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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Targeted protein degradation provides new opportunities for cancer therapy.

- Proteolysis-targeting chimeras (PROTACs) can target “undruggable” proteins.

- PROTAC drugs have entered the clinic and have the potential to become “best in class”.
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Targeted protein degradation (TPD) is emerging as a strategy to over-
come the limitations of traditional small-molecule inhibitors. Proteoly-
sis-targeting chimera (PROTAC) technology can be used to target pro-
teins by hijacking the ubiquitin-proteasome system. Conceptually,
PROTAC aims to target the “undruggable” majority of proteins in the hu-
man proteome. Through constant exploration and optimization of
PROTACs and the exploitation of other TPD strategies over two decades,
TPD has expanded from theoretical studies to clinical strategies, with
practical applications in oncological, immunological, and other diseases.
In this review, we introduce the mechanisms, features, and molecular tar-
gets of orthodox PROTACs and summarize the PROTAC drugs under
study as cancer therapeutics in clinical trials. We also discuss
PROTAC derivatives and other TPD strategies, such as lysosome-target-
ing chimeras, autophagy-targeting chimeras, and molecular glue strate-
gies. Collectively, the studies summarized herein support the full poten-
tial of TPD in the biomedical industry.

INTRODUCTION
Proteins play essential roles in processes that control the health and survival

of cells. Accordingly, any abnormality in a protein can affect its constitution,
functionality, homeostasis, and/or other properties, leading to various dis-
eases.1 Studies have shown that proteins comprise the most important class
of drug targets.2 In the past 20 years, efforts to inhibit or disrupt the biological
functions of target proteins have led to several targeted cancer therapies, such
as antibodies and small-molecule inhibitors (SMIs).3,4 Antibodies have been
widely used in cancer treatment because of their biological specificity.5 Howev-
er, antibodies have a high molecular weight and low permeativity and, thus, pri-
marily target membrane-associated proteins, which has limited their clinical
application.6,7 According to the US Food and Drug Administration (FDA) data-
base, 52 SMIs targeting protein kinases have been identified via large-scale
screening and optimization efforts. These SMIs inhibit the biological activity
of their target proteins by binding to the active sites of the proteins.8,9

Compared with antibodies, SMIs have much lower molecular weights and
are more suitable for targeting intracellular, membrane-associated, and extra-
cellular proteins. However, SMI therapy faces a significant disadvantage:
long-term administration of these drugs increases the risk of developing resis-
tance via mutations in the protein targets.10

Approximately 16,000 proteins with no targeted active sites have been identi-
fied, accounting for 85% of the human proteome. These proteins, which include
pseudokinases, transcription factors, and scaffolding proteins or adaptors, have
long been known as undruggable targets.11–14 Gene knockdown techniques,
such as RNA interference and the CRISPR-Cas9 system, have been used to
expand the range of druggable targets. However, the nucleic acid-based mole-
cules used in these approaches face significant challenges, such as instability,
poor cell permeativity, and inefficiency due to enzyme-catalyzed hydrolysis.15–17

To overcome these problems, attention has increasingly been directed toward
novel strategies that exploit the physiological protein degradation machinery,
including the ubiquitin-proteasome system (UPS)-mediated proteolysis-targeting
chimera (PROTAC),18,19 autophagy-lysosome pathway-mediated autophagy-tar-
geting chimera (AUTAC),20 and endosome-lysosome pathway-mediated
lysosome-targeting chimera (LYTAC);21 molecular glue; and other PROTAC
derivatives.22–24

In this review, we discuss the development and derivatives of PROTACs. In
addition, we review the drug-discovery applications of PROTACs and other tar-
geted protein degradation (TPD) strategies in academia and industry.

THE DEVELOPMENT OF PROTACs
The ubiquitin-proteasome system
In eukaryotic cells, the UPS is one of the primary pathways through which

intracellular proteins are degraded to maintain cell homeostasis.25,26 The
UPS consists of ubiquitin (Ub), enzymes, the proteasome, and specified sub-
strates that play crucial roles in various cellular metabolic processes, such
as the regulation of cell signaling and transcription and protein turnover.27,28

Ubiquitin, a highly evolutionarily conserved protein, is a 76-amino-acid polypep-
tide that is used to mark target proteins for proteolysis in the UPS. Protein ubiq-
uitination is carried out via a reversibly ubiquitinating enzymatic cascade
comprising the E1 ubiquitin-activating enzyme (E1), E2 ubiquitin-conjugating
enzyme (E2), and ubiquitin (E3) ligase. E1 activates ubiquitin for conjugation
and transfers it to an E2. Through catalysis by E3 ligase, ubiquitin is transferred
directly from E2 to a substrate protein via the ε-amino group on a lysine residue
or the N terminus. Ubiquitin comprises seven lysine residues and an N-terminal
methionine residue, which allow further ubiquitination to form a polyubiquitin
chain via E3 ligase.29 A polyubiquitinated protein can be recognized by the
26S proteasome, transported to the 20S proteasome, and hydrolyzed into oli-
gopeptides via various enzymes, which are eventually released from the protea-
some (Figure 1A).30,31

The mechanism of action of PROTACs
PROTACs have attracted considerable attention owing to their great potential

for use in cancer treatment.32 In this strategy, the PROTAC, a heterobifunctional
molecule, contains a “warhead” specific for a protein of interest (POI) and a ligand
for an E3 ligase, which are joined by an intermediate linker. The PROTAC can
simultaneously engage an E3 ubiquitin ligase and a POI in an event-driven
manner (Figure 1B). This spatial proximity allows for the ubiquitination and sub-
sequent proteasomal degradation of the POI. Rather than being directly
degraded, PROTAC molecules are recycled to target other proteins.33,34 The
PROTAC system has opened up a new and promising drug-development
pathway, leading to remarkable achievements, such as the reversal of drug resis-
tance,35,36 targeting of “undruggable” proteins,37,38 and enhancement of drug
selectivity and specificity.39,40

Structural analysis of PROTACs
The formation of a stable, high-affinity ternary complex (POI-PROTAC-E3

ligase) is a key step in themechanism of action (MOA) of PROTAC. Ciulli and col-
leagues were the first to solve the crystal structure of a ternary complex
comprising BRD4BD2 (BRD4, a member of the bromo- and extraterminal [BET]
family proteins; BRD4BD2, the second bromodomain [BD] of BRD4), MZ1, and
VCB (VHL [von Hippel-Lindau protein], ElonginC, and ElonginB) at a 2.7-Å resolu-
tion (PDB: 5T35).41 MZ1, which consists of the BET inhibitor JQ1, VHL ligand
VH032, and a polyethylene glycol (PEG) linker, is bound within a bowl-shaped
interface formed by extensive protein-protein interactions (PPIs) between
BRD4BD2 andVHL.42 Thebowl-shaped interface is formedmainly fromhydropho-
bic and electrostatic contacts between proteins and ligands and PPIs, including
(1) the formation of a WPF shelf (W374, P375, F376) and an extended PWPF
(P71, W374, P375, F376) shelf via the interaction of BRD4BD2 with VHL, (2) the
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interaction between the helical turn of BRD4BD2 and the hydrophobic side chains
of VHL, (3) the embedding of JQ1 in the acetyl-lysine binding pocket of BRD4BD2

and binding of VHL032 to the hydroxyproline binding site of VHL, and (4) van der
Waals interactions anda hydrogenbond due to an interactionwith the PEG linker.
With this system, stabilized and selective target degradation is attributed to the
extensive burial of the ternary complex surface area (from 1,933 to 2,621 Å2) and
the formation of new PPIs (Figure 1C).41

A few other examples of the X-ray crystal structures of ternary complexes are
available. Fischer and colleagues solved multiple X-ray structures of BRD4-
PROTAC-CRL4CRBN (CRBN, cereblon) complexes and showed that plasticity re-
sults in several distinct low-energy binding conformations selectively bound by
ligands (PDB: 5FQD).43 The ternary complex crystal structures of ACBI1, a potent

A

B

C

Figure 1. Background information on PROTACs

and cooperative PROTAC of SMARCA2/4 and
PBRM1, have also been solved by the Ciulli
team, who optimized the structures rationally us-
ing biophysical data (PDB: 6HAY).44

Characteristics of PROTACs
Crews and Deshaie’s group pioneered the

concept of PROTACs in 2001 with PROTAC-1.
PROTAC-1 was shown to simultaneously bind
methionine aminopeptidase-2 (MetAP2) and
the E3 ligase Skp1-Cullin-F boxb-TrCP (SCFb-TrCP)
to induce degradation of MetAP2 in a crude cell
extract.45 However, peptide-based PROTACs
have poor chemical stability and cellular permea-
tivity, which limits their clinical applications.46

Small-molecule-basedPROTACs take advantage
of small molecules to engage E3 ligases, thus
advancing the development of PROTAC technol-
ogy. Some small-molecule ligands of common
E3 ligases, including mouse double minute 2 ho-
molog (MDM2), inhibitors of apoptosis (IAPs),
VHL, and CRBN, have been reported.47–50

Given its unique MOA, a PROTAC does not
need to bind within the target of a functionally
bioactive site to achieve degradation of the POI.
PROTACs have been verified as a feasible option
for targeting proteins with scaffolding func-
tions51,52 or mutations,53,54 as well as those
that are overexpressed,55,56 aggregated, or pre-
sent in different isoforms,57–60 and thus can
overcome the limitation of traditional SMIs,
which are not capable of effective and selective
employment. Most orthodox PROTACs are
used in the field of oncology (Table S1), and
this use is described and discussed in detail in
later sections. In addition to PROTACs that target
various cancer-related proteins, PROTACs rele-
vant to hematology, immunology, neurology,
and antiviral treatment have been the focus of
active research in academia and industry,37,61–63

but are not introduced in this review.

TARGETING VARIOUS MOLECULES USING
ORTHODOX PROTACs
Targeting receptor tyrosine kinases (RTKs)

RTKs, a subgroup of tyrosine kinases, are
embedded in cell membranes andmediate inter-
cellular communication. Dysregulation of RTKs
has been correlated with many diseases, espe-
cially cancer. Chromosomal rearrangements,
gain-of-function mutations, overexpression, and

genomic amplification are themain factors contributing to the oncogenic activa-
tion of RTKs and leading to resistance to pharmaceutical inhibitors.64 To date,
most PROTAC warheads have been inhibitors that act as ligands to recruit
POIs. Viable PROTAC strategies to degrade RTKs, such as anaplastic lymphoma
kinase (ALK), epidermal growth factor receptor (EGFR), vascular endothelial
growth factor receptor 2 (VEGFR-2), and tropomyosin receptor kinase (TRK) fam-
ily members, have been validated (Figure 2; Table S1). Alectinib-based degrader
17 was shown to exhibit potent ALK-binding affinity and antiproliferative activity
in an ALK-dependent cell line, but not in exclusively ALK fusion-negative cells.65

The ability of compounds 2/10 to induce EGFR degradation, with respect to
the half-maximal degradation concentration (DC50) values of 45.2 and
34.8 nM, and induce apoptosis in a cell line lacking EGFR exon 19 has been
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validated.66 Binding of a lapatinib-based PROTAC-1 to a VHL ligand effectively in-
duces the degradation of wild-type and FLAG-labeled exon-20-mutated EGFR.67

A series of selective EGFRL858R/T790M degraders exclusively target mutated
EGFR, with nanomolar DC50 values, but do not degrade wild-type EGFR.67–69

PROTACs based on the antiangiogenesis agents S7 and ABT-869, especially
PROTAC-2 and PROTAC-5, have been shown to induce a specific decrease in
VEGFR-2 levels and exhibit considerable antiproliferative activity against human
umbilical vein endothelial cells.70 Compounds 5 (CG416) and 6 (CG428) induce
the selective degradation of the TPM3-TrkA fusion protein.71 CRBN-based
degrader 4 was shown to induce TrkC degradation in breast cancer cells, with
an estimated DC50 value of 0.1–1.0 mM.72 PROTACs that target other RTKs
are listed in Table S1.

Targeting non-receptor tyrosine kinases (nRTKs)
Another subgroup of tyrosine kinases, nRTKs, includes cytosolic enzymes

involved in signal transduction in activated T and B lymphocytes, the dysregula-
tion of which can lead to hematological malignancies, such as lymphomas, leu-
kemias, and myelomas. Point mutations resulting in oncogene formation and
chromosomal translocation caused by gene fusion can cause the aberrant acti-
vation of nRTKs.73 VHL-, CRBN-, or IAP-based PROTACs can degrade various
nRTKs, including the BCR-ABL fusion gene, aurora kinase A (AURKA), B cell lym-
phoma 2 (BCL-2) and BCL-extra large (BCL-xL), induced myeloid leukemia cell
differentiation protein (MCL-1), Bruton’s tyrosine kinase (BTK), focal adhesion ki-
nase (FAK), Janus kinase (JAK), and Src homology 2 (SH2) domain-containing
phosphatase 2 (SHP2), and these PROTACs have been shown to induce cytotox-
icity inmultiple types of hematological tumor cells (Figure 2; TableS1). Ponatinib-
and dasatinib-based PROTACs P19P and P22D have been developed to degrade
the mutant protein ABLT315I and thus overcome resistance to dasatinib and as-
ciminib.74 The thalidomide-based degraders JB170 and JB301 induce highly
specific AURKA degradation at a nanomolar scale, causing profound toxicity in
MV4-11 cells.75,76 ThePROTACDT2216, which is currently being studied in a clin-
ical trial, links the relative inhibitor ABT263, which binds BCL-2 and BCL-xL, to a

VHL ligand. DT2216 has been shown to specifically target BCL-xL and exhibit
increased antitumor activity and reduced platelet toxicity compared with
ABT263, the BCL-xL inhibitor.77,78 The reversible non-covalent PROTAC NC-1
has been reported to be a potent degrader that induces the depletion of wild-
type and some mutated forms of BTK in chronic lymphocytic leukemia (CLL)
cells from patients in vitro.79 Compared with NC-1, the reversible covalent
PROTACRC-3 displays enhanced selectivity toward BTK.80 The defactinib-based
PROTAC-3 effectively degraded FAK and suppressed its activity (autophosphor-
ylation of Y397) in the PC-3 cell line. PROTAC-3 has been shown to reduce the
invasiveness of MDA-MB-231 cells by �65%, whereas no obvious effect was
observedwith defactinib treatment.81 The inhibitors pyrimidine 1 and quinoxaline
2 have been chosen as warheads that selectively bind JAKs.82 The PROTACs
JP-1 to JP-6, which bear IAP ligands, have been validated as efficient inducers
of JAK1 and JAK2 degradation.83 VHL-based SHP2-D26 mediates the depletion
of SHP2, leading to a decrease in the level of the downstream protein pERK, with
half-maximal inhibitory concentration (IC50) values of 0.66 mM and 9.9 nM in the
KYSE-520 and MV4-11 cell lines, respectively.82 PROTACs that target other
nRTKs are listed in Table S1.

Targeting serine/threonine protein kinases (STKs)
STKs are characterizedby their ability to phosphorylate serine or threonine res-

idues, and they play roles in cell proliferation, differentiation, programmed cell
death, and embryonic development. For example, BRAFV600E, an oncogenic
mutant of BRAF that monomerically transmits a signal in the absence of acti-
vated RAS, is selectively degraded by SJF-0628, a vemurafenib-based PROTAC
that does not affect the wild-type form or other RAF family members, such as
ARAF and CRAF.84 PROTACs that target cyclin-dependent kinase 12 (CDK12),
such asBSJ-4-116 andPP-C8, have been reported to degrade functionalmutants
of CDK12.85,86 However, two CDK12mutations have exhibited resistance to BSJ-
4-116, demonstrating a potential mechanism by which tumor cells can evade
TPD.85 Compound 9, a conjugate of interleukin-1 receptor-associated kinase 4
(IRAK4) inhibitor 1, which binds to IRAK4, and pomalidomide, which binds to

Figure 2. PROTACs of different POIs

REVIEW

ll The Innovation 4(3): 100413, May 15, 2023 3



CRBN, induces substantial degradation of IRAK4 in the ABC-diffuse large B cell
lymphoma (DLBCL) cell linesOCI-LY10 andTMD8.87 PROTAC_RIPK2was shown
to degrade receptor-interacting serine/threonine protein kinase 2 (RIPK2) in a
highly specific manner, and at nanomolar concentrations, it leads to a decrease
in the level of downstreammitogen-activated protein kinase (MAPK) in a VHL-de-
pendent manner.88 Degrader 23 (MS423), which is composed of PD0325901
and a VHL ligand, inhibits mitogen-activated protein kinase kinases 1/2
(MEK1/2) kinase activity in vitro and degrades target proteins in colorectal cancer
(CRC) andmelanomacell lines, leading to decreases in the levels of p-MEKandp-
ERK and inhibition of the proliferation of CRC and melanoma cell lines.89

PROTACs SJFa and SJFd have been shown to degrade the p38 MAPK family
isoforms p38a and p38d, respectively.90 SJFd has been shown to target both
wild-type and mutant p38dK220E/T221E. SGK3-PROTAC1 mediates the selective
degradation of serum/glucocorticoid regulated kinase family member 3
(SGK3), but not SGK1/2, at a DC50 of <100 nM.91 Combination therapy with
PI3K inhibitors and SGK3-PROTAC1 at a micromolar concentration has been
shown to outperform the effects of a conventional PI3K inhibitor (GDC0941) in
the CAMA-1 breast cancer cell line (Figure 2).91 PROTACs that target other
STKs are listed in Table S1.

Targeting proteins in transcriptional regulation
Transcription factors (TFs) work alone or with other proteins in complexes to

regulate gene transcription and thus contribute to cell-fate determination. His-
torically, TFs have been classified as undruggable targets due to their smooth
surface structure and lack of a pocket resulting from protein-DNA interactions
or PPIs.92 Nuclear hormone receptors, such as estrogen receptor (ER),
androgen receptor (AR), retinoic acid receptor (RAR), and cellular retinoic
acid-binding protein (CRABP), have been reported as targets of PRO-
TACs.47,56,93,94 SD-36, a conjugate of the signal transducer and activator of
transcription 3 (STAT3) inhibitor SI-109 and a CRBN ligand, is the first reported
selective degrader of STAT3 protein. It has been shown to achieve complete
and continuous tumor suppression in a Molm-16 mouse xenograft model at
well-tolerated dose schedules.95 In addition to targeting TFs, PROTECs are de-
signed to target epigenetic-related proteins, such as BET family members
(BRD2/3/4/7/9), P300/CBP-associated factor (PCAF), histone deacetylases
(HDACs), and Polycomb repressive complex 2 (PRC2), as dysregulation of
these proteins and, subsequently, the epigenome promotes cancer onset and
progression (Table S1).96 For example, SMIs (JQ1 and I-BET726) and typical
PROTACs (MZ1, ARV-825, and ARV-771) have been shown to target BET family
members and inhibit downstream oncogene expression.41,57,58,97–99 The
PROTAC GSK983 mediates the degradation of PCAF and its homologous pro-
tein general control non-derepressible 5 (GCN5) in a concentration-dependent
manner in both macrophages and monocyte-derived dendritic cells, leading
to a reduction in inflammatory cytokine production.100 UNC6852, which selec-
tively degrades PRC2, has been shown to reduce the levels of EZH2, EED, and
SUZ12, leading to a decrease in the level of trimethylation of lysine 27 on his-
tone H3 (H3K27me3). UNC6852 inhibits the proliferation of DB and Pfeiffer
cells (DLBCL-related cell lines bearing mutated EZH2) (Figure 2).101 PROTACs
that target other proteins involved in transcriptional regulation are listed in
Table S1.

CLINICAL PROOF OF CONCEPT FOR ORTHODOX PROTACs
AR-PROTACs

Bavdegalutamide (ARV-110; Arvinas) is a first-in-class PROTAC that has been
shown to degrade wild-type AR and several forms of mutant AR (T878A, T878S,
H875Y, F877L, and M895V), leading to a prostate-specific antigen level decline
R50% (PSA50) rate in 46% of patients. Patients receiving ARV-110 treatment
have achieved tumor reductions, suggesting that this PROTAC may be useful
as a form of precision medicine for metastatic castration-resistant prostate can-
cer (mCRPC). However, bavdegalutamide cannot penetrate the blood-brain bar-
rier (BBB). Furthermore, it does not degrade ARL702H, a form of AR containing a
point mutation that is present in 3%–10% of patients with mCRPC, or AR-V7, a
splice variant that lacks the ligand binding domain of AR.102 AC0176 (Accutar
Biotech) potently degrades both wild-type AR and the prevalent AR mutants
(e.g., L702H, T878A, H875Y, W742, and C247) associated with drug resistance
to current AR-targeted therapies. CC-94676 (AR-LDD; Bristol Myers Squibb) is
another AR-PROTAC with preclinical activity similar to that of ARV-110 in terms

of its favorable pharmacokinetic properties, ability to effectively degrade AR, and
ability to induce continuous tumor regression in a VCaPmouse model (sources:
public data from the companies) (Table 1).

ER-PROTACs
ARV-471 (Arvinas) is believed to be the only trial of an ER-targeting therapy

requiring prior CDK4/6 treatment for all patients. ARV-471 is well tolerated at
doses ranging from 30 to 700 mg, but the dose-limiting toxicity (DLT) and
maximal tolerated dose (MTD) have not yet been determined. Recently, ARV-
471 was shown to yield a clinical benefit rate of 38% in evaluable patients and
it has continued to show a favorable tolerability profile in its phase II expansion
trial.103 AC0682 (Accutar Biotech) has been shown to potently and selectively
degrade both wild-type and mutant forms of ERa. AC0682 has favorable phar-
macological properties, can penetrate the BBB, and may offer a new form of
breast cancer treatment with an MOA distinct from that of fulvestrant (sources:
public data from the companies) (Table 1).

BRD9-PROTACs
CFT8634 (C4 Therapeutics) is a highly selective BRD9-PROTAC currently be-

ing investigated in a phase I clinical trial. It has been shown to specifically
inhibit the growth of SMARCB1-perturbed (SMARCB1, SWI/SNF-related ma-
trix-associated actin-dependent regulator of chromatin subfamily B member
1) cells and to be robustly effective in a clinically relevant patient-derived syno-
vial sarcoma (SS) xenograft model.104 FHD-609 (Foghorn Therapeutics) is an
intravenous BRD9-PROTAC under investigation to determine the primary
(DLT and adverse events) and secondary outcome measures (pharmacoki-
netics [PK], objective response rate, duration of response, time to response, pro-
gression-free survival, and overall survival) (sources: public data from the com-
panies) (Table 1).

IRAK4-PROTACs
KT-474 (Kymera/Sanofi) selectively degrades IRAK4. It has been shown

to reduce IRAK4 expression levels in peripheral blood mononuclear cells
(PBMCs) and block cytokine induction at considerably lower doses than those
required for toll-like receptor (TLR) agonists. At day 14, KT-474 shows consistent
degradation of 92% at the lowest dose level (25 mg) and 96%–98% at the two
highest dose levels (100 and 200 mg). KT-474, delivered in multiple doses, has
been shown to be well tolerated in blood and skin for at least 14–21 days. KT-
413 (Kymera) is a CRBN-based IRAK4 degrader that is being investigated in a
phase I clinical trial to determine its safety, PK/pharmacodynamics (PD), and pre-
liminary efficacy in DLBCL and to explore its target knockdown and downstream
effects in PBMCs and tumors (sources: public data from the companies)
(Table 1).

Other PROTACs
KT-333 (Kymera) degrades STAT3 and is expected to receive investigational

new drug (IND) clearance for evaluation of its metrics in liquid (e.g., peripheral
T cell lymphoma, cutaneous T cell lymphoma, large granular lymphocytic leuke-
mia) and solid tumors. KT-253 (Kymera) is an MDM2 degrader that stabilizes
p53, as wild-type p53 exists in approximately 50% of tumor cells. KT-253 shows
antitumor activity at picomolar concentrations, with a potency >200-fold greater
than that of clinically active MDM2 SMIs. It achieves its effects by blocking the
feedback loop, which upregulates MDM2 production and drives tumor cells to
undergo rapid apoptosis. CFT1946 (C4 Therapeutics) is an on-mechanism,
CRBN-based PROTAC that selectively degrades BRAFV600X; it was shown to
potently inhibit MAPK signaling and promote tumor regression in a BRAFV600E

A375 xenograftmousemodel. CFT1946 also acts against BRAFV600E/NRASQ61K,
a model of clinical resistance to BRAF inhibitors, and has exhibited potential ef-
ficacy as a TPD-based therapy in non-V600X-mutated BRAF-driven cancers.
CFT7455 (C4 Therapeutics) is a potent small molecule that degrades IKZF1/3.
It has been shown to exhibit enhanced catalytic activity, resulting in a >1,000-
fold improvement in potency compared with pomalidomide, and has been
shown to be efficacious in a model of systemic multiple myeloma. NX-2127
(Nurix Therapeutics) is a heterobifunctional, orally administered, CRBN-based
BTK degrader that has been shown to catalyze the neo-substrate degradation
of IKZF1/3 in DLBCL cell lines, including cells harboring the ibrutinib-resistance
mutation BTKC481S, and in the cynomolgus monkey.105 NX-5948 (Nurix
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Therapeutics) degrades BTK and has been shown to penetrate the BBB in pre-
clinical models to degrade BTK in both microglia and CNS-resident lymphoma
cells and to exert antilymphoma activity in a primary model of CNS lymphoma.
CFT8919 (C4 Therapeutics) specifically induces EGFRL858R degradation at low
(nanomolar) concentrations without affecting wild-type EGFR, and its activity is
equivalent to that of EGFR inhibitors. CF8919 has been shown to have antitumor
activity in multiple tumor models, including NCI-H1975 EGFRL858R/T790M xeno-
graft, BaF3allograft, andH1975-LUC (EGFRL858R/T790M) brainmetastasismodels
(sources: public data from the companies) (Table 1).

MAJOR CONCERNS OF PROTAC
The “hook effect”

A PROTAC forms a cooperative ternary complex to degrade its target. At
concentrations above a certain threshold, however, PROTACs tend to form inef-
fective binary complexes (e.g., PROTAC-POI or PROTAC-E3 ligase) (Figure 3).
The competition between these binary and active ternary complexes (e.g.,
POI-PROTAC-E3 ligase) is described as the “hook effect” and it reduces the
degradation efficiency of the PROTAC.90,106 The hook effect reduces the po-
tency of the PROTAC, and it typically occurs at micromolar concentrations
and is difficult to evade.83,99,107 Unfortunately, in vivo data on the hook effect

are scarce, and the MTDs identified from preclinical profiles in animal studies
indicate that the PROTAC concentration threshold may be too high to enable
adequate degradation of POIs.108,109 To confirm the most appropriate doses,
PROTACs should be tested over a wide concentration gradient in vitro and
in vivo. Intriguingly, the study of ligand-bound structures can promote the
design of next-generation PROTACs. By modifying some components,
PROTACs can be used to form new ligand-induced PPIs, yielding PROTAC cat-
alytic activity via a principle similar to enzyme-substrate convergence.110 AT1, a
structure-designed compound, was developed by updating the BET degrader
MZ1 and it possesses a more stable ternary complex (POI-PROTAC-E3 ligase)
and a higher hook effect threshold.41

Low tissue/cell permeativity
PROTACs are iterative (Figure 3) and, unlike SMIs, degrade POIs in an event-

driven, rather than occupancy-driven, manner. Most known orthodox PROTACs
are beyond Lipinski’s rule of five, which helps distinguish the druggability of mo-
lecular determinants with undesirably highmolecular weights (1,000–2,000 Da).
PROTACs have high molecular weights, and the resulting low permeativity and
solubility contribute to their lack of ideal cellular uptake and target degradation,
as well as a high rate of active transporter-mediated efflux (Figure 3).111 The

Table 1. Ongoing clinical trials of bifunctional degraders (PROTACs)

Clinical trial NCT no.
Highest
phase Degrader ROA POI E3 ligase Indications Sponsor

NCT03888612 II ARV-110 oral AR CRBN PC Arvinas

NCT05067140 I ARV-766 oral AR undisclosed PC Arvinas

NCT05241613 I AC0176 oral AR undisclosed PC Accutar Biotech

NCT04428788 I CC-94676 oral AR CRBN PC Bristol Myers Squibb

NCT05252364 I HP518 oral AR undisclosed PC Hinova

NCT05428449 I GT20029 topical AR undisclosed acne vulgaris,
androgenetic alopecia

Kintor

NCT04072952 II ARV-471 oral ER CRBN BC Arvinas/Pfizer

NCT05080842 I AC0682 oral ER CRBN BC Accutar Biotech

NCT05487170 II RNK05047 i.v. BRD4 chaperone DLBCL Ranok

IND-e CFT8634 oral BRD9 CRBN SS, SMARCB1-null
solid tumors

C4 Therapeutics

NCT04965753 I FHD-609 i.v. BRD9 undisclosed SS Foghorn Therapeutics

NCT04772885 I KT-474 oral IRAK4 undisclosed multiple immunoinflammatory
diseases: HS, AD, RA, others

Kymera/Sanofi

NCT05233033 I KT-413 i.v. IRAK4 CRBN MYD88-mutant DLBCL Kymera

NCT04830137 I NX-2127 oral BTK CRBN B cell malignancies Nurix Therapeutics

NCT05131022 I NX-5948 oral BTK CRBN B cell malignancies and
autoimmune diseases

Nurix Therapeutics

NCT04861779 I HSK29116 oral BTK undisclosed B cell malignancies HAISCO

NCT05006716 I BGB-16673 oral BTK undisclosed B cell malignancies BeiGene

NCT05225584 I KT-333 i.v. STAT3 undisclosed liquid and solid tumors Kymera

NCT04886622 I DT2216 i.v. BCL-xL VHL liquid and solid tumors Dialectic Therapeutics

IND-e CFT8919 oral EGFRL858R CRBN NSCLC C4 Therapeutics

CTR20222742 II CG001419 oral TRK CRBN cancer and other indications Cullgen

IND-e CFT1946 oral BRAFV600X undisclosed melanoma, CRC, NSCLC C4 Therapeutics

IND-e KT-253 undisclosed MDM2 undisclosed liquid and solid tumors Kymera

AD, atopic dermatitis; AR, androgen receptor; BC, breast cancer; BCL-xL, B cell lymphoma-extra large; BRD9, bromodomain-containing protein 9; BTK, Bruton’s tyrosine
kinase; CRBN, cereblon; CRC, colorectal cancer; DLBCL, diffuse large B cell lymphoma; EGFR, epidermal growth factor receptor; ER, estrogen receptor; HS, hidradenitis
suppurativa; IND-e, in IND-enabling preclinical studies; IRAK4, interleukin-1 receptor-associated kinase 4; i.v., intravenous; MDM2, mouse double minute 2 homolog;
NSCLC, non-small-cell lung cancer; PC, prostate cancer; PROTAC, proteolysis-targeting chimera; RA, rheumatoid arthritis; ROA, route of administration; SS, synovial
sarcoma; STAT3, signal transducer and activator of transcription 3; TRK, tropomyosin receptor kinase; VHL, von Hippel-Lindau.
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highly polar surface of a PROTAC limits its ability to cross physiological barriers
and cell membranes. In clinical settings, CRBN is strongly preferred over other E3
ligases due to its lower molecular weight, fewer hydrogen bond donors, and
smaller number of rotatable bonds, even though VHL-based PROTACs are
more likely than other PROTACs to form functional ternary structures.112 Various
properties of PROTAC-delivery agents (e.g., prodrugs, nanoparticles, and protein-
or nucleic acid-based formulations), such as their ability to improve solubility,
intracellular accumulation, and site-specific distribution andminimal side effects,
have been summarized.113 The problem of cell permeativity has been addressed
by attaching cell-permeative peptides (e.g., poly-D-arginine sequences) to E3 li-
gands.46 Furthermore, an in-cell click-formed proteolysis-targeting chimera
(CLIPTAC) contains two individual precursors—one each is bound to POI and
E3 ligase—that form a heterobifunctional molecule intracellularly via a bio-orth-
ogonal “click” reaction (Figure 4). Upon entering cells, a tetrazine-tagged
thalidomide derivative (Tz-thalidomide) and TCO-tagged inhibitor of POI can
self-assemble to recruit CRBN to the POI, thus triggering its ubiquitination and
degradation.114 Compared with a high-molecular-weight compound, it is easier
for two compounds with lower molecular weights to enter a cell. In addition to
the direct modification of PROTACs, nanoparticles can be used to improve the
action of PROTACs. The encapsulation of PROTACs with different modified
nanoparticles was shown to increase tumor permeability via the enhanced
permeability and retention (EPR) effect controlled by delivering high concentra-
tions of PROTACs. The improved cell permeability relies on the MOA of nanopar-
ticles via endocytosis with reduced PROTAC metabolism.115

Inefficiency of PROTAC design
Traditionally, PROTAC design has required extensive experiments and trials,

and the generation of linkers has played a crucial role in the physiochemical
properties and degradation activities of PROTACs.55,116 As the development
of POI warheads and E3 is fundamentally identical to that of other small mol-

ecules, de novo linker design methods, such as a graph-based deep generator
(DeLinker) and a language model (SyntaLinker), are emphasized and exploited
to fill the gap in linker generation.117,118 However, the open-source database of
PROTACs is small (�2,300 PROTACs),119 and thus, linkers designed using
these de novo methods are not practical for developing druggable PROTACs.
Hence, it is difficult to train a model capable of designing PROTACs with ideal
properties and activity both in vitro and in vivo. PROTAC-RL, a novel deep gener-
ative model for rational PROTAC design, combines an augmented transformer
architecture with memory-assisted reinforcement learning (RL). As a proof of
concept, 5,000 PROTACs were generated to target BRD4 during a 49-day dis-
covery period, and one exclusive candidate was validated to have antiprolifera-
tive activity in vivo.120 The biotech company Differentiated Therapeutics built
Auto/dx, a unique platform that integrates proprietary protein interaction dy-
namics, AI, and synthetic biology methodologies for molecular simulation.
The company announced the completion of a $5 million seed financing round.
The combination of drug discovery and cutting-edge computational tools is
likely to be essential for advancing the development of TPD strategies
(Figure 3).

Expansion of the E3 ligase landscape
Peptide-based E3 ligands are used to recruit b-TrCP and VHL, but their use is

restricted due to poor cell permeativity. Although more than 600 human-
genome-encoded E3 ligases have been identified, the lack of specific high-affinity
ligands has limited the scope of application of PROTAC technology.121 Further
exploration of E3 ligases is needed to address the following challenges: (1) in tu-
mor cells, drug resistance inactivates degraders; (2) resistance to components of
immunomodulatory imide drugs (IMiDs), such as pomalidomide, lenalidomide,
and thalidomide, cause genomic alterations that affect neo-substrates (IKZF1/
IKZF3)122; and (3) there is a lack of effective E3 ligases known to be exclusive
to tumor cells. Beyond the ligases initially used in PROTAC technology (CRBN,

Figure 3. The advantages and challenges of PROTACs
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VHL, MDM2, and IAP), other E3 ligases may be useful in PROTAC development
and other TPD strategies. These include damage-specific DNA binding protein 1
(DDB1)-CUL4-associated factor 16 (DCAF16), DCAF15, ring-finger protein 4
(RNF4), RNF114, Kelch-like ECH-associated protein 1 (KEAP1), fem-1 homolog
B (FEM1B), and the aryl hydrocarbon receptor (AhR) (Table 2).

On-target off-tumor toxicity
On-target toxicity commonly results from interactions of the drug with its in-

tended target. In the context of this review, a PROTAC degrades its POI in both
tumor and normal cells, meaning that the therapeutic and toxic targets are the
same (Figure 3). Accordingly, prolonged TPD eliminates entire proteins, including
enzymatic and scaffolding subunits. If the POI is essential for normal cellular
functions, TPD may cause intolerance and significant adverse effects.81,95,136

For example, the phase II trial of ARV-110 revealed that treatment-related
adverse events (TRAEs) such as nausea, fatigue, vomiting, weight loss, and ane-
mia are common in treated patients. Hence, the future development of PROTACs
is challenged by the need to exclusively target tumor cells or the tumor microen-
vironment to avoid on-target toxicity.

PROTACs with additional agents that target specific cell membrane receptors
(e.g., nucleolin [NCL], c-type lectin-like molecule-1 [CLL1], human EGFR 2 [HER2],
and folate receptor a [FORL1]) have been introduced to improve off-tumor
toxicity and further expand the practical applicability of PROTAC technology.
For example, AS1411 is a 26-base, guanine-rich, single-stranded DNA aptamer
that binds to NCLwith high affinity and specificity. NCL is typically overexpressed
on the plasmamembrane of tumor cells relative to normal cells. As AS1411 can
be internalized into cells by NCL-dependent micropinocytosis, it provides both
suitable tumor targeting and antitumor activity. Aptamer-PROTAC conjugates
(APCs) that use AS1411 as the aptamer have been designed to target tumors
specifically. The BET degrader APR has been shown to degrade BRD2/3/4 and
exhibit effective tumor-targeting and antitumor activity.137 Folate has a strong af-
finity for FOLR1, which is highly expressed inmany tumor cells. Hence, the devel-
opment of PROTACs conjugated with folate represents a strategy for delivering
PROTACs into specific tumor cells for on-target degradation by targeting FOLR1.
The degradation of POIs (e.g., BRD, MEK, ALK, and IKZF1/3) via folate-PROTACs
ormolecular glues has been validated.138,139 Given the outstanding successes of
antibody-drug conjugates (ADCs) in the field of anticancer therapeutics,140 anti-
body-PROTAC conjugates have also been brought forward as a concept for

achieving tissue-specific degradation. For example, PROTACs that target the
cell membrane proteins CLL1 and HER2 have been used to degrade BRD4 in a
specific target-positive manner.22,141–143

Off-target toxicity
Drugs that target non-POI proteins, such as receptors or enzymes, may have

severe downstream effects.37,144 Theoretically, PROTACs are more selective
than traditional SMIs because of the strictness and ingenuity of forming a
viable ternary complex that enables polyubiquitination and degradation via
the UPS. Compared with the occupancy-driven MOA of SMIs, PROTACs
frequently induce new PPIs that alter the selectivity of the parent com-
pounds.145 For instance, foretinib, a multikinase inhibitor that targets more
than 130 kinases, has been used to generate PROTACs with different E3 li-
gands (VHL and CRBN). The formation of bifunctional degraders reduces the
target binding selectivity of VHL- and CRBN-PROTACs to 52 and 62 kinases,
respectively, and the stricter condition of degradation selectivity reduces the
numbers of targets to only 9 and 14 kinases, respectively.146 Many similar re-
ductions in the number of targeted kinases have been reported, suggesting
that the selective degradation of POIs is not dependent solely on target ligand
binding selectivity or affinity.147–150 In addition, the match between the E3
ligase and the POI is one of the most crucial factors in the formation of ternary
complexes with preferred PROTACs and optimal E3 ligases. Degradation selec-
tivity is largely associated with E3 ligase preference. Pairings of different E3 li-
gases with a given POI can alter the degradation selectivity and efficiency, as
demonstrated by the CDK4/6 selectivity of a VHL-based palbociclib degrader151

and the weak HDAC6 selectivity of an IAP-based degrader.152 There is one
exception regarding unexpected neo-substrates for IMiDs, such as IKZF1/3
for CRBN. It remains uncertain whether E3 ligases can recruit nonspecific sub-
strates in an IMiD-like manner.153 NX-2127, a CRBN-based BTK degrader from
Nurix Therapeutics, has been shown to catalyze the neo-substrate degradation
of IKZF1/3 in DLBCL cell lines (Figure 3).

PROTAC DERIVATES
BacPROTACs
BacPROTACs, which are small-molecule degraders, hijack bacterial ClpC:ClpP

(ClpCP) proteases to extend inducible protein-targeted degradation techniques
that interfere with microbial infection. Phosphorylated arginine residue

A B

C D

E

Figure 4. Derivates from orthodox PROTACs
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(pArg)-containing BacPROTACs consist of a POI ligand, chemical linker, and pArg
bound to the ClpCNTD domain to induce its reassembly and activation.
BacPROTAC targets ClpCNTD and activates ClpC, transforming the resting unfol-
dase into its functional state. The successful use of a BacPROTAC for degrada-
tion in mycobacteria has provided new ideas for the development of antimicro-
bial compounds (Figure 4A).154

Antibody-based PROTACs (AbTACs)
AbTACs are recombinant bispecific antibodies used to tether cell-surface E3

ligases to transmembrane proteins to induce target degradation in vitro and
in vivo. AC-1, a fully recombinant bispecific IgG, was developed to target pro-
grammed death-ligand 1 (PD-L1), a membrane protein not targeted by orthodox
PROTACs. AC-1 recruits ring-finger protein 43 (RNF43), an E3 ligase on the cell
surface, to degrade PD-L1 via internalization and lysosome-mediated degrada-
tion (Figure 4B).22 The abilities of multiple Wnt-responsive ligases (e.g., RNF43
and zinc- and ring-finger 3) to induce cancer-specific degradation in an “on-de-
mand” manner have been validated,155 and these findings have partially ad-
dressed the issues of poor permeativity and difficulties in targeting membrane-
associated proteins.

Ribonuclease-targeting chimeras (RIBOTACs)
Since various TPD strategies have been shown to successfully degrade

target proteins, decaying RNA by related nucleases is considered a prospective
mimicry. More than 80% of the human genome is transcribed into RNA, of
which less than 2% comprises mRNAs that are translated into proteins. Non-
coding RNAs can regulate gene expression and, thus, are potential drug tar-
gets. RIBOTACs consist of an RNA binder, a small molecule (20-50-linked
tetra-adenylate) that recruits and activates a local latent ribonuclease (RNase
L), and a linker that binds these two components. RIBOTACs thus recruit mono-
meric RNase L and dimerize it to form an active structure (Figure 4C). The first
RIBOTAC molecule was shown to selectively cleave the precursor of microRNA
96 (miR-96), and the subsequent silencing of miR-96 derepressed a proapopto-
tic TF, leading to the selective apoptosis of breast cancer cells.156 The com-
pound TGP-210-RL has been shown to selectively degrade pre-miR-210 and
thus block the formation of miR-210, which is essential for cancer cell survival
in a hypoxic microenvironment.157 DNA-encoded libraries have been screened
to identify new binders that can recruit RNase L. The RTK inhibitor dovitinib and
a binder have been incorporated into the design of a next-generation RIBOTAC
intended to target the miRNA-21 precursor.158 The potential use of RIBOTACs
for selective RNA degradation has broadened the prospect of targeting vulner-
abilities in RNA-based diseases.

Phosphatase-recruitment chimeras (PHORCs)
Disease onset is frequently caused by the dysregulation of signal transduction,

especially the hyperphosphorylation, of oncoproteins. PHORCs have been de-

signed to reduce the phosphorylation of target proteins via proximity to a relevant
phosphatase. DDO3711, the first PHORC, comprises an activator of protein phos-
phatase 5 (PP5; a serine/threonine phosphatase), an SMI of apoptosis signal-
regulated kinase 1 (ASK1), and a chemical linker. Overexpression of ASK1 has
been linked to the progression of multiple cancers. PP5 is characterized by its
explicit reversal of ASK1 Thr838 autophosphorylation (p-ASK1T838); however,
PP5 is autoinhibited in some cancer types, leading to an excessive level of p-
ASK1T838. Activation of PP5 and colocalization of PP5 with its substrate ASK1
are expected to accelerate the specific dephosphorylation of p-ASK1T838 (Fig-
ure 4D). DDO3711 has shown desirable antiproliferative activity (IC50 0.5 mM)
against cancer cells, whereas the individual components (ASK1, SMI, and PP5
activator) have shown no effects in cancer cells.159

Oligonucleotide-based PROTACs
Some oligonucleotide-based PROTACs, including RNA-PROTACs, program-

mable oligonucleotide PROTACs (O’PROTACs), and TF-targeting chimeras
(TRAFTACs), have been developed according to the characteristic abilities of
RNA-binding proteins (RBPs) and TFs to bind RNA and dsDNA consensus se-
quences, respectively (Figure 4E). Such constructs have been demonstrated to
degrade Lin-28 homolog A (LIN28A) and the TFs, including ETS TF (ERG),
lymphoid enhancer-binding factor 1 (LEF1), NF-kB, and brachyury.24,160–164

The PROTAC ZL216 comprises AS1411 as the warhead and a VHL ligand to
enable the selective internalization and degradation of NCL, and it has been
shown to exert antiproliferative activity against breast cancer cells in vitro and
in vivo.165

Phospho-dependent PROTACs (phosphoPROTACs)
Phosphorylation, a post-translational modification, is a crucial step in the acti-

vation of proteins, especially kinases, and their downstream signaling pathways.
PhosphoPROTACs represent an update of orthodox PROTACs, wherein
PROTAC-mediated protein degradation is coupled with the activation state of a
particular signaling pathway.30 RTKs are activated by autophosphorylation,
and their downstream signaling cascades are amplified by recruiting and phos-
phorylating molecules with phosphotyrosine-binding (PTB) and SH2 domains. A
phosphoPROTAC contains a warhead with a common RTK phosphorylation
sequence that can be phosphorylated by activated RTKs, and an E3 ligand is a
residue of HIF-1a binding to VHL. Poly-D-Arg is linked to the E3 ligand to improve
cell permeativity. Under specific situations involving RTK activation, the control-
lable phosphoPROTAC can be phosphorylated, which is followed by the recruit-
ment of target proteins with PTB and SH2 domains. These target proteins are
ubiquitinated and consequently degraded via the VHL-mediated ubiquitin-protea-
some pathway. The phosphoPROTACs TrkAPPFRS2a and

ErbB2PPPI3K (FRS2a and
PI3K are the downstream proteins of TrkA and ErbB2, respectively) have been
shown to inactivate the TrkA- and ErbB2/ErbB3-regulated signaling pathways,
respectively, in breast cancer cell lines (Figure 4E).166

Table 2. List of E3 ligases and related POIs

E3 ligase Complex POI Reference

CRBN CUL4-RBX1-DDB1-CRBN POIs involved in cancers, immune
diseases, neology, and HCV

de Wispelaere et al.,62 Bassi et al.,100

Sun et al.,123 Silva et al.124

VHL CUL2-RBX1-ElonginB-ElonginC-VHL KRAS, EGFR, BCR-ABL, etc. Bond et al.,53 Zhao et al.,68 Khan et al.,77

Sun et al.,123

MDM2 BTK, PARP1 Sun et al.,125 Zhao et al.126

IAP RAR Itoh et al.47

DCAF16 CUL4-RBX1-DDB1-DCAF16 BRD4, FKBP12 Zhang et al.127

DCAF15 CUL4-RBX1-DDB1-DCAF15 RBM39, BRD4 Li et al.,128 Han et al.,129 Bussiere et al.130

RNF4 BRD4 Ward et al.131

RNF114 BRD4 Spradlin et al.132

KEAP1 KEAP1-CUL3 BRD4 Tong et al.133

FEM1B BRD4 Henning et al.134

AhR CUL4-RBX1-DDB1-AhR CRABP1 Ohoka et al.135
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Light-controllable PROTACs
Light-controllable PROTACs can be divided into two main groups, namely

photoswitchable PROTACs and photocaged PROTACs, which are characterized
by reversible or irreversible light control, respectively, at a high spatiotemporal
resolution. Photoswitchable PROTACs induce reversible TPD via an optically
controlled moiety on the linker or E3 ligand. Exposure to light at a specific
wavelength induces an “inactive-active” transition in the PROTAC that enables
the formation of a stable ternary complex (Figure 4E).167–169 The incorporation
of azobenzene photoswitches into PROTACs has led to a series of BET and
FKBP12 degraders whose precise ability to regulate activation and inactivation
is regulated under two conditions: blue-violet light (380–440 nM) and
darkness.169

Photocaged PROTACs are characterized by the binding of a photolabile block-
ing group to the E3 ligand, which blocks the interaction between the PROTACand
the E3 ligase. Upon light stimulation, the PROTAC is released from the photocag-
ing group, enabling the active conformation of the ternary complex (Fig-
ure 4E).170–173 The degraders dBET1 and dALK, along with a photolabile caging
group (nitroveratryloxy-carbonyl group), have been conjugated to the E3 ligand
pomalidomide, and photolysis has been shown to be induced by ultraviolet A
irradiation. The substrates of pomalidomide, dBET, and dALK (including IKZF1/
3, BRD2/3/4, and ALK) were shown to be degraded in a light-controllable
manner.173

Dual/trivalent PROTACs
Inspired by dual-targeting drugs,174 especially bispecific antibodies, Li and col-

leagues first presented the concept of a dual PROTAC that could degrade two
distinct POIs (EGFR and PARP).175 The EGFR inhibitor gefitinib, the PARP inhib-
itor olaparib, and a CRBN/VHL ligand were linked with a star-type core linker of
trifunctional amino acids. The dual PROTACs DP-C-1 and DP-V-4 have demon-
strated potent ability to degrade both EGFRandPARP in a dose- and time-depen-
dent manner. However, DP-V-4 was shown to possess a weaker antiprolifer-
ative activity (IC50 19.92 ± 1.08 mM) than its parent inhibitors in H1299 cells,
potentially because its high molecular weight led to low solubility and poor cell
permeativity.175

To address incomplete target degradation and the hook effect due to unpro-
ductive high concentrations of ternary complexes, a trivalent PROTAC SIM1
was developed to degrade the BET domain family members BRD2, BRD3,
and BRD4. A trivalent PROTAC comprises bivalent POI ligands and a moiety
for recruiting E3 ligase, tethered by a branched linker. As the most potent triva-
lent PROTAC, SIM1 can degrade target proteins over a wide range of concen-
trations (10 pM–30 mM), thus eliminating the hook effect.176 This avidity- and
cooperativity-enhanced ternary complex outperforms the BET degraders MZ1
and MT1 by forming a 1:1:1 complex with VHL and the tandem bromodomain
BD1–BD2 with conformational change. Moreover, SIM1 has been shown to
degrade its targets rapidly and at a lower concentration than that reported
for the BET degraders ARV-771 and MZ1, and it has been shown to have a
higher residence time rate and longer half-life in vivo.176 In principle, trivalent
PROTACs use the same MOA as the above-mentioned dual PROTACs
(Figure 4E).

Chaperone-mediated protein degradation (CHAMP)
CHAMP, another important PROTAC derivative, directly hijacks the chap-

erone molecule HSP90, instead of E3 ligase, to achieve target degradation.
The compound BRD4-CHAMP, which comprises a BRD4:CHAMP:HSP90
ternary complex, has been shown to selectively degrade BRD4 and exert anti-
tumor activity in vitro and in vivo.177 First, the CHAMP compound RNK05047
(CHAMP-1) is being explored in a clinical trial as a potential DLBCL treatment
(Figure 4E).

Homo-PROTACs
Homo-PROTACs have been designed and validated to mediate the self-

destruction of E3 ligases, such as VHL, MDM2, and CRBN (Figure 4E).178–180

For example, CM11, a homo-PROTAC, has been shown to induce the selective
depletion of a VHL isoform (pVHL30) at a nanomolar concentration. However,
this exclusive and highly isoform-selective degradation of pVHL30 was unex-
pected because CM11 does not differentiate between pVHL19 and pVHL30 in
ternary complexes.180

BioPROTACs
A bioPROTAC was exploited at an early stage after the first PROTAC debut.

This hybrid molecule comprises a small-molecule warhead and a phosphopep-
tide. BioPROTAC activity against some clinically relevant cancer targets, such
as HER2, MYC, and KRAS, has been validated in human cancer cell lines and
mouse xenograft tumormodels.181–184However, bioPROTACs cannot be admin-
istered orally due to the highmolecular weights of their peptide components, and
a suitable drug-delivery system needs to be chosen.

OTHER TPD THERAPIES
Macroautophagy degradation-targeting chimeras (MADTACs) AUTACs/
ATTECs/AUTOTACs
Macroautophagy is another degradation pathway in cells, wherein lysosomes

engulf and degrade cytoplasmic substrates.185 Many studies of TPD technolo-
gies that engage lysosomal pathways through different mechanisms have
been summarized.186 Because many intracellular proteins are not targeted by
the UPS for degradation, AUTACs have been designed to degrade proteins and
dysfunctional mitochondria via autophagy.187 AUTACs consist of three parts: a
warhead that specifically targets the proteins to be degraded, a tag for selective
autophagic degradation, and a linker connecting the other two parts. In addition
to their target proteins, AUTACs can degrade disease-related debris, such as frag-
mented mitochondria. Compared with earlier PROTACs, AUTACs can potentially
degrade a broader range of disease-related organelles and intracellular patho-
gens.188 Once macroautophagy is initiated, the area of cytoplasm containing
the cargo to be degraded is elongated and isolated.189 The cytoplasmic mem-
brane subsequently closes around the contents and matures to form an auto-
phagosome, which then fuses with a lysosome to degrade the cargo.190

S-Guanylation (cysteine conjugation of 8-nitro-cGMP) is a post-translational
modification important for K63 ubiquitination that is used to clear intracellular
bacterial pathogens.191 S-guanylate may be an ideal tag for substrate targeting.
The pairing of a degradation tag (e.g., guanine derivatives such as FBnG) and a
ligand for the target can be characterized by the induction of K63-poly-
ubiquitination to mediate substrate S-guanylation for selective autophagy.
AUTAC platforms have been proven effective against MetAP2, FKBP12, BRD4,
and mitochondria.
ATTECs have been shown to provide a more direct approach, interacting with

both the mutant huntingtin protein (mHTT) with an expanded polyglutamine
(polyQ) tract, which causes Huntington disease, and the autophagosome protein
microtube-associated protein 1A/1B light chain 3 (LC3), but not with wild-type
HTT.192 Using small-molecule-microarray-based screening technology, com-
pounds that can conjugate LC3 and mHTT have been exploited to degrade
mHTT rather than wild-type HTT, with high specificity. As these compounds
recognize polyQ tracts in their targets, they might be useful for degrading other
disease-related polyQ-containing proteins.193 In addition to polyQ as the LC3
ligand, GW5074 and ispinesib have been used to design ATTECs that have
been verified to effectively degrade the oncoproteins BRD4 and nicotinamide
phosphoribosyltransferase (NAMPT).194,195 Furthermore, non-proteinaceous tar-
gets, such as lipid droplets (LDs), cannot be degraded using orthodox PROTAC
technology but are potential targets for ATTECs because they are known to be
degraded via autophagy. ATTEC degraders are able to clear LDs almost
completely and rescue LD-related phenotypes in vitro and in vivo, thus expanding
the scope of TPD platform applications.196

AUTOTAC is generated by connecting a POI ligand to a p62-binding auto-
phagy-targeting ligand via an intermediate linker. AUTOTACs recruit POIs in tan-
dem with the binding ZZ domain of the otherwise dormant autophagy receptor
p62/Sequestosome-1/SQSTM1.197 This interaction stimulates self-polymeriza-
tion in complex with the cargo and the macroautophagy induction cascade in
a p62-dependent manner. AUTOTACs have been designed and verified to
mediate the degradation of various oncoproteins (e.g., ERb, AR, and MetAP2)
and degradation-resistant misfolded protein aggregates associated with neuro-
degeneration in vitro and in vivo.197

Lysosome-targeting chimeras
Although the first AbTACwas able to target the cell-surface protein PD-L1with

a ligandable intracellular domain,22most extracellular andmembrane-associated
proteins still cannot be targeted by PROTACs. Approximately 40% of the proteins
in the human proteome are secreted or membrane proteins, and this proportion
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is even higher in the pancreas, salivary gland, and liver.198 Therefore, LYTACs
have been designed to target extracellular and membrane-associated proteins,
using conjugates that bind to both a cell-surface lysosome-targeting receptor
(LTR) and the extracellular domain of the target protein.21 A LYTAC is a hetero-
bifunctional molecule comprising a warhead that binds to the protein targeted
for degradation anda tail containing chemically synthesized glycopeptide ligands
that can hijack the cation-independent mannose-6-phosphate receptor (CI-
M6PR), a prototypical LTR. When the POI is linked to CI-M6PR by M6Pn-LYTAC
molecules, TPD is triggered, and the POI is transported to the lysosome and
degraded. The ability of M6Pn-LYTACs to effectively degrade clusters of targets,
such as the extracellular protein apolipoprotein E4 (APOE4) and membrane pro-
teins (e.g., EGFR, PD-L1, and CD71), has been validated, thus expanding the
scope of the TPD platform.21

Drawing on experiences from the first generation of systemically non-specific
LYTACs, another tissue-specific LTR has been chosen to develop a localized-tar-
geting LYTAC. N-acetylgalactosamine (tri-GalNAc), a ligand of the liver-specific
LTR asialoglycoprotein receptor (ASGPR) that can be internalized via clathrin-
mediated endocytosis, was selected as the LYTAC warhead.199 Antibody-based
GalNAc-LYTACs have been shown to successfully degrade membrane-associ-
ated proteins (EGFR, HER2, and integrins) in the hepatocellular carcinoma cell
line HepG2.200,201 In addition, molecular degraders of extracellular proteins
through ASGPR (MoDE-As) have been generated as the first non-proteinogenic
synthetic tri-GalNAc conjugates, and their ability to effectively degrade extracel-
lular proteins in lysosomes has been validated both in vitro and in vivo.202

Taken together, these studies have shown the potential use and feasibility of
the LYTAC platform for lysosomal degradation of extracellular and membrane-
associated proteins; accordingly, LYTAC is a powerful solution to the drawbacks
of PROTACs.

Hydrophobic tagging
In hydrophobic tagging (HyT) technology, bifunctional small molecules bind

to a bacterial dehalogenase (the HaloTag protein) and present a hydrophobic
group on the surface of the POI. Two possible MOAs of HyT-mediated degra-
dation have been proposed as follows. First, the hydrophobic tag destabilizes
the POI irreversibly, enabling the recruitment of endogenous chaperones and
the shuttling of the POI to the proteasome for degradation. Second, chaperones
recognize the hydrophobic tag directly and mediate proteasomal degradation
of the tagged protein.203,204 Hydrophobic tags can be divided into three types:
typical adamantane,23,205 tert-butyl carbamate-protected arginine,206,207 and
carborane.208 HyT molecules, which target POIs such as HER3, Tau, and
PDEd, have validated degradation efficacy and antiproliferation activity in hu-
man cancer cell lines and mouse xenograft tumor models.61,205,209,210 Selective
ER degraders (SERDs; e.g., fulvestrant, RU 58668) for the treatment of estro-
gen-responsive cancers and the selective AR degrader (SARD) (e.g.,
SARD279) used to treat prostate cancer have similar functions: a hydrophobic

chain is exposed on the surface of a POI to mimic a misfolded protein state
and, thus, induce degradation.211,212

Molecular glues
Molecular glues are commonly used to induce proteolysis of a target and have

anMOA similar to that of PROTACs. Unlike PROTACs, however, amolecular glue
contacts and is optimized for both the target protein and the E3 ligase via inser-
tion into a naturally occurring PPI interface. Molecular glues have the obvious
advantages of a lowmolecular weight and good druggability. Due to a limited un-
derstanding of the controlling factors, however, molecular glue design remains
challenging, and few successful cases have been reported.
Most molecular glues induce protein degradation via E3 ligases, including

iMIDs (thalidomide, lenalidomide, and pomalidomide) via CRBN bind-
ing,153,213–217 aryl sulfonamide via engagement with DCAF15,218 and other
small molecules that adhere to the adaptor proteins DDB1,219–221 SIAH1,222

UBR7,223 or SCFb-TrCP.223 Molecular glues for TPD, such as the neo-substrates
(IKZF1/3 and CK1a) of iMIDs and POIs (RBM39,129,224,225 BCL6,222 and CDK220)
for some SMIs, were discovered serendipitously. Other molecular glues have
been shown to induce TPD via an autophagy-mediated degradation pathway,
wherein LC3 is hijacked to degrade mHTT via the compounds AN1, AN2,
10O5, and 8F20 derived from microarray-based high-throughput screening.
The mechanisms of these autophagic degraders remain to be clarified.193

Clinical trials of the IKZF1/3 degraders iberdomide (CC-220),226,227 CC-
92480, CC-99282, and CFT7455 for hematologic malignancies, including multi-
ple myeloma, acute myeloid leukemia, chronic myeloid leukemia, and non-
Hodgkin’s lymphoma, are beginning. CC-90009 is a CRBN-based GSPT1
degrader with antileukemic activity and is currently in a dose-escalation phase
and combination trial. DKY709, a degrader of IKZF2, is being used as a mono-
therapy and combination therapy with PDR001, a ligand-blocking IgG4 mono-
clonal antibody specific for PD-1. GBD-9 combines PROTAC and molecular glue
strategies to yield a dual-mechanism inhibitor that effectively degrades BTK
and GSPT1 and inhibits cancer cell growth by recruiting the E3 ligase CRBN
(Table 3).228

CONCLUSIONS
Since the debut of PROTAC technology in 2001, TPD has expanded through

two decades of development. The clinical proof of concept of PROTACs has
been completed, and a series of TPD spin-offs have emerged consecutively, al-
lowing the potential applications of this technology to be continuously tapped
for biomedicine. The entry of the first PROTAC drug into the clinic has validated
the potential of this technology to become the best in class. The characteristics
of clinical practicability and an orally bioactive medication have promoted the
transition of PROTACs from academia to industry. However, the on-target/
off-tumor toxicity, potentially off-target effects, and other challenges associated
with PROTACs will continue to hinder future developmental efforts. The

Table 3. Ongoing clinical trials of bifunctional degraders (molecular glues)

Clinical trial NCT no. Highest phase Degrader POI E3 ligase Indications Sponsor

NCT02773030 II CC-220 IKZF1/3 CRBN MM Bristol Myers Squibb

NCT03989414 II CC-92480 IKZF1/3 CRBN MM Bristol Myers Squibb

NCT02848001/NCT04336982 II CC-90009 GSPT1 CRBN AML Bristol Myers Squibb

NCT01421524 I CC-122 IKZF1/3 CRBN MM Bristol Myers Squibb

NCT05144334 I BTX-1188 IKZF1/3 CRBN AML and solid tumor Biotheryx

NCT04434196/NCT03930953 I CC-99282 IKZF1/3 CRBN CML and NHL Bristol Myers Squibb

NCT04756726 I CFT7455 IKZF1/3 CRBN MM and lymphoma C4 Therapeutics

NCT04283097 I KPG-818 IKZF1/3 CRBN Hematological malignancies and SLE Kangpu

NCT03569280 I KPG-121 IKZF1/3 CRBN CRPC Kangpu

IND-e ICP-490 IKZF1/3 CRBN MM and NHL InnoCare

NCT03891953 I DKY709 IKZF2 CRBN NSCLC Novartis

AML, acute myeloid leukemia; CML, chronic myelogenous leukemia; MM, multiple myeloma; NHL, non-Hodgkin’s lymphoma; NSCLC, non-small-cell lung cancer; SLE,
systemic lupus erythematosus.
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development and application of an expanded toolbox of E3 ligases for
PROTACs should be another focal point. Some tissue-specific E3 ligases are
expected to serve as passive targeting carriers.110,229 In this review, we
comprehensively list various target proteins of PROTACs, including kinases
and transcription regulators, and provide verification of the effectiveness of
these treatments for cancers, autoimmune diseases, and other pathologies.
In the clinic, PROTAC drugs mainly target the AR, ER BRD9, and BTK proteins,
and progress in the treatment of mCRPC, ER+/HER� breast cancer, SS, and
liquid tumors has been gratifying. PROTAC derivatives have expanded the spec-
trum of POIs of various forms that can be inactivated. Other TPD strategies,
such as AUTACs, ATTECs, and LYTACs, have expanded the platforms for de-
grading target proteins to the autophagy and lysosomal degradation pathways,
which can target proteins in different locations, including cytosolic, intramem-
brane, and extracellular proteins.
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Table S1. PROTACs and Related Diseases in Academia 

Name Structure POI E3 Ligase 
Disease 

(Related Cell Line) 
Reference 

Compound B3 

 

ALK CRBN NSCLC (H3122) 1 

MS4077 

 

ALK CRBN 

NHL (SU-DHL-

1), NSCLC (NCI-

H2228) 

2 

MS4078 

 

ALK CRBN 

NHL (SU-DHL-

1), NSCLC (NCI-

H2228) 

2 

Degrader 17 

 

ALK CRBN 

NSCLC (A549), 

Human Fetal Lung 

Fibroblast (HFL-1) 

3 



Compound 2 

 

EGFRDel19 CRBN 
NSCLC 

(HCC827) 

4 

Compound 10 

 

EGFRDel19 VHL 
NSCLC 

(HCC827) 

4 

PROTAC 1 

 

EGFREx20Ins VHL 

Human Ovarian 

Carcinoma (OVAR8), 

Cervical Cancer 

(HeLa) 

5 

PROTACs 3/4 

 

 

EGFRDel19, 

EGFR L858R/T790M 
VHL 

NSCLC 

(HCC827, H1975) 

5 



14o 

 

EGFR 

L858R/T790M 
VHL NSCLC (H1975) 6 

Compound P3 

 

EGFRDel19, 

EGFR L858R/T790M 
VHL 

NSCLC 

(HCC827, H1975) 

7 

CP17 

 

EGFRDel19, 

EGFR L858R/T790M 
VHL 

NSCLC 

(HCC827, H1975) 

8 

PROTACs-2/5 

 

VEGFR-2 VHL 
HUVEC 

(EA.hy926) 

9 



 

CG416 

 

TPM3-TrkA 

Fusion Protein, 

Wild Type TRKA 

CRBN CRC (KM12) 10 

CG428 

 

TPM3-TrkA 

fusion protein, Wild 

Type TrkA 

CRBN CRC (KM12) 10 

Degrader 4 

 

TrkC CRBN 
BC (Hs578t and 

MDA-MB-231) 

11 



SNIPER(ABL)-

62 

 

BCR-ABL cIAP1 CML (K562) 12 

GMB-475 

 

BCR-ABL VHL CML (K562) 13 

P19P and P22D 
 

 

BCR-ABL CRBN CML (K562) 14 

Degrader 17 

 

BCR-ABL CRBN CML (K562) 15 



PROTAC-D 

 

AURKA CRBN 
Osteosarcoma 

(U2OS) 

16 

JB170 

 

AURKA CRBN AML(MV4;11) 17 

JB301 

 

AURKA CRBN AML(MV4;11) 18 

TL12-186 

 

AURKA and 

Other Proteins 
CRBN 

AML(MOLM14) 

and ALL(MOLT-4) 

19 



XZ424 

 

BCL-xL VHL ALL(MOLT-4) 20 

DT2216 

 

BCL-xL VHL ALL(MOLT-4) 21,22 

753b 

 

BCL-2/BCL-xL VHL AML (Kasumi-1) 23 

dMCL 1-2 

 

MCL-1 CRBN MM (OPM2) 24 



C3/5 

 

 

MCL-1/BCL-2 CRBN NSCLC (H23) 25 

PROTAC (10) 

 

BTK CRBN NHL (Ramos) 26 

P13I 

 

BTK CRBN NHL (Ramos) 27 



RC32 

 

FKBP12 CRBN  28 

P13IS 

 

BTK CRBN  28 

NC-1 

 

Wild Type BTK 

and BTKC481S/Y 
CRBN 

MCL (Mino), 

Osteosarcoma 

(U2OS), CLL 

(Samples from 

patients) 

29 

RC-3 

 

Wild Type BTK 

and BTKC481S 
CRBN 

MCL (Mino), 

Osteosarcoma 

(U2OS), CLL 

(Samples from 

patients) 

30 

6e 

 

BTK CRBN 
MCL(JeKo-1), 

DLBCL (TMD8) 

31 



PROTAC-3 

 

FAK VHL 
PC (PC-3) and 

BC (MDA-MB-231) 

32 

FC-11 

 

FAK CRBN 

Leydig Cells 

(TM3), Primary 

Sertoli/Germ Cells 

33 

PROTAC 6/8 
 

 

FAK VHL or CRBN NSCLC (A549) 34 

JP-1 – JP-6 

 

JAK IAP AML (THP-1) 35 



 

 

 

 

 



SHP2-D26 

 

SHP2 VHL 
ESCC (KYSE-

520), AML(MV4;11) 

36 

ZB-S-29 

 

SHP2 CRBN AML(MV4;11) 37 

SJF-0628 

 

BRAF 

mutations 
VHL Various Cancers 38 

P4B 

 

BRAFV600E CRBN MM (A375) 39 

Compounds 

12/23 

 

BRAFV600E CRBN MM (A375) 40 



 

TL12-186 

 

CDK CRBN HEK293 41 

Pal-pom 

 

CDK4/6 CRBN 
BC (MDA-MB-

231) 

42 

CP-10 

 

Wild Type and 

mutated CDK6 
CRBN MM (MM.1S) 43 

TMX-2172 

 

CDK2/4/5/6/7/9 CRBN 
Human Ovarian 

Carcinoma (OVAR8) 

44 

A9 

 

CDK2 CRBN PC (PC-3) 45 



F3 

 

CDK2/9 CRBN PC (PC-3) 45 

BSJ-4-116 

 

CDK12 CRBN 
ALL (Jurkat, 

MOLT-4) 

46 

PP-C8 

 

CDK12 CRBN 

BC (MDA-MB-

231), HCC (Bel-

7402) 

47 

PROTAC 23 

 

IRAK3 CRBN AML (THP-1) 48 

Degraders 3/5 

 

IRAK4 CRBN AML (THP-1) 49 



 

Compound 9 

 

IRAK4 CRBN 
ABC-DLBCL 

(OCI-LY10, TMD8) 

50 

Compound 3 

 

MEK VHK MM (A375) 51 

MS423 

 

MEK VHL 
CRC(HT29) and 

MM(SK-MEL-28) 

52 

MS934 

 

MEK CRBN 
CRC(HT29) and 

MM(SK-MEL-28) 

53 



SJFα and SJFδ 
 

 

p38α and p38δ VHL 
BC (MDA-MB-

231) 

54 

NR-6a and NR-

7h 
 

 

p38α/β CRBN Various Cancers 55 

Compound D 

 

PI3K CRBN HCC (HepG2) 56 



PROTAC_RIPK2 

 

RIPK2 VHL AML (THP-1) 57 

PROTACs 1/2/3 

 

 

 

RIPK2 VHL/IAP/CRBN AML (THP-1) 58 

PROTAC 6 

 

RIPK2 IAP AML (THP-1) 58 



SGK3-

PROTAC1 

 

SGK3 VHL BC (CAMA-1) 59 

ARD-266 

 

AR VHL 

mCRPC 

(LNCaP, VCaP, 

22Rv1) 

60 

ARD-69 

 

AR VHL 

mCRPC 

(LNCaP, VCaP, 

22Rv1) 

61 

MTX-23 

 

AR VHL 

mCRPC 

(LNCaP, VCaP, 

22Rv1) 

62 



SNIPER 

Compound 9 

 

PAR cIAP1 
Fibrosarcoma 

(HT1080) 

63 

Compound 

4a/4b/4c 

 

 

 

CRABP cIAP1 

ALL(MOLT-4), 

Fibrosarcoma 

(HT1080), 

Neuroblastoma 

(IMR-32) 

64 

ARV-825 

 

BRD4 CRBN 
BL (Namalwa), 

NHL (Ramos) 

65 



MZ1 

 

BRD4 VHL AML(MV4;11) 66-69 

ARV-771 

 

BRD2/3/4 VHL 

mCRPC 

(LNCaP95, VCaP, 

22Rv1) 

70 

dBET1 

 

BRD4 CRBN AML(MV4;11) 71 

15a 

 

BRD4 VHL 
AML(MV4;11), 

NSCLC (A549) 

72 

SIAIS213110 

 

BRD2/3/4 CRBN 

MM (MM.1S), 

AML(MV4;11), TNBC 

(MDA-MB-468) 

73 



QCA570 

 

BRD2/3/4 CRBN 
ALL (RS4;11), 

AML(MV4;11) 

74 

BETd-

260/ZBC260 

 

BRD2/3/4 CRBN ALL (RS4;11) 75 

VZ185 

 

BRD7/9 VHL 

AML (EOL-1), 

Rhabdomyosarcoma 

(A-204) 

76 

dBRD9 

 

BRD9 CRBN 
AML (EOL-1), 

ALL (MOLM-13) 

77 

GSK983 

 

PCAF CRBN AML (THP-1) 78 



PROTAC 4 

 

HDAC1/2/3 VHL 
E14 mESCs, 

CRC (HCT-116) 

79 

HD-TAC1 

 

HDAC3 CRBN 
Macrophage 

(RAW 264.7) 

80 

HD-TAC7 

 

HDAC3 CRBN 
Macrophage 

(RAW 264.7) 

80 

XZ9002 

 

HDAC3 VHL 
TNBC (MDA-

MB-468) 

81 

WH624, YZ268 

 

 

HDAC6 CRBN MM (MM.1S) 82 



Compound 3j 

 

HDAC6 VHL 

MM (MM.1S) 

and Mouse 4935 Cell 

Line 

83 

12d 

 

HDAC6 CRBN MM (MM.1S) 84 

NP8 

 

HDAC6 CRBN MM (MM.1S) 85 

dTRIM24 

 

TRIM24 VHL ALL (MOLM-13) 86 

UNC6852 

 

PRC2 VHL 
DLBCL (DB, 

Pfeiffer) 

87 



PROTAC 1/2  

 

PRC2 VHL 
NHL (Karpas-

422) 

88 

SD-36 

 

STAT3 CRBN AML (MOLM-16) 89 

TM-P4-Thal 

 

SIRT2 CRBN 
BC (MCF-7, BT-

549) 

90 

Compound 12 

 

SIRT2 CRBN 
Cervical Cancer 

(HeLa) 

91 



Compound 3 

 

PARP-1 CRBN 
BC (MDA-MB-

231) 

92 

iRucaparib-AP6 

 

PARP-1 CRBN 
Mouse C2C12 

Myotubes 

93 

Degrader SK575 

 

PARP-1 CRBN CRC (SW620) 94 

CN0 

 

PARP-1 CRBN 
BC (MDA-MB-

231) 

95 

P22 

 

PD-L1 CRBN 
BC (MDA-MB-

231) 

96 

Compound 15 

 

PRMT5 VHL BC (MCF-7) 97 



ACBI1 

 

SMARCA2/4, 

PBRM1 
VHL 

AML (MV4;11), 

NSCLC (H1568) 

98 

XY-4-88 

 

KRASG12C CRBN 

Pancreatic 

Cancer (Paca-2), 

NSCLC (H358) 

99 

LC-2 

 

KRASG12C VHL 

NSCLC (H2030, 

H23), Pancreatic 

Cancer (Paca-2) 

100 

YF135 

 

KRAS VHL 
NSCLC (H358, 

A549, H23) 

101 



9d 

 

SOS1 VHL NSCLC (H358) 102 

CM11 

 

pVHL30 VHL 

Cervical Cancer 

(HeLa), 

Osteosarcoma 

(U2OS) 

103 

WL40 

 

Rpn13 CRBN MM (MM.1S) 104 

QC-01-175 

 

Tau CRBN 

Patient-Derived 

Frontotemporal 

Dementia Neuronal 

Cells (A25T) 

105 

d9A2 

 

SCL9 CRBN 
CML (HAP1, 

KBM7) 

106 



MD-224 

 

TP53 CRBN ALL (RS4;11) 107 

PROTAC 32 

 

MDM2 CRBN ALL (RS4;11) 108 

DGY-08-097 

 

NS3 CRBN 

Huh7.5 Cells 

Infected with Wild 

Type HCV-Jc1 

109 

PROTACs 3/5 

 

PDEδ CRBN ALL (Jurkat) 110 



 

Compound 17f 

 

PDEδ CRBN CRC (SW480) 111 

ABC-DLBCL, activated B cell-like diffuse large B-cell lymphoma; ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; BC, breast cancer; BL, Burkitt lymphoma; mESCs, mouse embryonic stem cells; 

CLL, chronic lymphocytic leukemia; CML, chronic myelogenous leukemia; CRC, colorectal cancer; DLBCL, diffuse large B-cell lymphoma; ESCC, esophageal squamous cell carcinoma; HCC, hepatocellular 

carcinoma; HUVECs, human umbilical vein endothelial cells; MCL, mantle cell lymphoma, mCRPC, metastatic castration-resistant prostate cancer; MM, multiple myeloma; NHL, non-Hodgkin’s lymphoma; NSCLC, 

non-small-cell Lung cancer; PC, prostate cancer; TNBC, triple-negative breast cancer. 
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