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Data S1. Glossary 
Terms and acronyms that are frequently used in the manuscript. 
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Data S2. Personal genome construction, related to Figure 1, Figure S1, and STAR 
Methods “Personal Genome” Section 
(A) Summary of whole-genome sequencing (WGS). All four individuals were sequenced with 
regular Illumina short reads, 10x linked reads, and long-reads (PacBio and Oxford Nanopore). 
Figure shows the sequencing depth and read-length distribution under each platform. 
(B) Overview of the CrossStitch workflow. SNPs and small indels are called and phased, while 
unphased SV calls are obtained independently. Then, the phase blocks from the small variants 
are used to assign haplotypes to heterozygous SVs, and the phased variants are used to 
construct a phased personal genome assembly based on a high-quality reference sequence. 
(C) SV phasing with CrossStitch. Phased small variants are used to assign a haplotype to each 
long read, and SVs are phased by observing the haplotypes of the long reads, which indicate 
the presence of that variant. In this example, a deletion is phased when all three of the long 
reads, including that deletion, have small variants that are unique to the orange haplotype. 
(D) Accession numbers of the WGS data. Accession numbers in parentheses are for VCF files. 
For individuals 2 and 3 the accession numbers for the personal genome assemblies are 
ENCFF032RPN and ENCFF836JIE respectively. For individuals 1 and 4 the accession numbers 
for the personal genome assemblies are ENCFF477YTR and ENCFF132WPC respectively 
(these correspond to the SVs in Fig. S1D). Earlier assemblies for individuals 1 and 4 were used 
for some of the analyses in this paper (accessions ENCFF498DUG and ENCFF578XWE). 
These earlier assemblies for individuals 1 and 4 do not include the long-read Oxford Nanopore 
sequencing. 
(E) Phase block length. This figure shows the size of the phase blocks in individual 2 obtained 
with HapCUT2 when performing small variant phasing with 10x reads only, as well as with a 
combination of 10x and Hi-C reads. When both data types are used, the contiguity of the phase 
blocks obtained is very similar to that of GRCh38. 
(F) Refining novel insertion sequences with Iris. Figure shows the sequence similarity of ONT 
calls to CCS calls in the Genome-in-a-Bottle sample HG002, used to benchmark the 
performance of Iris. The sequence similarity between two sequences S and T is calculated as 
edit_distance(S, T) / [max(length(S), length(T))]. 
(G) Phase blocks of personal genomes with parental origins. The parental origin of each phase 
block was determined based on the consistency between the direction of AS gene expression 
and the direction of known imprinted genes. 
(H) Consistency of AS expression (ASE) imbalance direction in known imprinted genes across 
tissue samples (individual 3). Figure shows the fraction of reads preferentially mapping to 
haplotype 1 (hap1) in known imprinted genes. For most genes, the direction of the significantly 
imbalanced genes (filled circles) is consistent across samples from different tissues. 
(I) Information on EN-TEx tissues. Table shows the full name, abbreviation, and color code of 
the EN-TEx tissues, as well as their matching relationship with GTEx tissues. This tissue color 
scheme is used in panel (H), Figure 1, and other main or supplementary figures, unless 
otherwise noted. 
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Data S3. Personal Hi-C, related to STAR Methods “Data Stack” Section 
(A) Example of reference-aligned genome-wide Hi-C maps for the skeletal muscle tissue of two 
individuals. 
(B) Number of paired reads and number of contacts from reference-aligned genome-wide Hi-C 
contact maps. 
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(C) A/B compartment annotation of four individuals and two tissues for chromosome 1. Red 
indicates that the 1 MB region is in the A compartment, whereas blue indicates that the region is 
in the B compartment. The dark blue band corresponds to the centromere. 
(D) A/B compartments cluster based on tissue in autosomes or sex in chromosome X (chrX). In 
the figure, 37 male, 54 male, 51 female, and 53 female correspond to individuals 1, 2, 3, and 4, 
respectively. 
(E) Summary of significant interactions determined by FitHiC2. The “Total” column presents the 
total number of intrachromosomal interactions for a given chromosome (e.g., chr1, chr2, …, 
chrY). 
(F) - (G) Comparison of TopDom TAD calls for EN-TEx individuals and available Hi-C tissues. 
(F) TADs have a similar size distribution and median TAD size across individuals and tissues. 
The TAD size distribution of individuals 2 (left) and 3 (right) for available Hi-C tissue types 
gastrocnemius medialis (GASMED - top) and transverse colon (CLNTRN - bottom) are shown. 
(G) Pair-wise comparison of TAD calls across all four individuals and available Hi-C tissue 
types. TAD calls were more similar (i.e., located at the same position along a chromosome) for 
the same tissues from different individuals than between different tissues. 
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Data S4. Personal proteomics, related to STAR Methods “Data Stack” Section 
(A) Total number of significantly identified unambiguous personal peptides (filtered for 0.01 
posterior error probability and unambiguous gene mapping). The personal category includes all 
types of personal peptides; allele-specific (“allelic”) peptides are those that are specific to only 
one allele in at least one individual, donor-specific peptides are those that are completely absent 
in at least one of the four donors, and non-reference (non-ref) peptides are those that do not 
match the reference genome. Due to the use of the tandem mass tag (TMT) method, there is a 
bias towards the most common peptide from among the four donors (usually the reference 
peptide), as TMT boosts the signal for common peptides. 
(B) Coverage of all potentially observable personal peptides calculated by an in silico tryptic 
digest. Although in silico peptides are filtered for unambiguity and are limited to amino acid 
lengths of 6-60, there will be a vast number of unobservable peptides due to mass spectrometry 
(MS)-incompatible charge states and chemical properties. 
(C) UpSet plot showing the overlap in distinct peptides identified in the MS experiments among 
the four personal peptide categories. The majority of the peptides are considered personal 
because they are either donor-specific, AS, or both. There are a small number of non-reference 
peptides that are neither AS nor donor-specific; these are variant peptides that are common 
across all donors and alleles. 
(D) Novel peptides. These are novel non-variant peptides identified with very high confidence 
that do not match known protein annotations in the GENCODE reference at the time of the 
experiment. These peptides were manually curated by GENCODE and annotated in 
combination with orthogonal evidence. Column 1 is the sequence of each novel peptide. 
Column 2 is the type of annotational outcome: NewModel, a new protein was annotated in the 
GENCODE reference (nonATG means the new model did not have a canonical ATG TSS); 
AddedModel, an existing protein annotation was adjusted or the peptide provided additional 
support for an annotation change already in progress; REFerror, although peptides matched 
genuine unannotated proteins, an underlying error in the reference genome GRCh38 sequence 
assembly meant that they could not be added to the current GENCODE annotation; Multiple-
Variants, the peptide could be potentially explained by complex variants; IG Allelism, peptides 
matched in highly variable genomic regions; AltAssembly, peptides matched alternative genome 
assemblies; Some Evidence, peptides had some orthogonal evidence but fell below the current 
criteria for annotation of the new protein model; Weak Evidence, very little orthogonal evidence 
to support change in annotation; No Evidence, no support for a change in annotation. The 
affected genes and their Ensembl IDs are listed in columns 3 and 4. Additional information, e.g., 
the number of spectral reads matching the peptide, are provided in ancillary files in the EN-TEx 
portal. 
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Data S5. Mapping to personal genomes, related to Figure S2 and STAR Methods 
“Reference Comparison” Section 
(A) Summary of percentages with precision mapping. 
(B) Using DNA from transverse colon tissues, we constructed both haplotype sequences for 
each individual. Here, we show the summary statistics when comparing the mapping efficiency 
across different assays (DNA-seq, Hi-C, ChIP-seq, and RNA-seq) between mapping to 
haplotypes and to the reference genome for each individual. For the mapping of raw reads, 
stringent filtering criteria were applied (2 mismatches, Qm = 255 and Q > 30). Improvement was 
calculated as ((Haplotype1 U Haplotype 2)-Reference)/Reference. 
(C) Change in improvement as a function of alignment score threshold for Hi-C data. More 
stringent criteria yield greater improvement. However, in the alignment score thresholds that are 
commonly used in pipelines (e.g., 80-100 for a 101 bp read length), we observed improvements 
from 1.5% to 4%. 
(D) Scatterplots reporting gene expression quantifications obtained after mapping to the 
reference genome (x-axis) and the diploid genomes (y-axis) for each of the four individuals. 
Expression values are reported as log10(TPM + 0.001) and correspond to the median value 
across tissues. Genes that are significantly differentially expressed between mapping to 
reference and personal genomes are color-coded (DESeq2, adjusted p-value Benjamini–
Hochberg < 0.1 and |log2 FC| > 1; see STAR Methods “Reference Comparison” Section). 
Downregulated genes (red) are more expressed when mapped to the personal genome; 
upregulated genes (blue) are more expressed when mapped to the reference genome. Genes 
that are not differentially expressed are shown in gray. 
(E) Volcano plots reporting, for every gene, the log2(fold-change) and the -log10(p-value) 
obtained from the DGE analysis with DESeq2 in each of the four individuals. The same color 
schema as in (D) is applied. 
(F) Barplot showing the gene type for the union of downregulated (n = 100) and upregulated (n 
= 112) genes across the four individuals. 
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(G) - (I) Examples of downregulated genes (gene expression levels correspond to individual 3). 
HLA-DQA1 belongs to the HLA class II alpha-chain paralogues. SMN2 belongs to the SMN 
complex and plays a role in pre-mRNA splicing. This gene is part of an inverted duplication on 
chromosome 5q13, a region prone to rearrangements and deletions. Mutations in this gene 
have been associated with spinal muscular atrophy 1,2. SIK1 encodes a member of the salt-
inducible kinase family, which has been associated with pigment gene expression 3. Mutations 
in this gene have been associated with neurodevelopmental impairments 4,5. 
(J) Upper panel: numbers of downregulated and upregulated genes identified by DESeq2 DGE 
analysis in each experiment with two available replicates. ENCODE experiment identifiers are 
reported in the first column. Lower panel: numbers of downregulated and upregulated genes 
identified by DESeq2 DGE analysis in the GM12878 cell line. This analysis employed ten 
replicates (five polyA+ RNA-seq experiments with two biological replicates each). The ENCODE 
experiment identifiers are: ENCSR000AED, ENCSR000AEF, ENCSR000AEG, 
ENCSR000AEH, and ENCSR000COQ. 
(K) Differential cCRE activity. Scatterplots report H3K27ac activity obtained after mapping to the 
reference genome (x-axis) and the diploid genomes (y-axis) for each of the four individuals. The 
H3K27ac signals of the cCREs are log-transformed and correspond to the median value across 
tissues. cCREs that are significantly differentially marked between mapping to the reference and 
personal genomes are color-coded (DESeq2, adjusted p-value Benjamini–Hochberg < 0.1 and 
|log2 FC| > 1; see STAR Methods “Reference Comparison” Section). Downregulated cCREs 
(red) are more marked when mapped to the personal genome; upregulated cCREs (blue) are 
more marked when mapped to the reference genome. cCREs that are not differentially marked 
are shown in gray. 
(L) Volcano plots reporting, for every cCRE, the log2(fold-change) and the -log10(p-value) 
obtained from the DESeq2 analysis in each of the four individuals. The same color schema as in 
(K) is applied. 
(M) Scatterplots reporting quantifications of proximal and distal cCRE H3K27ac activity obtained 
after mapping to the reference genome (x-axis) and the diploid genomes (y-axis) for each of the 
four individuals. H3K27ac activity values are log-transformed and correspond to the median 
value across tissues. The density of cCREs in each scatterplot is color-coded. Note that distal 
cCREs appear to be more differentially marked between the reference and personal genomes, 
compared to proximal cCREs. 
(N) The left and right panels show the numbers of differentially marked cCREs (total, proximal, 
and distal) located on all chromosomes and only auto-chromosomes, respectively. 
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Data S6. Variation explained or similarity between experiments, related to Figure S2 and 
STAR Methods “Variation Analysis” Section 
(A) - (F) Variation explained between two experiments corrected by replicates. To calculate the 
variation explained between experiments (e.g., the two H3K27ac ChIP-seq experiments of the 
spleens from two individuals), for each experiment we identified the cCREs that drive high 
variation explained (> 95%) in the replicates of the experiment. The intersecting set of cCREs 
from the two experiments was used to calculate the variation explained between the two 
experiments (black bars; e.g., 87% for the two H3K27ac experiments). The average variation 
explained between the replicates from the two experiments is indicated by the white bars (e.g., 
96% for H3K27ac). The results in spleen, transverse colon, gastrocnemius medialis, thyroid 
gland, pancreas, and prostate gland are shown in (A) - (F). 
(G) Similarity between the signals of two functional genomic experiments. For each cCRE, the 
signal of a functional genomic experiment was measured by the average fold-change over 
control across the cCRE region. For two experiments, linear regression was used for the cCREs 
with low technical noise between replicates. The variance of one experiment explained by the 
other is used to indicate the similarity between the experiments across the cCREs. 
(H) The similarity between all possible pairs of experiments. 
(I) - (L) Comparison between RNA-seq and proteomics data. (I) The normalized protein 
abundances are highly consistent between replicates. (J) This consistency is also observed for 
the normalized RNA abundances. (K) The variation explained between the normalized protein 
abundances and the normalized RNA abundances varies across tissues, suggesting that for 
some tissues, protein abundances and RNA abundances have low consistency. LL indicates the 
left lobe of the liver, and RL indicates the right lobe. The numbers in the labels indicate the 
donors. (L) The variation explained between donors for protein abundances and RNA 
abundances, which was higher than those in (K). The normalized proteomics and RNA-seq data 
matrix used for panels (K) and (L) is available in the ancillary files. 
(M) Consistently analyzing functional genomic data across individuals, tissues, and assays. 
Similar to Figure S2C, we used JIVE to project the RNA-seq and proteomics data to a 2D space 
and compare the variation of the data. For example, the difference of RNA-seq data in spleen 
between different individuals is 21%. 
(N) - (O) Comparing the explained variances calculated using matched and unmatched data. 
(N) The explained variance is calculated between two types of histone modifications (between 
assays) using matched data (blue), i.e., the two assays are generated from the same tissue of 
an individual, or unmatched data (gray), i.e., the two assays are generated from the same 
tissues of different individuals. (O) The explained variance is calculated between the same 
histone modifications generated from two different tissues (between tissues). The tissues that 
are from the same individuals are referred to as matched. 
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Data S7. AlleleSeq2 and haplotype-specific signal tracks, related to STAR Methods “AS 
Calling” Section 
(A) Workflow of the AlleleSeq2 pipeline. We used genomic variants to construct the sequence 
and coordinates for each haplotype, and then mapped functional genomics assay reads to each 
haplotype by using the phased hetSNVs in a read (middle panel). This approach generated 
BAM files that contain both reads that are mapped uniquely to a region in a haplotype and reads 
that are mapped to multiple regions (within a haplotype or between two haplotypes, bottom 
panel). Since it is not possible to unambiguously identify the origin of the reads that multi-map 
within the haplotypes, we made the conservative assumption that all of these reads originate 
from the heterozygous locus and, unless the direction of the bias changed towards the opposite 
allele, we adjusted the allele counts including the multi-mapping reads. We pooled all of the 
reads for assays with replicates. We identified hetSNVs with allelic imbalance by performing a 
beta-binomial test on the allelic reads. To determine whether a genomic region has an allelic 
imbalance in RNA-seq, ChIP-seq, or ATAC-seq, we summed the AS reads from all hetSNVs 
within the region and performed a beta-binomial test. 
(B) Workflow for generating haplotype-specific signal tracks. Each box is a command to process 
files. The input BAM files are generated by step (3) in panel (A), containing reads that are 
uniquely mapped to each haplotype and reads with ambiguous mapping. The first box removes 
the reads with ambiguous mapping. In this example, the assay has two replicates; therefore, we 
merge the two BAM files of unique reads (box 2). If an assay has no replicates, then we skip the 
“merge replicates” step. The read coverage of each chromosome in each haplotype is then 
calculated and stored in bedGraph files (box 3). Note that the coordinates of a given genomic 
region are in the personal genome; therefore, the two haplotypes can give different coordinates 
even for the same gene. To compare the same region between the two haplotypes, we convert 
the coordinates in each haplotype from the personal genome to the reference genome (box 4). 
We also convert the read coverage from bedGraph to bigWig, which can be plotted in the IGV 
Genome Viewer (box 5). A script that generates the haplotype-specific read coverage from BAM 
files is provided at https://github.com/gersteinlab/AlleleSeq2. An example of the intermediate 
files (except for the BAM files) in generating haplotype-specific signal tracks is available on the 
EN-TEx portal. 
(C) Data used to generate signal tracks. Data in blue are given as the accession numbers in the 
ENCODE portal. TF binding clusters are available via the UCSC Table Browser. 
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Data S8. AS SNVs, related to Figure S3 and STAR Methods “AS Calling” Section 
(A) Distribution (top) and fraction (bottom) of the number of hetSNVs associated with AS 
behavior across different EN-TEx donors, tissues, and assays. The fraction is the number of 
hetSNVs associated with AS behavior relative to the number of accessible hetSNVs. Call sets 
based on pooled reads from all tissues for each donor and assay are shown in gray. An average 
of 820 AS events were detected in the RNA/ChIP/ATAC-seq samples (median 517, IQR 251-
1,030; ~3.8% of the total number of accessible sites). 
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(B) Venn diagram of hetSNVs showing AS activity in different assays. The numbers are pooled 
from all four individuals. Heterozygous SNVs that appear in multiple individuals but have the 
same coordinates are collapsed into one unique heterozygous SNV. 
(C) The total numbers of AS hetSNVs (i.e., no collapsing; numbers in parentheses are averages 
for an individual), the numbers of unique AS hetSNVs, and the unique-to-all ratios. For a 
comparison with the unique-to-all ratio of the AS SNVs, we randomly sampled the same number 
of heterozygous SNVs from the four individuals and calculated the unique-to-all ratio (numbers 
in parentheses). The smaller unique-to-all ratios of the AS SNVs suggest that these SNVs tend 
to be more common than random heterozygous SNVs. AS SNVs are those that show AS 
activity in any of the assays in (B). AS methylation (ASM) SNVs show AS activity in WGBS data, 
ASE SNVs in RNA-seq data, AS binding (ASB) SNVs in ChIP-seq data, and AS accessibility 
SNVs in ATAC-seq or DNase-seq data. 
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Data S9. Allele specific methylation, related to STAR Methods “AS Calling” Section 
(A) Schematic showing how AS methylation is calculated. We can determine ASM by identifying 
AS methylated CpG sites near tag hetSNVs using the statistical test above. Since methylated 
cytosines are sequenced differently from unmethylated cytosines, we use a two-by-two 
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contingency test (Fisher’s exact test) in order to identify AS methylated CpGs in the vicinity of a 
tag hetSNV 6. 
(B) ASM calls in known imprinting control regions. Number of ASM calls made out of the total 
number of accessible hetSNVs that overlap with an imprinting control region (ICR) 7 for each 
sample. Green cells represent ICRs that overlap with at least one ASM call in that sample. Red 
cells represent ICRs that overlap with at least one accessible hetSNV. No hetSNVs with a 
significant imbalance were observed. Yellow cells represent ICRs that did not overlap with any 
accessible hetSNVs in the sample. 
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Data S10. Haplotype-specific Hi-C, related to STAR Methods “AS Calling” Section 
(A) Schematic showing the overall methodology for determining haplotype-specific 3D contact 
interactions using Hi-C paired-end reads. 
(B) Workflow for the generation of haplotype-specific Hi-C contact maps. 
(C) Haplotype-specific contact maps for Chr20 generated using the personal genome 
coordinates. The third map is the bulk Hi-C contact map of Chr20 generated using the reference 
genome. 
(D) Number of Hi-C contacts obtained from haplotype-specific Hi-C contact maps 
Of the average 6,454,111 interactions per sample, 496,859 showed significant AS behavior. 
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Data S11. AS elements, related to Figure S3 and STAR Methods “AS Elements” Section 
(A) Distribution (top) and fractions (bottom) of the number of genomic elements (genes and 
cCREs) associated with AS behavior across different EN-TEx donors, tissues, and assays. On 
average, for each individual and tissue in the RNA/ChIP/ATAC-seq samples, 193 cCREs 
(median 123, IQR 32-284) and 351 genes (median 205, IQR 193-452) showed a significant AS 
imbalance per assay. 
(B) Gene ontology enrichment analysis of AS genes. Functional annotation of EN-TEx AS 
protein-coding genes detected from different assays. Analysis was performed using DAVID 
Bioinformatics Resources 6.8. For each assay, the background list includes all protein-coding 
genes with accessible promoters for ASB or with accessible expressions for ASE. For ASE 
analysis, since DAVID has a 3,000 gene limit, the top 3,000 mostly ASE protein-coding genes 
were selected for the enrichment analysis, and the top 20 enriched terms are shown in the 
table. Terms with the largest number of genes are highlighted in bold.  
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Data S12. Construction of a validation dataset from AS events in non-EN-TEx datasets, 
related to STAR Methods “AS Catalog” Section 
(A) Distribution and fraction of the number of hetSNVs associated with AS behavior detected in 
NA12878 and Roadmap individuals STL002 and STL003. 
(B) Datasets used for calling AS events in the Roadmap individuals. 
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Data S13. High-power AS calling, related to STAR Methods “AS Catalog” Section 
(A) Numbers of AS hetSNVs detected from RNA-seq in different tissues from individual 3. To 
produce high-power tissue-specific call sets, we called ASE and ASB sites for each tissue at a 
relaxed FDR threshold if the hetSNV was called AS in the pooled call set; otherwise, the sites 
were called at the usual 10% FDR. The “relaxed” FDR varied somewhat from tissue to tissue 
due to granularities in calculation but did not exceed 20%. Typically, high-power call sets 
produce 10%–20% more AS hetSNVs than typical call sets. 
(B) - (E) Validation of high-power AS calling methods. To increase the detection power of ASE 
hetSNVs in datasets with fewer reads, we tested two high-power calling methods that 
selectively impose less-stringent tests on hetSNVs, which have been shown to have AS 
behavior in other experiments. The first method uses a one-sided beta-binomial test as its less-
stringent test, while the second uses a two-sided beta-binomial test with a relaxed FDR of 20%. 
All hetSNVs that do not have prior evidence of being AS are evaluated with the standard two-
sided beta-binomial test with an FDR of 10%. We validated both methods by testing on a deeply 
sequenced RNA-seq dataset from the GM12878 cell line and simulating a shallower experiment 
by downsampling this dataset by a factor of 4. (B) and (E) Using the default ASE calling method, 
6,927 ASE hetSNVs were identified in the downsampled dataset. Of these, 79.3% were 
supported by the full RNA-seq dataset – that is, they were also called ASE in the full dataset. 
One-sided testing identified 275 additional ASE hetSNVs, and relaxed FDR testing identified 
122 additional ASE hetSNVs. Both methods are enriched for supported hetSNVs as compared 
to the full pool of hetSNVs (59.6% and 57.4%, respectively), though they have a higher error 
rate than the default ASE calling method in this respect. (C) - (D) We also show a comparison of 
reference allele ratios of ASE hetSNVs under different calling methods. Overall, the ASE 
hetSNVs added by both one-sided and relaxed FDR calling display similar reference allele 
ratios to ASE hetSNVs identified by default calling. 
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Data S14. Coordinated allele-specific activity on X Chromosome across assays, related 
to Figure 2 and STAR Methods “AS Examples” Section 
(A) Haplotype-specific gene expression and chromatin assays on chrX. Fold-change values 
(log2[haplotype1/haplotype2]) for phased RNA-seq read counts (left column), active chromatin 
marks (middle), and repressive chromatin marks (right) are shown above for EN-TEx individuals 
ENC-003 (top row) and ENC-004 (bottom row). Heatmap columns are the observed EN-TEx 
tissues and rows are the GENCODE v24 genes. Chromatin marks are the mean signal from a 
+/- 10 Kb region flanking genes. Active and repressive marks are pools of active (CTCF, EP300, 
H3K27ac, H3K4me3, H3K36me3, H3K4me1, POLR2A) and repressive (H3K27me3, H3K9me3) 
chromatin assays, respectively. Light gray cells of a heatmap represent missing or no signal for 
the given data type. Far left bars represent the inactive genes (purple), known escaper genes 
(green), pseudoautosomal regions (PAR [orange]), and non-PAR (dark gray). Top bars are the 
mean tissue (i.e., column) value for each data type’s fold-change values (black is missing/no 
data). Heatmap columns are sorted by tissue means. Overall, phased RNA-seq read counts and 
active chromatin marks show a higher signal on the same allele. It is unclear whether repressive 
chromatin marks are more pervasive on the opposite allele due to the sparsity of the data (see 
data matrix in Figure S1A). 
(B) Similarity of haplotype-specific gene expression and chromatin assays on chrX. Cosine 
similarity between the mean tissue values in Data S14A for individuals ENC-003 (left) and ENC-
004 (right). Phased RNA-seq read counts are shown to be more similar to active chromatin 
marks than repressive chromatin marks for both individuals. 
(C) Identifying potential X-chromosome inactivation (XCI) escaper genes. GENCODE v24 
genes on chrX were classified as either inactive (purple) or potential escaper (green) genes 
based on the RNA-seq fold-change values shown in Data S14A for individuals ENC-003 (left 
column) and ENC-004 (right column). Escaper genes were identified as genes showing 
balanced expression (haplotype ratio within 30%) in a majority of their expressed tissues. To 
support pan-tissue chromatin analysis and avoid spurious observations from lowly expression 
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genes, the analysis was limited to genes expressed in eight or more tissues. Identified 
individual-specific, potential escaper genes are listed below each scatterplot. All potential 
escaper genes have previously been found to escape XCI per the provided references: 1. 
Mugford et al., 2014 8; 2. Tukiainen et al., 2017 9; 3. Garieri et al., 2018 10; 4. Zhang et al., 2020 
11; 5. Zito et al., 2021 12; and 6. Werner et al., 2022 13. 
(D) Example potential X-chromosome inactivation escaper genes. Three previously known 
escaper genes (DHRSX, KDM6A, and RP11-706O15.1 - left, middle, and right columns) 
identified from EN-TEx phased RNA-seq data analysis for both individuals ENC-003 (top row) 
and ENC-004 (bottom row). Barplots represent the (im)balanced expression of a gene using 
hap1 (red) and hap2 (blue) RNA-seq read counts for each individual in a given tissue. Undrawn 
bar plots represent missing/no data for that individual and tissue combination. Shown escaper 
genes demonstrate balanced expression across tissues for each individual. 
(E) Heatmap to show haplotype specificity of chrX for all assays and tissues from individual 3 
We detected that ~21% of the accessible chrX genes have significantly imbalanced expression 
levels between the two haplotypes. Orange squares indicate more expression and binding 
peaks in hap2, whereas blue squares indicate more expression and binding peaks in hap1. 
Green squares indicate that the expression and binding are balanced between the two 
haplotypes. Light gray squares indicate that the number of data points is small and, 
consequently, we cannot conclude which haplotype has more expression and binding. Dark 
gray squares indicate that data are not available for a given assay and tissue. Our findings 
(Panel A-E) are consistent with a recent study 13 that demonstrated X-inactivation is shared 
across many tissues using GTEx and EN-TEx data. This study suggested that X-inactivation is 
completed before the germ-layer specification. Therefore, any skew in selecting which X-
chromosome is activated propagates to the ectoderm, endoderm, and mesoderm, resulting in 
observations of the same skew across many tissues. The way in which cells activate which X 
chromosome is a random process that follows a probabilistic distribution before the specification 
of the germ layer. Developed tissues are much more likely to have cells with the same activated 
X-chromosome 13. Our findings here are also consistent with this study regarding which tissues 
show bias towards which haplotype. For example, Werner et al. 13 show that the liver and ovary 
are ranked 46th and 42nd (out of 46 GTex tissues) in terms of their skew being the same 
direction as other tissues. 
(F) Chromosome painting of chrX using RNA-seq and ChIP-seq in both haplotypes of individual 
3 in two tissues. This plot shows that the active haplotype is hap2 in chrX of individual 3, as 
there is more activity in hap2. 
(G) XACT locus on chrX is shown to have haplotype-specific chromatin interactions with an 
upstream region. In the signal tracks, both XACT and the upstream loci are shown to have 
CTCF bound, which is also associated with the H3K27ac signal. The heatmap shows differential 
chromatin interactions from haplotype-resolved Hi-C. The AS Hi-C interaction with the XACT 
locus and an upstream element occurs on the active haplotype, which was characterized by the 
difference in AS gene expression values (histogram). 
(H) Coordinated AS activity in chrX. Similar to Figure 2A, we show the differences in the levels 
of gene expression, H3K27ac, and H3K27me3 between the two X chromosomes in the thyroid 
gland of individual 4. The high RNA expression levels from hap1 indicates that this chrX is 
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active. Note the higher H3K27ac levels and lower H3K27me3 levels in this chrX. Note, only 
individual 3 was shown in Figure 2A. 
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Data S15. Analysis of SVs, related to Figure 1 and STAR Methods “SVs” Section 
(A) Number of genomic variants in the four individuals. 
(B) Number of SVs associated with transposable elements.  
(C) Allele frequencies of SVs in the European population calculated by overlapping with the 
results from Audano et al. 14. SVs that have no overlap with the results from Audano et al. are 
shaded in the first bin. 
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(D) Overlaps between SVs and functional genomic regions. We shuffled the locations of the 
SVs (see STAR Methods “SVs” Section) to determine whether SVs are enriched or depleted in 
a given type of genomic region. For DELs, we consider cases in which a DEL partially overlaps 
with a given genomic region (DEL, partial) and cases in which a DEL is engulfed by a given 
genomic region (DEL, engulfed). 
(E) Lengths of indels and SVs in the four individuals. The peaks around 10^2.5 bp and 10^3.7 
bp are due to Alu and LINE1. In individual 2, we show the fractions of SVs associated with Alu 
and LINE1 in the corresponding bins. Note that these fractions are much higher than those in 
(B). 
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Data S16. Association between ASE events and indels or SVs, related to Figure 2 and 
STAR Methods “SVs” Section 
(A) - (B) ASE events associated with indels and SVs. For an ASE event in a given tissue of a 
given individual, we looked for heterozygous indels and SVs that intersect with the exons of the 
ASE gene and/or with cCREs within +/- 10 Kb of the gene’s TSS. For comparison, we also 
show the fractions of genes (ASE or not) whose exons and/or nearby cCREs intersect with a 
heterozygous indel and SV. If the heterozygous small deletion and DEL had clear genotypes, 
we further evaluated whether they are compatible with the ASE event, i.e., the presence of the 
variants in exons and/or the tissue-specific active cCREs (STAR Methods “SVs” Section) should 
reduce gene expression. Since the exact breakpoints of SVs are often uncertain and SVs may 
disrupt nearby regions, we expanded the location of each SV by 100 bp upstream and 100 bp 
downstream when intersecting it with exons and cCREs. (A) The fractions of ASE events 
associated with indels and compatible deletions. (B) The fractions of ASE events associated 
with SVs and compatible DELs. In both panels, we pooled the ASE events and ASE events with 
associated variants from all tissues of all four individuals before calculating the fractions. 
Specifically in (B), we found 42 ASE events that are associated with compatible DELs in the 
tissue-specific active cCREs, 323 associated with compatible DELs in exons, and 22 associated 
with compatible DELs in both. 
(C) - (E) Indels and SVs associated with ASE. Similar to (A) and (B), we looked for 
heterozygous indels and SVs that intersect with at least one of two genomic regions: an exon, 
and cCREs that are within +/- 10 Kb of a TSS. Among these variants, we calculated the 
fractions of those where the associated gene shows ASE in at least one tissue of the individual 
who carries the variants. We expanded the location of the SV by 100 bp upstream and 100 bp 
downstream before intersecting with exons and cCREs. (C) The fractions of indels and SVs 
associated with ASE. For heterozygous deletions and DELs that have clear genotypes, we 
further evaluated whether they are compatible with the associated ASE (panels A and B). The 
fractions of compatible variants among those that intersect with an exon or any tissue-specific 
active cCREs are shown in separate groups. (D) The fractions of rare (allele frequency (AF) < 
0.01) and common (AF > 0.05) SVs that are associated with ASE among those that intersect 
with an exon and/or cCREs. Because the AF of INVs is below 0.01 in each of the four 
individuals, we could not compare rare vs. common INVs. (E) The fractions of DELs, INSs, and 
INVs that are associated with ASE among each type of SV that intersect with an exon and/or 
cCREs. In all panels, we pooled variants of interest from all tissues of all four individuals before 
calculating the fractions. Differences between fractions were tested via the χ2 test. 
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Data S17. Examples of SVs associated with changes in gene expression, related to 
Figure 2, Figure S4, and STAR Methods “SVs” Section 
(A) - (B) An indel that potentially changes gene expression. (A) In the sigmoid colon of 
individual 2, the gene ZFP62 has lower expression in hap2. The TSS region of ZFP62 in hap2 
shows lower chromatin accessibility and changes in the positions of H3K27ac and CTCF 
binding peaks, compared with the same region in hap1. In hap2, a 2 bp insertion and an SNV 
were found in a cCRE near the TSS of the gene (the two variants are very close and are shown 
together by a single gray box). These variants and nearby variants that cannot be phased (not 
shown) might affect the function of the cCRE. (B) The gene has lower hap2 expression in 
multiple tissues, suggesting a universal factor changing the expression between haplotypes. 
(C) - (D) Shadow figure associated with Figure 2D. (C) Similar to Figure 2D, the deletion in hap2 
can disrupt cCREs identified in the thyroid and the binding of several TFs. (D) ZFAND2A has 
lower hap2 expression among multiple tissues, suggesting that the deletion may have a global 
effect on the expression of this gene. Note that this is consistent with the results in Chiang et al. 
15. Note that the p-value of the AS expression in Figure 2D was based on beta-binomial 
distribution. 
(E) - (F) Shadow figure associated with Figure S4C. (E) Similar to Figure S4C, the deletion in 
hap2 can disrupt spleen-specific cCREs and the binding of several TFs. (F) In multiple tissues, 
RP11-362F19.1 has lower expression in individual 3 than in individual 2, suggesting that the 
deletion may have a global effect on the expression of this gene. 
(G) - (J) SVs potentially linked to eQTLs. Panels (G) and (H) are shadow figures of Figure 2E. 
(G) This panel is the same as Figure 2E, but shows a panoramic view near the gene PSCA, 
including additional eQTLs that are compatible with the ASE of PSCA. The allele frequencies of 
the hap2 alleles at these eQTL sites are shown as the heights of the green bars. Note, the height 
of a green bar plus its corresponding magenta bar sum to 1. Similar results were observed in two 
other tissues from individual 3. SVs near PSCA and their allele frequencies are also shown. The 
left four SVs are deletions in hap1, and the rightmost SV is the hap2 deletion shown in Figure 
4E. cCREs and TF binding sites that can potentially be disrupted by the deletion of interest are 
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shown. (H) PSCA also has a lower expression of hap2 in the lung and transverse colon of 
individual 3. In both tissues, the deletion has an allele frequency similar to that of some of the 
tissue-specific eQTLs compatible with the ASE of PSCA; moreover, this deletion appears to 
remove an H3K27ac peak in hap2, potentially causing the reduced expression of PSCA. 
Imbalance in the ASE of PSCA appears to be restricted to three tissues shown in (G) and (H). 
(I) Another example of a deletion that may be linked with compatible eQTLs of ASXL3. In the 
transverse colon of individual 2, ASXL3 has lower expression in hap1. The relevant deletion 
occurs in hap1 and appears to disrupt H3K27ac and cCREs near the gene. Note that the 
H3K27ac levels at this cCRE and the expression levels of PSCA are both lower in the thyroid 
than in transverse colon, suggesting an association between the activity of this cCRE with 
PSCA expression. Imbalance in the ASE of ASXL3 appears to be tissue specific. (J) A known 
SV-eQTL of GPD1L 15 in the thyroid gland. Individuals 1 and 4 are heterozygous for this 
deletion, but the former has it on hap1 and the latter has it on hap2. As shown in the signal 
tracks, hap1 of individual 1 and hap2 of individual 2 show lower GPD1L expression than the 
other haplotype in the respective individual. There appears to be an active enhancer 40 kb 
upstream of GPD1L, as indicated by the total H3K27ac ChIP-seq signal (fold-change of the total 
reads from both haplotypes over the control) and by the locations of the active cCREs in the 
thyroid gland. This enhancer is removed by the deletion, potentially reducing the expression 
levels of GPD1L in the corresponding haplotype. The effect of the deletion is not obvious from 
the haplotype-specific H3K27ac ChIP-seq reads. This is likely because the region does not 
have enough SNVs, which are required to map ChIP-seq reads to both haplotypes. We note 
that individuals 2 and 3 are homozygous for this deletion, potentially explaining the lack of ASE 
of GPD1L in these two individuals. Note that the p-value of the AS expression in Figure 2E was 
based on beta-binomial distribution. 
(K) Novel splicing variants of PCCB. Shadow figure for Figure S4B. Sashimi plot and exonic 
structure representation of the PCCB isoforms expressed in individuals 2 (blue) and 3 (red) in 
adrenal gland and heart left ventricle tissues, respectively. The central panel provides a 
representation of the whole gene. In the sashimi plot, exons are represented by vertical lines 
either in blue (Ind. 2) or red (Ind. 3). Splicing connections of annotated isoforms are represented 
by black arcs, while novel connections observed in a specific individual are color-coded 
(magnifications of specific regions are provided, as well as the number of reads supporting each 
connection). The exonic structures of annotated and novel isoforms are reported at the bottom. 
The black isoform is expressed in both individuals, while those expressed in only one individual 
are color-coded. Annotated and novel isoforms were retrieved, for each individual, using Swan 
16. Specifically, a Swan gene report was generated for each individual by inputting transcriptome 
annotation and quantification files available, from long-read RNA-seq experiments, in the 
ENCODE portal (https://www.encodeproject.org/). These plots were obtained using ggashimi 17. 
(L) Novel splicing variants of TRDN-AS1. Sashimi plot and exonic structure representation of 
the lncRNA TRDN-AS1 isoforms in individual 3 in heart left ventricle. This gene carries a 
heterozygous deletion on hap1 (highlighted in gray) and shows ASE in the right atrium auricular 
region (with hap1 being more highly expressed than hap2). For the sashimi representation, 
reads available from long-read RNA-seq experiments (see the ENCODE portal) were phased to 
the two haplotypes using heterozygous SNVs that overlap with the gene’s exons. Read phasing 
was performed with ASCIIGenome (https://github.com/dariober/ASCIIGenome/) 18. Long-read 
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RNA-seq reads show consistently higher expression of hap1 compared with hap2. Moreover, 
reads mapping to hap1 give rise to two novel splicing junctions (represented by red arcs) and 
two novel exons (highlighted in red in the exonic structure representation at the bottom). 
Annotated and novel isoforms were retrieved for each individual using Swan 16. A Swan gene 
report was generated for individual 3 by inputting transcriptome annotation and quantification 
files available from long-read RNA-seq experiments in the ENCODE portal. Only novel “not in 
catalog” (NNC) and genomic isoforms are shown. These plots were obtained using ggashimi 17. 
(M) Null alleles potentially caused by deletion of entire exons. These examples show genes 
whose expression comes almost exclusively from hap2 in multiple tissues of a given individual. 
Further analysis revealed that each example contains a deletion in hap1 that removes multiple 
exons of the given gene in the given individual. We did not find null alleles associated with SV 
deletions in individual 4. 
(N) - (O) Deletions in individual 2 but not individual 1. (N) One homozygous deletion and one 
heterozygous deletion upstream of ITPR3 were found in individual 2 (the two variants are very 
close and are shown together by a single gray box), but are missing in individual 1. The 
deletions knock out part of the H3K27ac peak near the TSS of ITPR3, potentially reducing the 
gene’s expression in the lung of individual 2 compared with individual 1. (O) Across multiple 
tissues, the expression levels of ITPR3 appear to be lower in individual 2 than individual 1.  
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Data S18. Potential perturbations of SVs to the chromatin states of neighboring regions, 
related to Figure 2 and STAR Methods “SVs” Section 
(A) Calculating changes in the chromatin state in the SV neighborhood. Using H3K27ac levels 
as an example, haploid 1 of individual 1 carries a deletion (red bar) while haploid 2 is wild type 
at the same locus; therefore, we compared the chromatin states in the two green regions 
between the two haploids. In tissue 1, the H3K27ac levels in the green region are lower in 
haploid 1, whereas the H3K27ac levels in tissue 2 are similar in both haploids. Therefore, only 
half of the neighborhoods of this deletion show a reduction in H3K27ac levels. Similar analyses 
can be performed between two individuals by substituting the two haploids with two individuals. 
(B) - (D) Changes in the chromatin state of SV neighborhoods. Similar to Figure 2F, we 
investigated whether the presence of an SV changes the chromatin state of nearby regions and 
whether these changes are associated with different characteristics of the SVs. The genomic 
regions neighboring the TE insertions show reduced chromatin accessibility more often than 
those of the non-TE insertions. This difference is not observed between TE deletions and non-
TE deletions. The change in accessibility is determined by comparing the accessibility (from 
ATAC-seq) between the two haplotypes of each individual, taking the comparison of the 
haplotype without the SV as a reference (panel A and STAR Methods “SVs”). P-values are 
based on the Chi-squared test. (B) The reduction in the chromatin openness near SVs does not 
differ by SV length or SV type, (C) nor does it differ between long (> 1 Kb) and short (< 100 bp) 
SV insertions. (D) Changes in other chromatin states near SVs. Left panels: changes in the 
chromatin states near heterozygous SVs in all four individuals. The changes were calculated by 
comparing the chromatin states between two haploids of the same individual. Right panels: 
changes in the chromatin states near SVs that are only present in either individual 2 or 3 (but 
not both). The changes were calculated by comparing the chromatin states between two 
individuals. p-values of the difference in fractions were calculated by the χ2 test. 
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Data S19. cCRE decoration, related to Figure 3, Figure S5, and STAR Methods 
“Decoration Process” Section 
(A) Data preprocessing. We computed the average signal for each cCRE region using the 
datasets from DNase-seq, ATAC-seq, and five histone modifications (H3K27ac, H3K4me1, 
H3K4me3, H3K27me3, and H3K9me3). For DNase-seq and ATAC-seq, the signals were 
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averaged across the genomic positions of the cCRE regions. The signals of histone 
modifications were averaged across the genomic positions of the cCRE regions with a 500 bp 
extended region on each side. For each assay, we performed quantile normalization on the 
average signal from the cCRE regions jointly across all of the biosamples. Then, we scaled the 
normalized signal from 1 to 10, and defined a set of “active” cCREs for each assay from each 
tissue type. 
(B) Framework of cCRE decoration. We decorated the cCREs from the encyclopedia using the 
active and repressed histone modification signals and CTCF binding sites from tissues. The 
decorated cCREs were then separated into proximal and distal groups based on their proximity 
to the annotated TSSs. At another layer, these cCRE subgroups were further annotated as AS 
and non-AS based on their allelic signature. 
(C) Number of cCREs in various tissues. This figure shows the number of different subgroups of 
decorated cCREs in each tissue type. In each panel, the colors indicate the TSS proximity 
(proximal vs. distal) and CTCF binding state (CTCF+ vs. CTCF-). Note that the decoration terms 
are defined in Figure S5A. 
(D) cCRE decoration results matrix. We generated an annotation matrix for all the decorated 
cCREs from each tissue type. 
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Data S20. Identifying repressed elements, related to Figure 3 and STAR Methods 
“Decoration Process” Section 
(A) For genomic regions outside of cCREs and annotated genes, elements longer than 200 bp 
that are uniquely marked by either H3K9me3 or H3K27me3 were defined as fully repressed. A 
total of 45,207 (covering 12,655,795 bp) and 24,006 (covering 7,474,178 bp) non-overlapping 
elements were identified based on H3K9me3 and H3K27me3, respectively. 
(B) The majority of these elements were repressed in a tissue-specific manner. 
(C) For tissues with available datasets, DNA methylation within these elements was evaluated, 
and H3K9me3-marked elements showed a significantly (t-test, p-value < 0.05) higher CpG 
methylation (meCpG) rate than elements marked uniquely by H3K27me3. 
(D) Number and proportion of repressed cCREs that overlap with the repressive histone marks 
and/or DNA methylation in each tissue type. 
(E) The proportion of repressed cCREs that overlap with DNA methylation in each tissue type. 
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Data S21. cCRE enrichment with respect to A/B compartments “Decoration Process” 
Section 
These plots show the cCRE enrichment in the A vs. B compartment of two different tissues. We 
show this for the master cCRE list from ENCODE, including both tissue-specific active and 
repressed cCREs. As the tissue specificity increases, the cCRE enrichment in the active A 
compartment increases compared with the inactive B compartment. 
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Data S22. Tissue specificity of AS events, related to Figure 3, Figure S5, and STAR 
Methods “Tissue Specificity” Section 
(A) The number of transcribed genes in tissues. This figure shows the number of transcribed 
pseudogenes (left) and protein-coding genes (right) across all tissue types. The median of the 
transcribed pseudogenes and protein-coding genes across the tissues is 200 and ~11K, 
respectively. 
(B) Tissue specificity of transcribed genes. The heatmaps show the activity of pseudogenes 
(left) and protein-coding genes (right) across tissue types. In each tissue, the 
pseudogenes/protein-coding genes are classified as actively transcribed (shown in red) or not 
based on their expression level. 
(C) Gini index of gene expression level across tissues. We applied the Gini index to quantify the 
tissue specificity of protein-coding genes, pseudogenes, and parent genes based on their 
expression level. The pseudogenes show higher Gini indexes than the protein-coding genes, 
suggesting stronger tissue specificity of pseudogenes. The Gini index distribution of the 
pseudogenes is quite different from that of the parent genes, confirming that the multi-mapping 
bias from quantification of the pseudogene expression level has been minimized. 
(D) Tissue specificity of different subgroups of cCREs. For each cCRE subgroup, we show the 
proportion of the cCREs that are defined as “active” across the different numbers of tissue types 
ranging from one (i.e., high tissue specificity) to all tissue types (i.e., low tissue specificity). Note 
that the decoration terms are defined in Figure S5A. 
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(E) Tissue specificity of RAMPAGE data at TSSs of protein-coding genes. This figure shows an 
UpSet plot of counts of GENCODE TSSs of genes (vertical bars), measured using RAMPAGE 
data in combinations of tissues (sets of dots), sorted by the number of TSSs. Bars on the left 
correspond to the number of TSSs in each tissue. Ubiquitously expressed TSSs using 
RAMPAGE are the most abundant. 
(F) ASE genes across different tissues of individual 2 (top) and 3 (bottom). Counts of genes 
(bars) with detected ASE in the combinations of tissues (sets of dots) with the largest number of 
common AS genes. Bars on the left correspond to the number of AS genes in each tissue.  
(G) Hap1 allele ratios (number of hap1 reads over the total number of reads) for expression of 
genes that are accessible across all tissues and AS in at least one tissue of individual 3. This 
figure parallels the allelic ratios for H3K27ac in Figure 3F and shows the same trend for 
expression as for histone modification. Note in Figure 3F, we did not find any significant bias in 
GO enrichment or in the chromosomal distribution of genes targeted by cCREs that flip 
imbalance direction across tissues. The allelic imbalance is measured by the fraction of unique 
reads mapped to each haplotype. 
(H) Annotation of pan-tissue H3K27ac AS cCREs of individual 3. Among the 23 H3K27ac AS 
cCREs that were detected across all available tissues of individual 3, 21 cCREs are within 
promoter regions of known genes, including six promoters of housekeeping genes. Promoters 
and associated genes are based on Ensembl, and housekeeping genes are based on the HRT 
Atlas 19. 
(I) Annotation of pan-tissue ASE genes of individual 3. Among the 20 ASE genes that were 
detected across at least 90% of available tissues of individual 3, eight genes are annotated as 
housekeeping genes in the HRT Atlas. 
(J) Allelic specificity of housekeeping genes. Left: for each tissue, expressed protein-coding 
genes were split into housekeeping genes and non-housekeeping genes. Based on the two-
sided Fisher’s exact test, housekeeping genes are generally expressed in less of an AS fashion 
than non-housekeeping genes. Right: for each tissue, we examined the allele specificity of pAct 
cCREs flanking the TSS (defined by the gene starting site) of housekeeping genes. To eliminate 
the bias caused by significantly different cCRE lengths flanking the genes, we split genes into 
20 bins based on the total length of the flanking cCREs. Within each bin, the number of pAct AS 
cCREs was compared between the housekeeping and non-housekeeping genes. pAct cCREs 
flanking the housekeeping genes display relatively less allele specificity than the ones flanking 
non-housekeeping genes. 
 



 

Data S23 72 

A 

 
  



 

Data S23 73 

B 

 
C 

 



 

Data S23 74 

 
Data S23. Conservation of cCREs, related to Figure 3 and STAR Methods “Tissue 
Specificity” Section 
(A) Rare derived allele frequency (DAF) for active, bivalent, and repressed cCREs in increasing 
tissue count. Fraction of rare variants was calculated as # rare variants / (# rare variants + # 
common variants). Total cCRE and SNP (taking into account all SNPs, common and rare) 
counts are shown for tissue count as well. We additionally performed a more in-depth analysis 
on the correlation as shown in Figure 3. We show the correlation for tissue specificity and 
conservation for active, bivalent, and repressed methylation groups of cCREs. The correlations 
are -0.90, 0.05, and 0.84 and the p-values are 1.9e-11, 0.60, and 9.76e-9, respectively. 
(B) Conservation of enhancer decorations. The conservation was calculated in terms of the 
phastCons score and fraction of rare variants, based on the DAF in the gnomAD database. The 
annotations are from Figure S5A. 
(C) Conservation of active and repressed cCREs for tissue-specific and ubiquitous categories. 
Dark red shows an increase in conservation for more stringently defined cCREs (selected via 
the top 1% of Matched Filter signals; see STAR Methods “Tissue Specificity” Section). The 
databases for this calculation include 1,000 Genomes (1KG), the Pan-Cancer Analysis of Whole 
Genomes (PCAWG), and gnomAD. 
(D) - (G) Conservation of regions exhibiting AS activity. (A) The conservation of various AS 
annotations was calculated using phastCons and the fraction of rare variants based on different 
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population variants. Specifically, we considered AS/non-AS cCREs, ASB/non-ASB peaks from 
H3K27ac, and AS/non-AS genes. An alternate way to observe the same phenomenon is to 
determine the cumulative relative frequency of variants, shown in (B). Here, we see that non-AS 
events demonstrate stronger purifying selection than AS events, shown by the higher 
cumulative frequency curve. However, ASM/ASB variants demonstrate more consistency and 
higher purifying selection as compared to ASM/non-ASB events, shown in (C). Finally, in (D) we 
show that the effect in (C) is amplified when exclusively considering promoter regions. 
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Data S24. eQTLs in cCREs, related to Figure 4 and STAR Methods “Decoration 
Enrichments” Section 
(A) eQTL and sQTL enrichment in cCREs. We computed odd ratios (ORs) to estimate the 
enrichment of the eQTL (upper panel) and sQTL (lower panel) SNPs identified from GTEx 
tissues in the cCREs from EN-TEx tissues. The ORs were calculated using the numbers of real 
QTL SNPs and the control SNPs located in the cCREs compared to those in the baseline 
regions. This procedure was repeated 30 times to calculate the standard deviation, and the 
values are indicated by the whiskers. In each panel, we show the QTL enrichment in the 
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proximal active (left in each panel) and distal active (right in each panel) cCREs from each 
tissue type. In each figure, the cCREs are further separated into subgroups based on their 
CTCF binding and AS patterns. Note that the decoration terms are defined in Figure 5A. 
(B) Roadmap annotations. We selected 14 tissue types that are matched across the EN-TEx, 
GTEx, and Roadmap projects to compare the QTL enrichment in the EN-TEx cCREs and 
Roadmap regulatory annotations. We used the 15-state Roadmap annotations in the analysis. 
(C) QTL enrichment in cCREs: EN-TEx vs. Roadmap. We compared the enrichment of eQTL 
(left) and sQTL (right) SNPs in the TSS/proximal regions, enhancer/distal regions, and 
repressed regions. For this calculation, we matched the annotations between EN-TEx and 
Roadmap as shown in panel B. 
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Data S25. GWAS enrichment, related to Figure 4 and STAR Methods “Decoration 
Enrichments” Section 
(A) Framework of GWAS enrichment analysis. 
(B) Stratified linkage disequilibrium score regression (LDSC) enrichment: Comparing EN-TEx 
AS, non-AS, and Roadmap annotations. This is a shadow figure for Figure 10B in the main text. 
The central heatmap is the stratified LDSC enrichment of various GWAS traits over distal active 
elements of all EN-TEx tissues. In the left panel, we compare LDSC enrichment of distal active 
AS and non-AS over all traits for the coronary artery. In the right panel, we compare LDSC 
enrichment of distal active AS, non-AS, and Roadmap annotations in the right lobe of liver. 
(C) GWAS enrichment: cCREs vs. cCREs with 500 bp extensions. We performed GWAS 
enrichment analysis on the original cCRE regions and the cCRE regions with a 500 bp 
extension on both sides. More significantly enriched GWAS traits can be identified on the cCRE 
regions with extensions, suggesting that it is necessary to include the flanking regions in the 
GWAS enrichment analysis. 
(D) GWAS enrichment across tissues. We selected two GWAS traits, atrial fibrillation and total 
cholesterol levels, to show their enrichment scores across all the tissue types. 
(E) GWAS enrichment for Roadmap annotations. We performed GWAS enrichment analysis on 
the enhancer annotations from the 127 cell and tissue types from the Roadmap Epigenomics 
Project. Tissue names are on the horizontal axis and traits are on the vertical axis. Simple 
clustering of this matrix reveals a blocky structure with sets of traits associated with groups of 
tissues. 
(F) GWAS enrichment for AS vs. non-AS cCREs. We compared the GWAS enrichment scores 
on the distal active cCREs with (upper) and without (lower) AS signatures using the GWAS tag 
SNPs from blood-associated traits. Note that the decoration terms are defined in Figure S5A. 
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Data S26. Compatibility between allelic events, related to Figure 4, Figure S5, and STAR 
Methods “Compatibility” Section 
(A) Compatibility between AS chromatin state of the promoters (+/- 2 kb from the TSS) and the 
ASE of the corresponding genes. The AS chromatin ratio is the fraction of hap1 ChIP-seq reads 
among the total number of reads. The ASE ratio is the fraction of hap1 RNA-seq reads among 
the total number of reads. Each dot is a gene-promoter pair in a given tissue (marked by colors) 
and individual (marked by shape). See Figure 1A for details regarding the colors and shapes. 



 

Data S26 87 

(B) (Left) ASE ratio of known GTEx eGenes 20 that are AS in the EN-TEx individuals (fraction of 
reads of the haplotype with the alternative allele) and eQTL effect size. (Right) AS H3K27ac at 
hetSNVs that are known GTEx eQTLs. The y-axis shows the fraction of H3K27ac ChIP-seq 
reads mapped to the alternative allele among the total reads mapped to either allele of an 
eQTL. 
(C) Same plots as Figure 4D (left) and Data S26B (right) but re-colored to show whether or not 
the eQTL effect (beta coefficient) and the ASE (left)/ASB (right) are compatible. 
(D) Flow chart of filtering and ASE/AS proteomics comparison. Proteomics data were mapped 
at the gene level and filtered for proteins containing allele-specific peptides (ASPs). ASPs were 
calculated for each tissue in which allelic peptides were quantified. The ASP ratio was 
calculated as the summed peptide intensity of the first allele divided by the total specific to either 
allele. ASPs were filtered by the number of peptides, expression level, and ASP ratio. The p-
value was calculated as 0.7 using z-scores. 
(E) Compatibility between AS mRNA and ASP calculations. (Left) Example of a compatible ASP 
and ASE ratio. Both the proteomics and transcriptomics results indicate that the second allele is 
expressed at a higher level. (Right) Example of an incompatible ASP/ASE pairing. The 
transcriptomics result does not show any bias in the gene expression; however, the second 
allele is more highly expressed at the protein level. 
(F) Enrichment of ASE genes near ASM promoters. Enrichment of ASE genes near ASM 
promoters with (blue) (χ2-test, OR = 1.96) or without (green) (χ2-test, OR = 1.54) AS TF 
binding, relative to genes near ASM non-cCREs (red). ** p < 0.01, **** p < 0.0001. 
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Data S27. Correlation between chromatin features and eQTL activity, related to Figure S6 
and STAR Methods “transferQTL Model” Section 
(A) Chromatin features can help prioritize causal eQTLs. Barplots showing the percentage of 
eQTLs overlapping a given feature. The fraction of fine-mapped (causal) eQTLs overlapping 
chromatin features is higher compared with the total set of GTEx eQTLs reported in a given 
tissue. In the case of histone marks and TFs, we report the proportion of eQTLs/fine-mapped 
eQTLs overlapping any of the six histone marks (H3K27ac, H3K4me1, H3K4me3, H3K27me3, 
H3K9me3, H3K36me3) and any of the four TFs (CTCF, EP300, POLR2A, POLR2APhosphoS5) 
assayed by the EN-TEx project, respectively. 
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(B) Chromatin-marked loci associated with eQTL activity. We identified 1,353,101 SNVs that 
show tissue-specific eQTL activity. These SNVs are GTEx eQTLs in ≥ 5 EN-TEx tissues and 
are not GTEx eQTLs in ≥ 5 other EN-TEx tissues. Thus, for every SNV we defined two groups 
of tissues: (1) tissues in which the SNV is an eQTL (eQTL+, orange) and (2) tissues in which 
the SNV is not an eQTL (eQTL-, cyan). Next, for each histone mark we only considered SNVs 
that overlap with chromatin peaks in ≥ 10% of all EN-TEx ChIP-seq samples for that particular 
histone mark. We observed that SNVs are more likely to be marked by a given histone 
modification in the tissues in which they are eQTLs, compared with the tissues in which they are 
not eQTLs (p-value < 2.2e-16 for all histone marks, Wilcoxon paired test). We indicate n as the 
number of SNVs in the violin plots of each histone mark (H3K36me3: n = 232,610; H3K27ac: n 
= 176,260; H3K4me1: n = 191,689; H3K4me3: n = 64,650; H3K9me3: n = 50,236; H3K27me3: 
n = 50,973). All box plots depict the first and third quartiles as the lower and upper bounds of 
the box, with a band inside the box showing the median value and whiskers representing 1.5x 
the interquartile range. 
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Data S28. Building a predictive model that transfers eQTLs from a donor tissue to a 
target tissue: features, performance, and validation, related to Figure 5, Figure S6, and 
STAR Methods “transferQTL Model” Section 
(A) List of predictive features employed by the random forest model to predict eQTL activity in a 
target tissue. Features employed to predict which donor-tissue eQTLs can be transferred to a 
target tissue. For features 25-36, the fraction is computed over those of the 28 tissues with 
available data for the relevant experiment (e.g., if no ATAC-seq experiments were performed for 
lung tissue, then lung is not included in the calculation of ATAC_p). 
(B) Description of the metrics used to evaluate the random forest model. These metrics have 
been used in the submodel evaluations shown in Figure 5B and Data S28D. 
(C) Performance of the random forest submodels by donor tissue. Each plot shows receiver 
operating characteristic (ROC) curves from multiple target-tissue submodels obtained using the 
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same donor tissue. For instance, the first plot shows ROC curves obtained from all submodels 
using adrenal gland (ADRNLG) as the donor tissue. ROC curves for each target tissue were 
computed on a five-fold cross-validation schema and are color-coded in the figure (see Data 
S28E for a correspondence between tissues and colors). 
(D) Performance of the random forest submodels by target tissue. Dotplot reporting, for each 
target tissue (y-axis), performance metrics (x-axis) of the models obtained by using different 
donor tissues. For a particular target tissue, we report mean and standard deviation of the 
metric computed using different donor tissues. See Data S28B for a detailed description of each 
performance metric. 
(E) Number of eQTLs per donor tissue. For each of the 28 deeply sampled EN-TEx tissues, we 
list (1) the corresponding number of samples with the individual’s genotype used by GTEx to 
perform eQTL analyses (column “N. of samples”) (2) the number of eQTLs used by the model 
when setting the relevant tissue as a “donor tissue” (column “N. of GTEx eQTLs”). More 
specifically, this number corresponds to the set of eQTLs associated with one single eGene in 
the donor tissue. We also require this single eGene to have non-missing (e.g., “not NA”) 
coefficient of variation for gene expression across EN-TEx individuals and tissues. In the fifth 
column we list the number of novel “likely” eQTLs for each tissue. These are the union of all 
“likely” eQTLs across all submodels’ test sets for a given tissue. These are eQTLs not present in 
the original GTEx catalog for a given tissue, but that were predicted by our model to be active in 
that tissue. These lists are available on the EN-TEx portal (perTissue.likely.eQTLs.tsv). 
(F) Proportion (%) of blood eQTLs from Vosa et al. 21 that can be transferred to each EN-TEx 
tissue. In this analysis, we aimed to predict the activity of 1,547,430 blood eQTLs from Vosa et 
al. in every EN-TEx tissue. To do so, we applied, for every target tissue, the submodel 
previously trained on GTEx data that uses artery aorta as the donor tissue (since blood is not 
among the EN-TEx tissues, we do not currently have a model using blood as the donor tissue). 
For each EN-TEx tissue (x-axis) other than artery aorta, we report the proportion of blood 
eQTLs (y-axis) predicted to be active by the model specific to each target tissue. Because of 
some overlap between this catalog of blood eQTLs and the GTEx catalogs, we computed these 
results after excluding the blood eQTLs that were also contained in the original training set used 
for every target tissue (see also Data S28G). 
(G) Number of potentially novel eQTLs predicted for each EN-TEx tissue that are not present in 
the GTEx catalog. This table reports, for every target tissue, (1) the total number of blood 
eQTLs (from Vosa et al. 21) analyzed after removing those contained in the training set (column 
“total”), (2) the number of blood eQTLs transferred, i.e., predicted to be active (column 
“predicted”), and (3) within the predicted eQTLs, the number of novel eQTLs that are not 
contained in the GTEx eQTL catalog for the relevant tissue. We identified 496,477 novel eQTLs 
on average across tissues. Because not all blood eQTLs from Vosa et al. 21 might also have 
been tested by GTEx for gene associations in the relevant tissue, we also report (in 
parentheses) the numbers of total, predicted, and novel eQTLs out of those SNVs also tested 
by GTEx in a particular tissue. 
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Data S29. Model interpretation and evaluating the impact of tissue specificity on 
predicted eQTLs, related to Figure 5, Figure S6, and STAR Methods “transferQTL Model” 
Section 
(A) Dissecting the contribution of features to predicting tissue-specific eQTL activity. (Left) 
Heatmap showing, for each submodel (rows), Pearson’s correlation coefficients between the 
level of predictive features (columns) at donor-tissue eQTLs and the probability of donor-tissue 
eQTLs being classified as eQTLs in the target tissue (clustering method: “Ward.D2”, clustering 
distance: “manhattan”). (Right) Boxplot showing the sample size of the donor tissues used for 
the submodels in the top and bottom (row) clusters of the heatmap. The sample size of each 
tissue is reported in Data S28E (column “N. of samples”). 
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(B) By analyzing the chromatin activity of donor-tissue eQTLs in the target tissue and the tissue 
specificity of their eGenes, we can identify eQTLs active in the target tissue. Donor-tissue 
eQTLs either associated with housekeeping eGenes, or those that have high chromatin activity 
in the target tissue (green line), are more frequently also eQTLs in the target tissue, compared 
with donor-tissue eQTLs associated with tissue-specific eGenes and that have low chromatin 
activity in the target tissue (purple line). These enrichments are compared with the proportion of 
target-tissue eQTLs out of all donor-tissue eQTLs used across the 756 donor-target tissue pairs 
(orange line). Green line: donor-tissue eQTLs with “tissue specificity” < 0.8 or “sum” (chromatin 
marking) ≥ 3. Purple line: “tissue specificity” > 5 and “sum” = 0. See also Data S28A for the 
definition of “sum” and “tissue specificity” features. The dashed vertical line corresponds to the 
results shown in Figure 5G, i.e., the case using testis as the donor tissue and thyroid as the 
target tissue. 
(C) Activity of predicted eQTLs across 49 GTEx tissues. We computed the tissue specificity of 
eQTLs predicted by each submodel. The tissue specificity corresponds to the percentage of 
tissues (out of 49 GTEx tissues) in which an eQTL is found to be active based on the GTEx 
catalog. We report the distribution of median tissue specificity across all 756 submodels.  
(D) Evaluating the impact of tissue specificity on predicted eQTLs. We built a simplified model 
that transfers eQTLs to a given tissue based on their degree of tissue specificity. We evaluated 
the performance of this simplified model by using different thresholds of tissue specificity. For 
instance, 10% corresponds to a model that transfers to a given tissue eQTLs that are active in 
at least 10% of the GTEx tissues; 90% corresponds to a model that transfers to a given tissue 
eQTLs that are active in at least 90% of the GTEx tissues. The performance (accuracy, 
sensitivity, and specificity) is compared to our random-forest model trained on multi-omics EN-
TEx data (transferQTL). See also Figure S6D for a comparison based on balanced accuracy. 
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Data S30. Motif analysis, related to Figure 6, Figure S7, and STAR Methods “Sensitive 
Motifs” Section 
(A) Similar to Figure 6A, among the accessible SNPs from CTCF ChIP-seq, AS SNPs occur 
more frequently in the key positions of the CTCF motif. 
(B) For all CTCF accessible SNPs intersecting with the CTCF motif, >70% of the AS SNPs have 
more reads in the reference allele than the alternative allele. This number is ~60% for non-AS 
SNPs, indicating that the observation of AS is likely to be caused by the disruption of the motifs. 
(C) The motif of transcription factor SP1. The logo is downloaded from the Cis-BP database. 
Among all AS SNVs that overlap with the SP1 motif, >40% occur at position 9 of the motif. For 
non-AS SNVs, they occur relatively randomly across all the positions of the motif. 
(D) Similar to Figure 6A, for each TF motif, we made a 2-by-2 contingency table of the number 
of SNVs: the SNVs falling in motif or non-motif regions and SNVs being AS or non-AS. The 
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odds ratio of the table indicates the enrichment of AS SNVs for that motif. Figure shows the 
result using all accessible SNVs of all ChIP-seq (black) or using accessible SNVs from 
H3K27ac ChIP-seq (red) only. Each dot represents one motif. The x-axis represents the 660 TF 
motifs in the order based on the y-axis, the AS enrichment score. 
(E) Similar to Figure S7A, we examined the motif ranks in each tissue individually. Unlike the 
bar plot in Figure S7A, we show the approximate density of the dots in the figure, demonstrating 
that the top 100 TF motifs have more consistent ranking across tissues.  
(F) Motif ranking based on the enrichment of any ChIP-seq AS SNPs is not correlated with the 
entropy of the motifs. 
(G) The same ranking is negatively correlated with the GC content, determined by the number 
of positions where C or G is the most frequent base, divided by the motif length. 
(H) Comparison of motif ranking between using raw enrichment score and model residual. By 
using the residual, the potential effects of the C/G content and motif entropy are removed. The 
top 100 TF motifs from the original ranking are more consistent with the new ranking (with a 
Pearson correlation 0.637, p<1.1e-12, n=100 motif ranks), than the rest (560) of the motifs 
(Pearson correlation 0.03, p<0.416, n=560 motif ranks). While the choice of 100 for the top 
motifs is somewhat arbitrary, there are three interlinked justifications for using it: (i) In this panel, 
the differential corrected performance between the first 100 and remaining motifs. (ii) In panel (I) 
and Figure 6, the enrichment score follows a linear trend at the tail but bends and rises rapidly 
around rank 100. (iii) In panel (E),  greater cross-tissue consistency is evident for the first 100 
motifs versus the remaining ones.  
(I) Motif rank in each individual tissue. We examined the motif rank in each tissue (red dots) 
compared to the motif rank based on all aggregate tissue (black dots). In most cases, these 
ranks were similar to each other. The x-axis shows the 660 TF motifs ordered by the all-tissue-
based rank. The y-axis shows the AS enrichment score by aggregating all experiments. 
(J) Enrichment of AS sensitive or AS non-sensitive motifs in cCREs. We intersected all cCREs 
with the top 100 or bottom 100 motifs from the motif ranking. AS cCREs were significantly 
enriched with the top 100 motifs, while the non-AS cCREs contained more AS non-sensitive 
motifs (Fisher’s exact test). 
(K) Enrichment of TF motifs in CTCF+ cCREs. A list of 206 TF motifs (CTCF excluded) was 
used to count the total number of TF motifs that intersect with each CTCF+ and CTCF- cCRE in 
each tissue. For both distal and proximal cCREs, CTCF+ cCREs have significantly (paired-
tissue two-sided t-test, p-value < 0.05, n=27 tissues) more TF motifs than CTCF- cCREs. 
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Data S31. Predicting ASB from ASE, related to Figure 6, Figure S7, and STAR Methods 
“AS Promoter” Section 
(A) Performance validation of models predicting AS bound promoters for each assay. Models 
were trained separately for each assay with enough training data, including H3K27ac, 
H3K4me3, CTCF, POLR2A, and POLR2AphosphoS5. We targeted protein-coding genes with 
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exactly one hetSNV in the promoter region (±1 Kb of the TSS), and the ASB states of the 
hetSNV and the promoter were examined for consistency. For “no cross-individual” 
training/testing, sub-models were trained and tested with balanced data composed of the same 
set of positives and different subsets of negatives. For each sub-model, a five-fold cross 
validation strategy was used. Different sets of features (see panel B for feature description) 
were tested for improved model performance. For cross-individual testing, for each of the four 
EN-TEx individuals, sub-models were trained with balanced data from the other three 
individuals and tested on the imbalanced data from the targeting individual. For independent 
testing, sub-models were trained with balanced EN-TEx data, including the four individuals, and 
tested on the imbalanced integrated data from Roadmap individuals STL002 and STL003. For 
all the metrics, the average performances of the sub-models are shown in the table.  
(B) Association analysis between features and the promoter ASB events. To predict the ASB 
state of a gene promoter, a random forest model was built using four features: three TF motif-
based features of the promoter region and one ASE feature of the gene. The three motif-based 
features are the total number of top-100-ranked TF motifs intersecting the hetSNV in the 
promoter, the total number of top-100-ranked TF motifs nearby (200 bp window centered on the 
hetSNV) but not intersecting the hetSNV in the promoter, and the total number of all 660 human 
TF motifs distal to the hetSNV in the promoter; the ASE feature is the imbalance ratio of gene 
expression between the haplotypes. Other features (including gene expression level, eQTL, all 
660 non-ranked TF features in the promoter) were tested but proven not to be informative 
(panel D). For each assay, we investigated the association of each feature with ASB promoters. 
Welch’s two-sample t-test (two-tailed) was performed for each feature between ASB and non-
ASB promoters. To test if each feature is positively correlated with ASB promoters, an R2 score 
was calculated (panel C). A larger R2 value indicates a stronger association between the 
targeted feature and the ASB event of the promoters. Datasets were shuffled 100 times and an 
averaged R2 score is shown in the table. For each feature, a random forest-based feature 
importance score is shown, which is the average of sub-random forest models trained from the 
balanced EN-TEx data composed of the same set of positives and different subsets of 
negatives. Protein-coding genes with one hetSNV in their promoters were used to train the 
model. 
(C) Scatter plots for the association analysis between features and the promoter ASB events. 
First, for each assay, the whole dataset including all ASB and non-ASB promoters was ranked 
by the value of the targeting feature in an ascending order. Second, the ranked dataset was split 
into 50 bins. For each bin, we calculated the mean value of the targeting feature (x-axis) and the 
ratio of ASB promoters in the bin (y-axis), followed by a scatter plot shown above. For all 
assays, feature 1 (total number of top-100-ranked TF motifs intersecting the hetSNV in the 
promoter) showed the strongest association with the ASB promoters.  
(D) Features tested but not informative for the prediction of ASB promoters. To build a machine-
learning model to predict ASB promoters, many other features were tested but not included in 
the final model since they did not improve the model performance. 
(E) Contingency table for ASE genes and ASB promoters. For each assay, the number of ASE 
genes with ASB promoters is shown. “No accB” represents promoters that are not accessible for 
the assay. 
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(F) Features and performance of a model to predict ASE for a gene from ASB on the associated 
promoter. In addition to the ‘ASB from ASE’ model, we constructed a model to predict ASE from 
ASB (going in the "forward" direction). The features of this model are summarized in this table; 
here, we used epigenetics as opposed to sequence features (as we did in the "reverse" model 
in panel B). As shown in the feature description, different gene sets were tested to train the 
model. Other features that were tested but not informative included whether the hetSNV in the 
promoter was eQTL or whether the gene was a housekeeping gene. Overall, the model 
performed well on the EN-TEx samples, but we do not have enough validation data on STL002, 
STL003, or NA12878 to properly evaluate the model. 
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Data S32. Deep-learning model predicting AS activity from nucleotide sequence, related 
to Figure 7, Figure S7, and STAR Methods “Transformer Model” Section 
(A) Performance of trained allelic effect prediction models. “Logistic regression” results were 
derived from simple logistic regression on the dna2vec embedding of the input sequence; 
“BERT” results were derived from the fine-tuned DNABERT model. Both models were trained 
on SNPs from individual 3, and the results are reported for the validation sets from all four 
individuals. 
(B) Tissue-specific performance (AUROC) in H3K27ac (with Roadmap external validation). 
(C) Additional examples of attention patterns learned by the model (CTCF). The upper panel 
shows the attention pattern (red line) and motif count (gray) of the proximal region of the given 
SNV. The lower panel shows the motifs discovered in the region. Note the overlap between 
attention peaks and the enrichment of motif instances. Some motifs are shown to have 
generically higher enrichment at the SNV position as well (see Figure 7). 
(D) Additional examples of attention patterns learned by the model (H3K4me3). FOXO3 and 
ZNF460 are highlighted. 
(E) Additional examples of attention patterns learned by the model (H3K9me3).  
(F) Motifs that peak in the proximity of the AS CTCF SNPs. 
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Data S33. Visualization of EN-TEx data, related to STAR Methods “Portal” Section 
(A) - (E) Explorer tool. (A) Dimensionality reduction of the EN-TEx Explorer Tool allows for the 
generation of low-dimensional plots of several assays comprising cCREs, genomic expression, 
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and proteomic expression. Data are primarily reduced to ten dimensions through PCA, VAE, 
UMAP, or PHATE. Components of the result can be plotted against each other (e.g., principal 
component 1 vs. principal component 2 on a scatter plot), summarized based on the reduction 
method, or reduced further with t-SNE. It is also possible to rapidly view different configurations 
of preprocessing parameters (scaling, normalization, feature variance) or hyperparameters 
through extensive precomputation. (B) Interactive reduction 2D and 3D visualizations are also 
included for intuitively exploring the data. (C) UpSetR plots visualize the intersection of genes in 
various tissues, replacing the traditional Venn diagram for larger sets. In the context of EN-TEx, 
these tools apply user-defined thresholds for each gene, consider the fraction of samples for 
which a gene is present in a particular tissue, and then calculate the UpSetR plot. (D) 
Heatmaps, which can also have dendrograms applied, visualize the data that are aggregated in 
the UpSetR plot. (E) The numeric data and metadata for all results can be bookmarked or 
downloaded for rapid sharing or analysis. Note that the input files for the explorer tool are 
available from the EN-TEx portal. 
(F) - (G) Screenshot of the EN-TEx chromosome painting tool. (F) Parameters for data 
visualization of the EN-TEx data. (G) Plots generated by the chromosome painting tool are 
interactive. 
(H) Examples of the chromosome painting tool. 
(I) Viewing EN-TEx decoration on the SCREEN website. This shows views of the SCREEN 
website (screen.encodeproject.org) that indicate how to access the EN-TEx decoration of the 
ENCODE cCREs. 
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Data S34. Additional analyses with EN-TEx data but outside of the scope of this study 
(A) - (B) Predicting the ages of tissues from their DNA methylation status. The statistical model 
developed by Levine et al. 22 was used to predict the ages of the different tissues from the four 
individuals. The different tissues of the same individuals showed different predicted ages (A). 
However, for each tissue type, the predicted ages and the actual ages of the four individuals 
tend to be highly correlated (B), suggesting that the model is accurate for capturing the changes 
in tissues with actual aging. The high correlation is also observed using other predictive models 
23. Taken together, these results suggest that the different tissues age at different speeds. 
(C) Histone ChIP-seq data for COVID19-related genes. Chromatin marking of COVID-19-related 
genes. The heatmap represents the presence/absence (red/gray) of patterns of ChIP-seq peaks 
for the six histone marks assayed across the EN-TEx tissues. The list of 63 genes includes 
ACE2, CD147, FURIN, GRP78, and their protein interactors as retrieved from STRING 
(https://string-db.org/cgi/input?sessionId=bDjsdV72Wbsr&input_page_show_search=off) 24. 
Additional COVID-19/SARS-CoV-2 entry-associated genes proposed by the COVID19 Cell 
Atlas (https://www.covid19cellatlas.org/index.healthy.html), such as TMPRSS2, are also 
included in Sungnak et al. 25. 
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Data S35. Coverage of EN-TEx AS hetSNVs in GTEx-corresponding individual tissue, 
related to STAR Methods “AS Calling” Section 
This comparison was performed on two tissues from individual 2. For each of the four 
categories of hetSNVs called in EN-TEx, the number and percentage of EN-TEx hetSNVs 
detected in GTEx were calculated. For ASB hetSNVs, the call sets from all available histone 
marks (HMs) and TFs were integrated without duplications. Note that the somatic mutations in 
the colon can be potentially measured by comparing with the genome sequencing done in the 
blood by GTEx. The slightly lower overlap for the colon active region as compared to the spleen 
might reflect the greater number of somatic mutations in the colon as compared to blood (from 
which the GTEx sequencing is derived).  
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