEBERI (Ref. [101]). As a result, the incoming QEW needs to contain multiple
momentum peaks so that pf. . # 0. Spatio-temporally, this translates to a electron pulse train, whose density
varies periodically along the propagation direction in space and time. Therefore, we see that quantum interference
arises only when the input QEW and bound electron systems are simultaneously in a superposition of eigenstates.
Additionally, note that the eigenstates should be related by a fixed phase relation to ensure nonvanishing contributions
upon statistical averaging. We refer to systems that are in a superposition of eigenstates with fixed phase relations
as shaped wavefunctions.

D. Scattering matrix elements

In this section, we derive the matrix elements Cg {f’iksfi’sf . To do this, we consider the weak coupling limit and

perturbatively expand the scattering matrix to first order:

T

S~I- ; Hine (£)dt = SO + SO, (S42)

— 00

We define the j-th-order matrix element as

Cott 19D = (ng ky, 51890, ki 50y, j=0,1. (S43)



11

. .. . neke,seg Aneke,Se .
Since ny # 0 for spontaneous emission, the zeroth order term always vanishes. We then express Cy 47"/ Cy /3 in
’ 0,k;,s4 0,K;,S;

terms of the interaction matrix elements as

Cnoksss amgks sy o omgikpsg (1) Amngokysp(l)

0ksys;  C0K;,S; ™ Okl si 0,K;,S;
hg <nf’ kg, Sf‘ertm ki, si) (0, K, Si“'l;rntmf’ kg, Sf) (S44)
+o0 +oo
X / exp (ZAESL{C k;c Sft/h) dt/ exp ( - ZASSL’}(kaSf t/h) dt
— o —c0

where we have defined A&, ’,;;kéfi’sf = nyhw + voli(ky — k;) & fw, as the difference between the eigenenergies of the
final and initial states. Here, the + (—) branch denotes a bound electron excitation (de-excitation) process. The
interaction Hamiltonian matrix element is

(g, kp,sp|Hintl0, ki, 81) =g (AK)n, 00s; 6,410k stk + 9o (AK)6n ;00 5510k oy Ak
gep(_Ak)(snfg165f75i5kf,ki+Ak + gapdnf,lésf,siflakf,ki_ (845)

gapénf,lésf,si—i-l(skf,k“
where Ak = ky — k;, and the Hermitian conjugate is
(0, K, Si|HlyIng, kg, sy) =0eg(AK)Or, ky—AKOn;,008;,5, -1 + Gge (AK)OK, ky—AKOn; 0055, 41+

gep(—AK)(SKi,kf—AK(Snf,lési,sf + gap(snf71(551’5f+1(5[(i)kf — (846)

gapénf,l(ss,;,sf—lél(i,kfa

where AK = k; — K;. We multiply each of the 5 terms in Eq. (S45)) by Eq. (S46):

Geg(AK)On, 005, ,5:4+10k s ki +ak X (0, Ki,S‘|7:liTnt|nf7kf,Sf>

ea (S47)
:geg(Ak)geg(AK)(snf 05S1,81687,,(]68f 66KL7kf AK(Skf ki+Aks

9ge(Ak)Sn; 005, ,5; 10k ks +ak X (0, K, Si|7:liTnt|nfv kg, sp) (S48)
=0ge(AK)Gge(AK)0n, 005, .5,05;,e0s .90k s kit AROK, ky— AK
Gep Ak) ng, 15Sf si(skf ki+Ak X <0 K, S; |H1nt|nf’kf’8f>

=Jep Ak)g ( AK>6nf,1(SS,,s, 5€f,915kf ks +Ak5K kp— AKT (849)

(—
(-

96p( Ak)g ny ,15$i,si+165f,5i6Si,gékf,ki+Ak5Ki,kf -
(=

gep Ak)g nf,].asi,si7168f,Si68i766kf,ki+Ak6Ki,k}f)

GapOry 1050010k, &, X (0, Ko, Sil iy Ing, kp,sf)
:gapgep(_AK)énf,15$i,si—165f,g5kf,ki 6K¢,kf—AK+ (850)

gapgapanfvl(ssivsi5Si7655f795kf7ki 5Kiakf )

- gap5Nf7158f,sri+15kf7ki X <Ov K, Si‘r}:[iTnthv kf’ Sf>
= — JapJep(—AK)0n; 105,,5,+10s; 60k, kO, k- AK (S51)
+ gapgapénf,lési,si (ssi,gés‘f,efskf,kiéKi,kf .

LL 2 [1p=i [Pe))

Here, it is understood that s; + 1 refers to excited state if s; is the ground state “g”, and s; — 1 refers to “g
if s; is “e”. Equations (S47) and (S48]) do not contribute to the spontaneous emission process as they contain only
the FEBERI terms g¢§**. Using these matrix elements, we can compute the transition probabilities to an abitrary final

state [ng, kg, s¢) through Eq. (S41)).
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E. Spontaneous emission rate from the quantum interference term

In this section, we derive the spontaneous emission rate arising from the quantum interference term Cy4">** C}' %™ g i
ey b Bl
in Eq. (S41). Because we are interested in a single output photon, we consider only terms proportional to &, 10s,,s, -1,

where k; # K;, of which there are two:

+o0 +oo
—Jep(—Ak)GapOn; 10s;.5,0s,,e0k kit AROK, ks / exp (iAS&%’Tg‘t/h) dt/ exp (— iAS&J}éffq;et/h) dt, (S52)

— 00 — 0o

+o0 +oo
gapgep(_AK)anf,168f,g6kf,ki6Ki,kffAK/ exp (iAE&if'ef’gt/h) dt/ exp < — iAS&%{jf‘g’%/h) dt. (S53)

— 00 —00

These are lines 3 and 1 of Egs. (S49) and (S50|) respectively. Note that for finite interaction times between ¢ =
—7/2 and 7/2, where 7 = L/vg is the time-of-flight of the electron over interaction length L, the integral becomes

fj:/; dt exp(£iAEt/h) = Tsinc(AET/2h). Equations 1} and 1) then reduce to

B . 1,ks, . Lky,
— Gep(—AK)Gap0s;,5:0s,,e0k s ki + AROK, b 72sinc |:A50’kif,:7/h:| sinc |:A507KC,ZT/71:|

(S54)
—vo(ki — K; . a
= — Gep(ki — Ki)gapéshsiJsheém,ki+Ak6Ki,kf72sinc{ [w = o 5 ia }smc[(w +2w )T} ,
and
gapgep(—AK)(sz,gékf’ki6Ki,kf,AKT2sinc [Aé’éfifT/h} sinc [AE&’I’Z:ZT/E]
(S55)

_ . W—we)T| . w —vo(K; — k)T
=GapGep(Ki — ki)0s; g0k, kO, k;— AKT SINC [(2‘1)} Slnc{ | ( 21 i) }7
respectively. We neglect Eq. since it is not energy conserving at large L, and is significant only for low-energy
QEWSs at impractically small L (see SM Section . Note that for a QEW modulated at wpyoq, we have

ST bk ® Y Oiwmoasvor Oiwmoasvn = / dk;® (ki) ® (K; + lwmod /o), (S56)

ki <K; lez+

where we have taken the continuous limit in wavenumber, and defined the bunching factor of the [-th harmonic as
(D) twmoa /vo- Here, ®(k;) is the momentum space wavefunction of the incoming QEW, and the approximation follows
from the fact that that the integral is sharply peaked when [ € Z, allowing us to consider only K; separated from k;
by non-vanishing integer multiples of wy0a/v0. Equation tells us that py. . is related to the bunching factor
(b), which in turn describes how the QEW is modulated. For an analytical expression for (b}, ., /vo corresponding to
the specific case of an incoming QEW modulated through a photon-induced near-field electron microscopy (PINEM)
process, refer to SM Section Eq. . Defining the rate as I'y; x;,s; = Pn; k;,s;/7 and multiplying the RHS of
Eq. by the photonic density of states DOS Dpp(w), we sum over all final bound and free electronic states and
integrate over all frequencies to obtain the spontaneous emission rate arising from quantum interference as

. : . w — lwmo . W — Wq
pap/ep :% /ZRe{pZQ Z Gap (W) Fep (IWmod /00) (D) 10,0 /voSINC [(261)7] sinc {(Z)T] }Dph(w)dw.

lezt

(S57)
Since (b)1e,,04 /v 15 @ generally complex value, this implies that its phase, which depends on parameters such as drift
and dispersion prior to interaction, can be tailored to maximize or minimize quantum interference. Additionally the
phase of the bound electron coherence p, can also result in changes to the interference effect.
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F. Electron-photon interaction emission rate

Here, we compute the spontaneous emission rate arising from the photon-free-electron interaction in the absence of
the bound electron system. From line 1 of Eq. (S49)), we obtain

2
1 IR s
ﬁgep(_Ak)gep<_AK)6Si,Si6Sf,si6kf,kti+Ak6Ki,kf—AK; [TSIHC(AS(},):i;ift/h)]

i . W — v ]{37 —k T
=739ep(ki = kp)gep(ki — kf)ésf»Sz‘5kf7k’i+Ak5Ki,kf—AK31nC2{ lw = vol 5 ol } (S58)
T 2 of w—wolk; — kg)]T
:ﬁ‘gep(ki —ky)|“0s, s,8inC { 5 _
The corresponding emission rate is
. 9. of lw—wvolki —ky)l7
Lk =73 Zp / P, k| 9ep (ki — k) [?sinc { 5 dk;. (S59)

Noting that )  pg ;, = 1, multiplying the RHS by the electronic DOS per unit final wavenumber De(ks) = L/27 =
TV /27 and Dpp(w), and integrating over k; and w, we get

v = [ o [y [ st ot - kp)Psine { E= G D ). (00

2

Since gep and the sinc terms only depend on Ak = kf — k;, we can change the integral over k¢ to an integral over Ak.
Noting that [ dk; Ph..k, = 1, the expression simplifies to

e — % / dw( [ :o |gep (—AK)|2sinc? [W}d@k)) De(kf) Dyp (). (S61)
Expanding gep(Ak) using Eq. and solving the integral over Ak using the convolution
/_;OO sinc?(z)sinc? (€ — 2)dx = [sian * sincz} €)= W, (S62)
we find that the free-electron-photon spontaneous emission rate expression simplifies to
rep — T e?vgh 4[1 — sinc(wTdg)] Dy (w)de, ($63)

2 ) 2eVw (wrdg)?

where 03 = |1— | and Sy = vo/c. Equation (S63)) reduces to a previously derived result in the limit of long interaction
times (Ref. [129]).

G. Bound-electron-photon interaction emission rate

The goal of this section is to show that Eq. (S50]) reduces the the standard bound electron (i.e., atomic) spontaneous
emission rate in the absence of free electrons. From line 2 of Eq. (S50]), we get the bound-electron-light spontaneous
emission term:

2
1 1 . 1.k,
ﬁ lgap|255i,8i65i1555f’95kf’ki5Kiykf ; [TSIHC (Ago,kqis‘ift/h)‘|

(S64)
T 5 .o (w—w)T
:ﬁlgap| 651,e(ssf,g(skf,kiaKi,k:fsnlC |:2:|7
and integrating over all final states we find that
rsr = %pie / |gap (w)]*sinc? {(W_;M)T] Do (w)dw. (S65)

This expression reduces to the well-known spontaneous emission rate derived from Fermi’s Golden rule in the limit
of long times.
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H. Spontaneous emission rates in the narrow spectral width limit

In this section, we simplify the spontaneous emission rate expressions Eqs. (S57)), , and (S65) for the case
where the photon density of states Dpy(w) is described by a Cauchy-Lorentz distribution of spectral width Awcay:

2 Aw?
D _ cav ) S66
ph () TAWeay 4(W — Weay)? + Aw? (866)

cav

Additionally, we take the narrow cavity bandwidth limit Aw,, — 0, and the density of states reduces to a delta
function: Dpp(w) — 0(w — weav). Integrating over all frequencies w, and expanding all coupling terms (given by
Eqgs. (S25)) and (S27))), we obtain the various contributions to the total spontaneous emission rate as

a T hwng a Weav — Wa )T
P :ﬁﬁﬂeesmcz [(2)}
ep T e?vgh 41 — sinc(weayT5))]
h2 2e0Vweav (wcavT(SB)Q
[ap/ep :277- evohwq|d| s |:(wcav - wa)T:| % (S67)
h2 2e0Vweay 2

. a —ijZeav . (60wcav - lwmod)T . (wcav - lwmod)T
Re{ —ipae e Z <b>lwmod/vos1nc{ 3 sinc 5 .

lezZ+t

Further expressing the I-th harmonic of the bunching factor and bound electron coherence term in their polar forms
(D) twmod jvo = |<b>lwmod/vo|e”’£ and p2, = [p2,le’®*, and collecting all phases of the I-th summand into a single term
& = ¢o + V. — Weav2a/c — /2, we obtain

pap/ep _ 27T €ofiwa|d|
h2 260Vwcav

|p:q| Z |<b>lwmod/v0 | COS(&)SiHC

lez+

|:(wcav ;%)T} Sinc[(ﬁowcav ; lwmod)7:| sine |:(wcav — 2lwmod)7':| }

(S68)

In the resonant limit wp = Wy = Weay = Wmod — Which this study focuses on — the term sinc[(1 — l)wo7/2] in Eq.
(S68]) is maxmized at I = 1. which justifies considering only that term. Furthermore, we can show that the [ = 1 term
dominates even when the resonance condition is not met (see SM Section . We thus obtain T'?P/¢P as

pap/ep 5,7 EV0Wa |d]

2 2 2

eV - Wa)T:| sinc |: (BOwcav - wnlod)T:| sinc |: (Wcav — med)T:| ’ (869)

1p%,|1(b)| cos(§)sinc |:(wcav

which is Main Text Eq. (3). We have defined (b),, ./v, = (b) and §—1 = £ The emission rates from the bound-
electron-photon and free-electron-photon interactions are computed using the first two lines of Eq. (S67).

I. Weak coupling regime

In this section, we briefly describe how the maximum interaction times were chosen based on the coupling strengths
in the weak coupling limit. For our perturbative expressions to be valid, we impose the following conditions in our
study:

T T
ﬁ|gap(wa)‘ < 0.1, ﬁ|gep(wmod/vo)| < O~17 (870)

where gap and gep are given by Eqs. (S25) and (S27) respectively. The maximum interaction duration we consider
for the main text is the largest 7 that satisfies both conditions.
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S6. NEGLECTING NON-ENERGY CONSERVING QUANTUM INTERFERENCE TERM

In this section, we show that the non-energy conserving contribution to the quantum interference term, given by

B2 260V Weay 2
(S71)
j Wcav cav l mo . cav l mo
Re{ —ipgge’ e e Z<b>lwmod/vosin(}|:(ﬁ0w T d)qsmc[(w o d)T] }7

2 2
ezt

fap/ep _277- evohwa‘d‘ sinc |: (wcav + wa)T:| %

is insignificant for the range of parameters (e.g., QEW kinetic energy, interaction length L) we consider in this work.
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Fig. S4. Insignificant contribution of the non-energy conservation (non-COE) term [2P/°P to the spontaneous
emission rate modulation strength . The panels compare y = (D#P/¢P 4 [#P/¢P) /(T'*P 1 [°P) (ved curves) with v =
[#P/eP /(T®P 4 [°P) (blue curves) for various QEW kinetic energies. We see excellent agreement between both curves at longer
interaction lengths. The contribution due to I'*P/°P is only significant for less energetic electrons (&~ 1 keV), and even then,
only for extremely short L of the order of ~ 1 nm, which correspond to impractictically small cavity lengths. For higher QEW
kinetic energies, the change in 7 as a result of I'*P/°P at small L remains at least an order of magnitude smaller than the peak
amplitude of v (= 0.41), which is reached at much larger L. We consider the same QEW parameters as Fig. and include
all [ from —10 to 10.

In Fig. we compare y = (D#P/P 4 [aP/P) /(1@ 4 ['°P) (red curves) with v = I'*/°P /(I# 4 T'°P) (blue curves).
We compare the figure of merits with and without the non-energy conserving term respectively — as a function of
interaction length L for various QEW kinetic energies at wy, = Weay = Wmod. We see that the non-COE (conservation
of energy) term only contributes significantly to « for less energetic electrons (= 1 keV to 2 keV) and impractically
short cavity lengths (of the order of L ~ 1 nm). For more energetic QEWSs, the contribution of [aP/°P to ~ at short
times is insignificant (by at least an order of magnitude) as compared to the peak amplitude of 7, which is reached
at a large-enough L such that T?P/°P ~ 0. Hence, we are justified in neglecting the non-COE term in computing the
spontaneous emission modulation strengths. We have verified that our conclusions hold for other choices of parameters
that fall within the regime of interest of our work.
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S7. QUANTUM INTERFERENCE BETWEEN DISTINGUISHABLE PATHWAYS ENABLED BY
SHAPING GOES BEYOND QUANTUM INTERFERENCE BETWEEN INDISTINGUISHABLE
PATHWAYS

In this section, we emphasize the difference between the quantum interference introduced in this work and previous
works on quantum interference between indistinguishable pathways While quantum interference between indistinguish-

1
a) ) 0 > 1) o) b) 1) o —@
o) —@— — ) —@— oy —@—
l9) lg) —@— l9)
[-1) [=1) |-1) "
t interf )
o coomt oo | e Quantum inerterence beveen 1 —o—
@ Bound Electron pathways distinguishable pathways -1 lg) —@—
R — 1) ——— 1 —
W o —o— ‘ i 9 :0; ¢ & —
0 —> |0
10 l9) ‘ lg) —@— lg) —@—
[-1) —@— |-1)—&— |-1)

Fig. S5. Schematic depicting the difference between quantum interference between distinguishable pathways
enabled by wave-shaping and quantum interference between indistinguishable pathways in the context of free-
electron-bound-electron emission. Consider the free-electron-bound-electron-light example from the main text. The free elec-
tron’s possible energy states lie in an energy ladder whereas the bound electron can only take on two states: ground and
excited. Here we show the free electron (purple) on the energy ladder with three states labelled (|—1), |0) and |1) ). The
bound electron’s (brown) energy spectrum consists of the excited state |e) and the ground state |g). (a) We examine an example
of quantum interference between indistinguishable pathways. We start with an excited bound electron and a free electron in
the state |0). We can see that for a given final state, where the bound electron transitions to the ground state, there can be
many transition pathways that are indistinguishable insofar that their initial states and final states are the same. Shown here
are two such pathways: the red path indicates a direct spontaneous emission from the bound electron, the blue path involves
emission and absorption from the free electron in the intermediate steps. These pathways can interfere, resulting in quantum
interference. This is however distinct from quantum interference between distinguishable pathways enabled by shaping, which
occurs due to different input eigenstates transitioning to the same output state. (b) We show an example of quantum inter-
ference between distinguishable pathways enabled by shaping. Consider the example where we shape the bound electron to
be in a superposition of the ground and excited states. Similarly let us shape the free electron in a superposition of the |0)
and |1) states. In this case we see that among the input eigenstates that make up the initial state, we can find eigenstates
that transition to the same final state as shown here. These distinguishable transitions from different input eigenstates to the
same final state can interfere, giving rise to the quantum interference discussed in this work. Note that both of the pathways
discussed in (a) are included in the upper transition pathway in (b).

able pathways exists regardless of the shaping (or lack thereof) of the particles involved, the quantum interference
discussed in this work requires the initial state of the combined system to be shaped. Specifically it requires that
multiple eigenstates that make up the initial state of the combined system transition to the same final state. As
an example, let’s consider the light-free-electron-bound-electron example we’ve used in the main text. Since we're
concerned purely about spontaneous emission rates, let us fix the initial state of light to be vaccum and the final
state of light to correspond to one photon. Consider one such initial state of the combined system such as |0, k, €)
corresponding to 0 photons, the free electron with k& quanta of energy and e denoting the excited state of the bound
electron. One can see that this state can transition to a final state |1, k, g) through many pathways: for example the
bound electron could directly exchange energy with the light field (the red path in Fig. (a)) or have the free
electron exchange energy with the light field as well (the blue path in Fig. (a)). All these pathways interfere
and we find quantum path interference to be present in our system. This is interference between indistinguishable
yet different pathways. Once we shape our initial interacting systems, we can see that there are multiple eigenstates
of the system making up the initial state, that transition to the same final state. For example, the states [0,k + 1, g)
and |0, k,e) transition to the final state |1,k,g). The interference between the transitions of these different initial
eigenstates of the system to the same final state is quantum interference between distinguishable pathways enabled
by shaping.
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S8. CONDITIONS FOR OPTIMIZING QUANTUM INTERFERENCE IN THE
FREE-ELECTRON-CLASSICAL-LIGHT FIELD CASE

In this section, we define a Figure of Merit to quantify the amount of quantum interference, yqr. We then plot the
trend of yqr as the shaping parameter Gn,0q increases, in the free-electron-classical-light field example studied in the
main text.

0.20 ' ' 020+ ' ' . ' 0.20 T+ ' ' ' '

g (a) G=0.1 g (b) G=05 g (© G=1
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Fig. S6. Plotting figure of merit vyq1 for quantum interference against increasing shaping parameter G,.q for
fixed interaction coupling constant G. We plot the values for vq1 for interaction coupling constant values G = 0.1,0.5 and
1. (a) As expected when G is very low, we see that yqr is also very low. This is because the electron doesn’t exchange energy
with the light field very often on account of low coupling strength. (b)(c) We see that at higher values of G, the trend indicates
a value of shaping parameter Gmoa at which yqr is the highest (for the values of Gmoa considered).

We note that here, as in the main text, G refers to the free-electron coupling constant for the actual interaction
(after the shaping). Moreover, Gpoq is the modulation coupling constant used to shape the electron in the first place
and acts as a shaping parameter. To compute the trend of quantum interference w.r.t. Gyo,q where we observe high
quantum interference, we define a figure of merit, yqr. We compute yqr by comparing the statistical distribution
of the free electron after the interaction, with and without quantum interference. If the probability of finding the
electron in the final state |K) is given by P(K)qr and P(K)g for the cases with and without quantum interference
respectively, we compute yqr as:

var = Y (P(K)ar — P(K)o)? (572)
K

This value is computed for a given value of G,,,q and coupling constant G. We then vary G,,q while keeping G fixed
and plot the figure of merit yqr as a function of Gyoq4. Shown in Fig. |S_§| are the plots for G =0.1,G=05and G =1
for reference.

S9. EXPERIMENTAL SCHEMATIC FOR FREE-ELECTRON-BOUND-ELECTRON-LIGHT
INTERACTION.

We consider the setup shown in Fig. [S7] We choose for our electromagnetic environment, a microcavity with free-
electron-light interaction length in the order of 10pum. We then have a two-level system i.e., our bound electron inside
the microcavity. Strong bound-electron-light coupling has been shown to occur in semiconductor microcavities [125].
In the schematic we see that the two level system has two energy states that it can access: the ground state denoted
by g and the excited state denoted by e. Our two level system has an excitation bandgap frequency of about 10
rad/s and couples to the cavity radiation with coupling strength g,,. Note that this means our assumed interaction
length corresponds to the optimal interaction length (from Fig. for a Quantum Electron Wavepacket (QEW) of
energy in the order of 10 keV. Thus, we fix our QEW energy to be of that order as well. The QEW originates from a
nanotip source unmodulated and is subjected to a PINEM modulation to shape it. The PINEM modulation strength
can be chosen to tailor the QEW appropriately, here we assume the modulation strength is G,,0q = 0.5. The QEW
then travels alongside the microcavity where it exchanges energy with the cavity radiation with coupling strength
Jep- We then can measure the QEW spectra through electron spectroscopy measurement. We note that the two level
system and QEW do not interact with each other directly. We assume the microcavity to be nearly lossless, with
escaping radiation post-interaction being collected by a photodetector for measurement.
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Fig. S7. Schematic for the free-electron-bound-electron-light interaction. The free quantum electron wavepacket
(QEW) with energy on the order of 100 keV originates from a nanotip source and passes through a PINEM modulation stage.
The shaped QEW then passes close to a microcavity with interaction length comparable to 10 pum. The cavity contains a two
level system which here is our bound electron system with two possible energy states available to it (ground and excited). The
excitation gap frequency of the two level system is on the order of 10*® Hz. The two level system-QEW coupling is absent and
the cavity is assumed to be nearly lossless. The free electron interacts with a single phase-matched cavity mode as does the
two level system. Escaping radiation is captured by a photodetector post interaction. The QEW is measured with the help of
a electron detector such as electron energy-loss spectroscopy to examine its spectra.
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